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A Two-Branch Multiscale Residual Attention
Network for Single Image Super-Resolution

in Remote Sensing Imagery
Allen Patnaik , M. K. Bhuyan , Senior Member, IEEE, and Karl F. MacDorman

Abstract—High-resolution remote sensing imagery finds appli-
cations in diverse fields, such as land-use mapping, crop planning,
and disaster surveillance. To offer detailed and precise insights,
reconstructing edges, textures, and other features is crucial. Despite
recent advances in detail enhancement through deep learning,
disparities between original and reconstructed images persist. To
address this challenge, we propose a two-branch multiscale residual
attention network for single-image super-resolution reconstruc-
tion. The network gathers complex information about input images
from two branches with convolution layers of different kernel sizes.
The two branches extract both low-level and high-level features
from the input image. The network incorporates multiscale efficient
channel attention and spatial attention blocks to capture channel
and spatial dependencies in the feature maps. This results in more
discriminative features and more accurate predictions. Moreover,
residual modules with skip connections can help to overcome the
vanishing gradient problem. We trained the proposed model on the
WHU-RS19 dataset, collated from Google Earth satellite imagery,
and validated it on the UC Merced, RSSCN7, AID, and real-world
satellite datasets. The experimental results show that our network
uses features at different levels of detail more effectively than
state-of-the-art models.

Index Terms—Attention, deep learning, high-resolution (HR),
low-resolution (LR), residual connection.

I. INTRODUCTION

SATELLITE images have various applications, including
agricultural monitoring [1], [2], climate monitoring [3],

environmental analysis [4], and surveillance [5]. However, their
spatial resolution is limited. To address this, researchers have
proposed various algorithms for single-image super-resolution
(SISR) reconstruction to generate a high-quality, high-resolution
(HR) image from a low-resolution (LR) source image.

SISR methods can be broadly divided into classical and deep
learning. Classical methods include interpolation-based, such
as bicubic and bilinear; edge-based, such as the Canny edge
detector and reconstruction-based such as total variation regu-
larization. Classical SISR methods face challenges in generating
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high-quality, detailed images. Deep learning methods train deep
neural networks, such as convolution neural networks (CNNs)
and generative adversarial networks (GANs) on LR and HR
image pairs to learn a mapping from LR to HR images. These
methods are widely employed to produce high-quality, detailed
images.

Deep learning architectures have advanced over the past
decade, improving SISR accuracy. Dong et al. [6] introduced
a simple three-layer convolutional network to process natural
images. This structure produced higher quality images than
earlier methods. However, it still lacked deep feature extraction,
essential for accurate image reconstruction. To extract deep
features, Tong et al. [7] proposed DenseNet, a CNN featuring
skip connections and residual blocks with subpixel convolutions
for upscaling. Although DenseNet extracts deep features, it con-
sumes more memory and other resources. Lim et al. [8] reduced
memory consumption by removing the batch normalization
layer without reducing reconstruction performance. However,
the network lacked discriminative learning because it weighs
channel features equally.

Residual blocks that aggregate feature components have been
employed to enhance SR performance [9], [10], [11] yielding
promising results though still failing to restore high-frequency
image details. To address this, attention blocks have been in-
troduced to capture additional information to improve recon-
struction [12], [13], [14]. However, these networks struggled
with the complex textures found in remote-sensing images. In
response, researchers have developed targeted approaches to
improve SISR reconstruction. These include extracting higher-
order statistics [15], employing wavelet decomposition [16], and
using transformers [17]. Yet, to maintain processing speed, most
models still ignore the multiscale features of LR images despite
their importance for accurate reconstruction.

To detect image features across scales, some researchers
have adopted multiscale structures with convolution kernels
of varying sizes. Cao and Liu [18] introduced a network that
integrates channel attention (CA) with multiscale features to
enhance image details. Lei and Liu [19] proposed a network
that captures multiscale features by integrating the inception,
spatial attention (SA), and residual models. Huan et al. [20]
devised a pyramidal network with blocks for multiscale dilation
convolution. Zhang et al. [21] designed a dual-resolution model,
which merges spatial information using two separate branches.
Wang et al. [22] applied a scheme for omni-dimension feature
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aggregation to capture scale patterns in different dimensions.
Wang et al. [23] incorporated a residual block with fast Fourier
transforms to recover information at various scales. Although
these networks reconstruct details at multiple scales, fully inte-
grating features from both spatial and channel domains is also
required.

Researchers have begun to innovate with models reflecting
real-world imagery. Dong et al. [24] developed a model introduc-
ing image degradation by simulating noise and blur. However,
it only used RGB bands and applied JPEG and simple noise
compression. Qiu et al. [25] improved their network architecture
by incorporating blind noise and blur kernel models, enabling
the extraction of edge features with edge filters. However, their
method does not yet accommodate various target sensors. Xiao
et al. [26] created a dual feature modulation network that ad-
dresses multiple degradation models, employing a contrastive
learning strategy to refine real-world imagery.

Despite these efforts to create a deep learning model for
enhancing remote sensing images, many current approaches
still fall short. They do not consider the different features of
objects and thus fail to represent their underlying structure.
Texture blur and spectral distortion become severe when using
a higher upscaling factor. To solve these problems, we designed
a two-branch multi-scale residual attention (TBMRA) network
for SISR reconstruction.

This article makes the following contributions.
1) A new TBMRA module consisting of two parallel

branches of convolution networks with different kernel
sizes is employed to extract information from input im-
ages.

2) The module incorporates a hybrid multiscale attention
mechanism to extract global features from the image’s
region of interest. Our proposed attention module uses
different kernel sizes for extracting image features at
different scales.

3) We evaluated the impact of different attention mechanisms
and kernel sizes using peak signal-to-noise ratio (PSNR)
and structure similarity index measurement (SSIM). Ex-
tensive experiments comparing our method to state-of-
the-art approaches on synthetic and nonsynthetic datasets
favored our method.

The rest of this article is organized as follows. Section II
reviews related work. Section III describes the proposed method
and network architecture. Section IV presents experimental
results comparing the performance of our network architecture
to the state-of-the-art. Finally, Section V concludes this article.

II. RELATED WORK

A. Feature Extraction Block

Different types of feature extraction blocks have been pro-
posed, including inception, residual, residual dense, and mul-
tiscale residual. Inception blocks [27] use different-sized con-
volution layers with a max pooling layer to extract features.
Residual blocks [28] use skip connections where inputs are
added to the output without passing through the whole network.
Residual dense blocks [9] use convolution layers with dense

connections to extract local and global features. Multiscale
residual blocks [29] are concatenated with convolution blocks
with skip connections to explore features more thoroughly. This
article uses multiscale residual blocks to extract the features.

B. CNN-Based SISR for Remote Sensing Images

CNNs have gained prominence in super-resolution image
reconstruction for remote sensing, which often suffers from
limited spatial resolution due to sensor limitations, atmospheric
conditions, or satellite altitude. As a result, models designed to
enhance the resolution of natural images may fall short in remote
sensing applications.

Many researchers have successfully employed attention-
based methodologies [15], [23], [30]. Advances include the
use of residual dense networks and several novel techniques
that reduce model complexity [16], [31], [32]. Researchers
have utilized self-supervised [26] or self-similarity [33] ap-
proaches to group adjacent image regions or similar objects.
Also, GAN methods have produced high-quality super-resolved
images [34], [35]. Despite progress, the quest for more robust
models persists. Our model draws inspiration from prior research
by combining residual and attention-based techniques.

III. METHOD AND ARCHITECTURE

This section describes our network’s structure and attention
mechanism, shown in Fig. 2(a)–(c). Its backbone is a multiscale
residual network. The attention mechanism combines multiscale
efficient channel and SA to obtain more discriminative features.

A. Network Architecture

As shown in Fig. 1, we extract features of LR images using the
initial convolution operation with a kernel size of 3 × 3 defined
by

F0 = w3×3 ∗ (ILR) (1)

whereF0 denotes the output features obtained by the convolution
layer, and ILR denotes the LR image.

To extract intermediate features, the extracted features pass
through the TBMRA block. This process can be formulated as

F1 = (HD0, HD1, . . ., HDn)(F0) (2)

where F1 denotes the output features of the TBMRA block, and
HD denotes the multi \ scale residual attention block.

Global residual learning: We used N blocks of global residual
learning in the TBMRA block to preserve important features of
the whole image. This process can be described as

Fg = F1 + Fg−1 (3)

where Fg and Fg−1 denote the global and initial feature maps.
Next, the extracted deep features pass through a bottleneck

layer with a 1 × 1 kernel size convolution layer to compress the
feature representation of the structure. The result is

F2 = HB(Fg) (4)

where F2 denotes the output of the bottleneck structure and HB

denotes the bottleneck layer.
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Fig. 1. Proposed network architecture. N blocks of residual networks with 3 × 3 convolution kernel sizes are used.

Fig. 2. (a) Overview of the proposed TBMRA module. CONV1 and CONV2 have 3 × 3 and 5 × 5 convolution kernel sizes, respectively. (b) Architecture of
ECA with two 3 × 3 convolution sizes for the upper branch and two 5 × 5 convolution sizes for the lower branch. (c) architecture of SA with 3 × 3 for upper
branch and 5 × 5 for lower branch.

Pixel shuffle [36] is used to upsample these deep features,
which increase the image’s resolution by increasing its height
and width

F3 = HUP(F2) (5)

where F3 denotes the increased spatial dimension of the layer
and HUP denotes the pixel shuffle upsampling layer.

Finally, we obtain the super-resolved HR image by passing
this result through the last convolution layer

ISR = w3×3 ∗ (F3) (6)

where ISR denotes the final reconstruction features of the super-
resolved image after the last convolution layer.

The network is designed to make the super-resolved image
(ISR) closer to the HR image (IHR). It is trained using an L1
Charbonnier loss function to achieve this. This can be described

as

L(θi) =
1

Ni

Ni∑
i=1

ρ||Ho(I
i
SR)− IiHR|| (7)

where θi denotes the parameters in the whole network, Ni

denotes the number of training samples,Ho denotes the TBMRA
model, and ρ denotes the Charbonnier penalty function.

B. Hybrid Multiscale Attention

Attention has emerged as a recent advancement in convolu-
tion architectures. Different attention mechanisms have proved
useful for generating feature maps. The attention process begins
with the squeeze and excitation (SE) operation, which takes the
SE module as its building block for recalibrating feature maps.
The algorithm is described below.
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Let a convolution block’s input feature map be χc ∈
RW×H×C , describing the width, height, and channel informa-
tion. The channel’s weight in the block can be computed as

ωc = φ(f{Wse1,Wse2}(g(χc))) (8)

where g(χc) =
1

WcHc

∑WcHc

i=1,j=1 χi,j is the global average pool-
ing (GAP), and φ is a sigmoid function. f{Wse1,Wse2} includes all
the parameters of the SE block.

The weights of W1 and W2 are calculated as

W1 =

⎡
⎢⎢⎣
w1,1 · · · w1, cr

...
. . .

...

wc,1 · · · wc, cr

⎤
⎥⎥⎦ W2 =

⎡
⎢⎢⎣
w1,1 · · · w1,c

...
. . .

...

w c
r ,1

· · · w c
r ,c

⎤
⎥⎥⎦

(9)

where r is the reduction parameter.
Efficient channel attention (ECA) [37] follows the SE module

to capture information between the channels. It increases the
architecture’s efficiency and effectiveness by reducing channel
dependencies. The ECA module’s weights are represented by
the weight matrix W3

W3

=

⎡
⎢⎢⎢⎢⎣

w1,1 · · · w1,ks 0 0 · · · · · · 0

0 w2,2 · · · w2,ks · · · · · · 0 0
...

...
...

...
. . .

...
...

...

0 · · · 0 0 · · · wc,c−ks+1 · · · wc,c

⎤
⎥⎥⎥⎥⎦

(10)

where ks denotes the kernel size of the weight matrix. The W3
weight matrix is sparser than W1 and W2.

The ECA approach can be represented with a simple 1-D
convolution kernel with a kernel size of ks

ωeca = φ(conv1-D
ks (Input)). (11)

We propose to use hybrid multiscale attention to apply differ-
ent kernels to the channel and SA maps.

Let I be the input feature maps and Mc and Ms be the channel
and SA maps, respectively. Then, the output of the module can
be represented as

O = I ∗Mc ∗Ms (12)

where ∗ denotes elementwise multiplication. The CA map Mc

and the SA map Ms are computed as

Mc = φ(f(AvgPool(X))) (13)

Ms = φ(f(Conv1D(X))) (14)

where AvgPool denotes the GAP operation, Conv1D denotes
a convolutional block with a 1× 1 kernel size, f denotes a
multilayer perceptron, and φ denotes the sigmoid activation
function.

An ECA map is used to exploit the efficient and effective
interchannel relation among features, as shown in Fig. 2(b).
The map extracts useful information from channels by applying
GAP. The squeezed 1-D feature mapFc ∈ c× 1× 1 then passes

through two convolution layers with kernel sizes of 3 and 5.
In between them, a leaky ReLU activation function is used to
represent the nonlinearity with a small, nonzero slope for the
negative part of the function. The sigmoid function can compute
the ECA map

Mec(F ) = φ(W5LeakyReLU(W4(F c
avg))). (15)

A spatial map can be produced to exploit the intraspatial
relations among the features, as shown in Fig. 2(c). Two types of
pooling are used, GAP and global max pooling, which produce
two 2-D feature maps. These 2-D feature maps are concatenated
and passed through 2-D convolutions of kernel sizes 3 and 5.
Next, the sigmoid convolution generated a SA map

Ms(F ) = φ((W6)(F s
avg;F

s
max)). (16)

C. TBMRA Module

The TBMRA module consists of a multiscale residual block,
ECA, and SA attention. We use a residual structure to obtain a
deeper network with ease of training by bypassing the informa-
tion in intermediate layers with a skip connection.

The multiscale residual block fuses information extracted
from the images at various levels by adapting convolutional
kernels of different sizes, as shown in Fig. 2(a). The top–bottom
layers employ two convolutional blocks with kernel sizes of
3 × 3 and 5 × 5. The network’s first branch processes the LR
input image, extracting low-level features, such as edges and
contours, to capture local features. The second branch processes
the same image, extracting high-level features, such as textures
and patterns, to capture global features. The parametric ReLU
(PReLU) activation function with a learnable slope for the
negative part of the function is applied to both layers, introducing
nonlinearity into the model.

Let the initial features be denoted as F ∈ RW×H×C .
G0 and G1 are the output of initial feature extraction with

3 × 3 and 5 × 5 kernel sizes for convolution

G0 = σp(w3×3 ∗ (F )) (17)

G1 = σp(w5×5 ∗ (F )) (18)

where σp(·) denotes the PReLU activation function.
C is the concatenated features along the channel dimension.

C = [G0, G1]. (19)

Next, the network divides into two branches, as shown in
Fig. 2(a), with a convolution layer of 3 × 3 kernel size for the
upper branch and 5 × 5 for the lower branch, obtaining G2 and
G3 for the outputs, respectively

G2 = σp(w3×3 ∗ (C)) (20)

G3 = σp(w5×5 ∗ (C)). (21)

Then, the upper branch flows through ECA with two kernels of
sizes 3 × 3, and the lower branch through ECA with two kernels
of sizes 5 × 5, obtaining G4 and G5 as the outputs

G4 = Mec3×3(G2) (22)

G5 = Mec5×5(G3) (23)
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TABLE I
PSNR, SSIM, AND LPIPS VALUES OF DIFFERENT METHODS FOR SCALE ×2 ON THREE DATASETS

TABLE II
PSNR, SSIM, AND LPIPS VALUES OF DIFFERENT METHODS FOR SCALE ×3 ON THREE DATASETS

where Mec3×3 and Mec5×5 denote the ECA map for 3 × 3 and
5 × 5 kernel sizes.

Next, the lower and upper branches repeat the convolution
layers of 3 × 3 and 5 × 5 kernel sizes, obtaining G6 and G7 as
the outputs

G6 = w3×3(G4) (24)

G7 = w5×5(G5). (25)

Finally, SA of kernel sizes 3 × 3 and 5 × 5 are used for the
lower and upper branches, obtaining G8 and G9 as the outputs,
respectively

G8 = Ms3×3(G6) (26)

G9 = Ms5×5(G7) (27)

where Ms3×3 and Ms5×5 are the SA maps for 3 × 3 and 5 × 5
kernel sizes.

Local residual learning: To enhance information retention,
we employ local residual learning within the feature extraction

block, merging the initial and final output. Formally, we describe
it as

In = GU/B + In−1 (28)

where In−1 and In represent the block’s input and output,
respectively. GU/B is the output feature of the upper or lower
branch of the network.

The output is then concatenated and passed through the con-
volution layer of kernel size 1× 1 to reduce the channel depth,
obtaining HD as the output

HD = w1×1[G8, G9] (29)

The output feature map is multiplied by a residual scaling
parameter β to increase training stability [8].

Finally, the original inputs are added to the output through
residual connections to obtain the HR image.
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TABLE III
PSNR, SSIM, AND LPIPS VALUES OF DIFFERENT METHODS FOR SCALE ×4 ON THREE DATASETS

TABLE IV
QUANTITATIVE COMPARISON OF THE MODELS BY VARYING DIFFERENT TYPES

OF ATTENTION MODULES (SCALING FACTOR ×4)

TABLE V
COMPARISON OF OUR MODEL WITH TWO KERNEL SIZES (SCALING FACTOR

×4)

TABLE VI
QUANTITATIVE COMPARISON OF THE MODELS BY VARYING THE NUMBERS OF

RESIDUAL BLOCKS “N” (SCALING FACTOR × 4)

IV. EXPERIMENTS

This section describes the datasets, training parameters, eval-
uation metrics, and loss functions used to verify our model’s
effectiveness. We also compare our model with other methods.

A. Datasets

We used the WHU-RS19 dataset for training and UC Merced,
RSSCN7, and AID datasets for testing. WHU-RS19 [38], [39] is
a set of 1005 Google Earth satellite images compiled by Wuhan
University. Each image is 600× 600 with a pixel resolution of up
to 0.5 m. The set is divided into 19 classes of scenes with about
50 samples per class. The dataset includes airports, beaches,
football fields, parking lots, and residential areas. To train our
model, we randomly selected 80%, i.e., 800 images, from the
WHU-RS19 dataset for each class. We used the remaining 20%
of images from each class to validate the model.

The UC Merced dataset [40] is a collection of 2100 images,
each measuring 256 × 256 pixels. Images with a spatial res-
olution of one foot were manually selected from the USGS
National Map Urban Area Imagery collection. The dataset in-
cludes agriculture, airplanes, baseball diamonds, beaches, and
buildings. RSSCN7 [41] is a public dataset released by Wuhan
University in 2015. The dataset contains 400× 400 pixel images
of 2800 image samples. The images include grassland, farmland,
industrial and commercial regions, rivers and lakes, forest fields,
residential regions, and parking lots. AID [42] is a collection of
scene classification remote sensing images from Google Earth.
This dataset consists of 600 × 600 pixel images of 2400 image
samples. The test set consisted of randomly chosen images from
each class of the UC Merced, RSSCN7, and AID datasets.

Furthermore, we validate our model with real-world satellite
data consisting of 4123 GaoFen-2 (GF-2) [43] images. The
spatial resolution is 0.8 m with 480 × 480 pixels of each sample
image.

B. Training Parameters

Using bicubic interpolation, the model images were down-
sampled from their originals by a factor of ×2, ×3, and ×4.
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Fig. 3. Comparison of different models on the AID test data for 3 × SR.

Fig. 4. Comparison of different models on the AID test data for 4× SR.

Fig. 5. Comparison of different models on the UC Merced test data for 4×SR.

All selected images were randomly cropped to a patch size of
144 × 144. To enhance generalization, robustness, and feature
learning, we rotated, color jittered, and Gaussian blurred the
LR images before training and added Gaussian noise to the
HR images. The Adam optimizer trained our model for 200
epochs with β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning
rate η = 1e−4 was halved at epoch 100. We used 20 residual
groups with a batch size of 8. The training for all the compared
models was maintained consistently with the same iteration to
facilitate a fair evaluation. The network, implemented using the
PyTorch library, was trained on an NVIDIA GeForce RTX 3080
GPU.

C. Evaluation Metrics

The results were validated using standard evaluation metrics,
such as PSNR, SSIM, and learned perceptual image patch
similarity (LPIPS) [44]. To estimate the PSNR index of the test
image, we compared the super-resolved image with the original
image. The PSNR can be calculated as

PSNR = 10log10

( 2552

MSE(Ix, Iy)

)
. (30)

Mean squared error (MSE) can be defined as
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Fig. 6. PSNR versus inference time for the UC Merced dataset with scale
factor × 4.

MSE =
1

uv

u−1∑
m=0

v−1∑
n=0

(Ix(m,n) − Iy(m,n))
2 (31)

where Ix denotes the input image, Iy denotes the super-
resolution image, u and m denote the number of rows of pixels
and index of the image, and v and n denote the number of
columns of pixels and the index of that column. Higher PSNR
values indicate better output.

The SSIM is calculated as

SSIM(Ix, Iy) =
(2IμxIμy + cs1)(2Iσxy + cs2)

(I2μx
+ I2μy

+ cs1) + (I2σx + I2σy + cs2)
(32)

where μ and σ denote the mean and standard deviation of a
given image (x,y), and cs1 and cs2 denote constants for ensuring
stability. A larger value for SSIM means the reconstructed output
is closer to the original one.

The LPIPS metric is calculated as

ILPIPS = ||φ(Ix)− φ(Iy)|| (33)

where φ is the pretrained AlexNet [45] network used for ex-
tracting features of the images. A lower value for LPIPS means
a greater resemblance between two images.

D. Comparison With Existing State-of-the-Art Methods

We compared the proposed TBMRA model with these pop-
ular models: Bicubic, OmniSR [22], DCM [10], MHAN [15],
EDSR [8] and RFDN [32], CTNET [46], and ESRGAN [47].
Tables I–III tabulate the quantitative results for the UC Merced,
RSSCN7, and AID test datasets. Our model delivered the best
restoration results for PSNR, SSIM, and LPIPS metrics at scal-
ing factors of ×2, ×3, and ×4, as highlighted in bold font.
Fig. 3 qualitatively compares TBMRA with state-of-the-art
methods for the AID dataset’s “viaduct100” image for a scale
factor of ×3. TBMRA achieves superior performance by pro-
ducing sharper edges and reconstructing more details of the
rectangular object. Fig. 4 compares the “mediumresidential170”

image with different methods for a scale factor of ×3. The result
shows that TBMRA effectively reconstructs the marking and
the red car. Fig. 5 shows a test image named “airplane87” from
the UC Merced dataset with a scale factor of ×4. The TBMRA
method reconstructs the airplane wings and other boundaries and
edges more accurately than the other models. Thus, the proposed
method obtained results closer to the HR references with sharper
edges and textures.

TBMRA’s strength lies in its attention modules and kernel
sizes. A series of experiments were performed to evaluate their
effectiveness for different channel and SA combinations. We
also varied the kernel size to determine the combination of
features resulting in high evaluation values. The results of these
experiments are reported in Tables IV–VI.

Table IV compares the network with different CA models.
We get the best result by combining ECA and SA. ECA is
more effective at capturing long-range dependencies, and SA
forces the network to focus on the essential regions. Table V
compares the combination of different kernel sizes for effective
feature extraction. For the combination of kernel sizes 3 and
5, we get better PSNR and SSIM values because the network
can capture both fine-grained and larger-scale features. Table VI
compares TBMRA with the state-of-the-art using 5, 10, 15, and
20 residual blocks, which correspond to “N” blocks in Fig. 1. The
proposed model’s PSNR and SSIM values were higher, given
the same number of blocks. When we increased the number,
the evaluation value increased as it extracted more features. For
a fair evaluation, we used the same training skills and residual
blocks to train all the models on the RSSCN7 dataset (as in
Tables IV–VI). Fig. 6 compares PSNR versus inference time
for the UC Merced dataset. Our TBMRA model’s accuracy
increased by fusing multiscale features without an unreasonably
high inference time.

E. Super-Resolution on Real-World Images

In this section, we test our method on real-world satellite
images. As there is no HR data, we evaluate the data with a
nonreference image quality evaluator (NIQE) matrix [48] that
extracts features from a multivariate Gaussian model. A lower
value indicates better performance. Fig. 7 shows that our model
can recover sharper and clearer edges closer to the ground truth
with a lower value of the NIQE metric. This demonstrates our
method’s efficiency in real-world scenarios.

F. Color Error Map Investigation

We performed experiments to obtain our model’s color error
maps, as shown in Fig. 8. In the color maps, for the “g316” image
corresponding to ×4 factor, the square and circle marks denoted
the reconstructed fine-grain details. In the image “denseresiden-
tial89” for the upsample of ×2, only our model could restore
the correct texture accurately, as indicated by the red rectangle.
It also shows better recovery of fine object details than other
models, as indicated by the circle in the image.
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Fig. 7. Comparison for the Real-world Dataset. NIQE score is given under the reconstructed image.

Fig. 8. Colored error maps to compare the different methods.

V. CONCLUSION

This article proposes a novel TBMRA CNN for super-
resolution reconstruction of remote sensing images. The two
branches are designed to extract features from the input image at
different levels of detail. They are trained jointly to produce high-
quality results. The proposed TBMRA network incorporates
multiscale hybrid attention to extract low- and high-level im-
age features and simultaneously emphasizes important features.
To enhance model stability, the network is trained with local
and global residual connections. Experimental results show our
model’s effectiveness in capturing and preserving salient infor-
mation in images, surpassing other methods. Notably, TBMRA

strikes a favorable balance between model performance and
inference time among the models tested. Moreover, our approach
demonstrated its practicality by showing promising results with
real-world satellite imagery. We aim to extend our work to en-
compass multispectral imaging to acquire information at longer
wavelengths.
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