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Abstract—A dust devil is an important part of the Martian
climate system, which can help us better understand scientific
questions of the climate, surface–atmosphere interactions, aeo-
lian processes, and regolith on Mars. Therefore, the automatic
detection of dust devils from Mars orbiter images is becoming
increasingly important for the scientific study and the planning of
future robotic and manned missions. To improve the generalization,
detection efficiency, and accuracy of the traditional approach in
automatically detecting dust devils, we made several modifications
to the faster region-based convolution neural network. Based on
the characteristics of the dust devil, we proposed a Martian dust
devil detection network (MDDD Net). The network uses the feature
pyramid network to obtain a feature fusion map with rich location
information and semantic information. The k-means++algorithm
is used to design reasonable anchor boxes to adapt to vary sized dust
devils. The region of interest align unit is introduced to eliminate
the mapping deviation between the feature map and the original
image. Finally, the soft nonmaximum suppression algorithm is used
to complete the screening of the bounding box. It can reduce missing
detections caused by the overlapping between adjacent dust devil
bounding boxes in the same image. The average precision and recall
of MDDD Net on the dust devil dataset built in this article reach
90.1% and 96.5%, respectively.

Index Terms—Dust devil, faster region-based convolution neural
network (faster R-CNN), feature pyramid network (FPN), K-
means++, Mars, region of interest align (ROI align), soft
nonmaximum suppression (soft-NMS).

I. INTRODUCTION

THE suspended dust on Mars is an important part of the
Martian climate system. As early as the 18th century, peo-

ple used telescopes to observe the presence of “yellow clouds or
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Fig. 1. Dust devil appeared in the Amazonis Planitia shot by HiRISE camera.

hazes” on the surface of Mars [1], [2]. With more and more data
coming back from Mars missions, our understanding of Mars
has become more comprehensive. According to the observed
spatial and temporal scales and difference in morphology, dust
clouds can be divided into two categories: dust storms and dust
devils. The spatial scale of dust storms can range from local to
the planetary scale, and the duration of dust storms can range
from days to months. In contrast, dust devils (see Fig. 1) have
some distinct morphological characteristics, they are also small
in size and have a short lifespan. Although individual dust devils
are local events, they are widespread on a global scale. This
indicates that the dust devils play an important role in the Martian
dust cycle [3], [4]. The formation process of Martian dust devils
is similar to that of the dust devils on Earth. Both are caused
by a small-scale convection movement in the near-surface air
layer due to strong local warming of the ground. It can lift dust
on the surface of Mars into the air, forming a dust column and
wandering on the ground for a few minutes.

Various studies on Mars in recent years have shown that
Mars has a much more dynamic surface environment than we
previously thought. Among them, the Martian atmosphere has
an extremely dynamic process of change. As a dynamic event,
the Martian dust devil can provide us with a lot of useful informa-
tion for studying the atmosphere of Mars. Insight into Martian
dust events can help us better understand scientific questions
about climate, surface–atmosphere interaction, low atmospheric
behavior, aeolian processes, and regolith in Mars [5], [6]. For
example, the frequency, size diversity, and effective dust-lifting
ability of dust devils indicate that they play an important role
in the thermal structure of the atmospheric boundary layer of
Mars [7]. The seasonal changes of the dust devils’ track streaks
found in Noachis are consistent with the seasonal “wave of
darkening” observed by the orbital camera, which indicates that
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dust devils and dust storms are important contributors to the
seasonal “wave of darkening” phenomenon [3]. The seasonal
trend of the Martian dust devil height is similar to that of the
planetary boundary layer height, which indicates that the shadow
of the dust cyclone can provide key information, such as the
wind direction and the planetary boundary layer height related
to the lower atmosphere [8]. By analyzing the speed, directions
of motion, and general characteristics of the dust devils observed
in the high-resolution stereo camera (HRSC), dust devils are
considered to have an important contribution to the entrainment
of dust into the atmosphere and the Martian dust cycle [9]. In
addition, dust devils and dust storms may also pose a greater
threat to the landing of the Mars rover. In May 1971, the Soviet
Mars III probe failed to land due to a dust storm on the surface
of Mars. Therefore, an overall understanding of the temporal
and spatial distribution of dust devils and other characteristics
will also help us to better plan future Mars exploration pro-
grams. The real-time automatic detection of dust devils can also
help the rover automatically avoid dangerous dust devils when
landing.

As an event of high scientific research value, Martian dusty
devils began to receive more and more attention. Because dust
devils are relatively rare and have low temporal and spatial
scales, it is not easy to observe them. Fortunately, with the
continuous upgrading of Mars detection technology, we have
been able to see the clearer images of Martian dust devils, which
include not only the imaging of the orbital detection cameras
but also the imaging of the ground-based probes. Active dust
devils were first observed by Viking Orbiter cameras, which
are bright small clouds with long cone-shaped shadows [10]
and were also observed on other Mars orbiters subsequently:
Mars global surveyor Mars orbiter camera [11], Mars Odyssey
thermal emission imaging system [12], Mars express HRSC
[13], Mars reconnaissance orbiter (MRO) Mars color imager,
MRO context camera (CTX), and MRO high-resolution imaging
experiment camera (HiRISE) [14]. Observational data from the
orbiter provide key information for understanding the sizes,
heights, speeds, geographical distribution, and seasonal changes
of dust devils. However, due to the limitation of the local time
of the orbiter [3], [11], the diurnal variability characteristics of
the dust devils need to be observed by surface detectors. Several
active dust devils were found and tracked in Mars pathfinder,
Mars exploration rover (MER) spirit, MER opportunity, Phoenix
Mars rover, and Mars Science Laboratory curiosity [15], [16],
[17], [18], [19], [20]. Scientists have carried out a series of
studies on dust devils based on the above image data.

With the continuous development of the Mars exploration pro-
gram, we have accumulated a large number of high-resolution
images from orbital probes and surface probes for analysis.
Among them, MRO CTX has taken more than 126 000 images
of the Martian surface with high-definition resolution and wide
coverage. Because the amount of image dataset is too large and
only a small part of it contains active dust devils, using the
traditional artificial visual search method to find continuously
generated dust devils is not only inefficient but also inaccurate
(some dust devils with unobvious features are difficult to be
recognized by humans).

Previously, a dust devil’s motion detection algorithm based on
background subtraction has been applied to the images shot by
the MER spirit rover, which can help detect faint dust devils that
are not detectable by the naked eye [21]. However, compared
with the orbiter images, the lander images are limited by the
field of view and the height above the ground; hence, it is
difficult to estimate the dust devil heights, distances, speeds,
and directions of movement. A Gaussian-based filter is applied
to detect typical dust devils from the orbiter image [22], [23].
It builds a series of filters suitable for different light directions,
different diameters, and different heights of dust devils, so the
detection efficiency is relatively low. The dynamic behavior and
morphological diversity of dust devils also lead to ever-changing
dust devil images, which makes it difficult for Gaussian-based
filters to apply to different morphologies of dust devils. In
addition, because dust devils often leave dark and slender tracks
on the surface, dust devils tracks are also often used to study
active dust devils [4], [24]. However, studies have indicated that
only a small part of dust devils can produce stripes by destroying
and removing surface dust [3]. The formation and preservation
of dust devil tracks are affected by the horizontal speeds of dust
devils, the properties of the substrate, and the thickness of the
dust layer on the top of the substrate [25], [26]. Therefore, the
data size and regional differences still limit the investigations of
dust devil tracks to regional studies.

In recent studies, researchers have proposed a method using
Cubesats and onboard scheduling to maximize the tracking
observations of Martian dust devils [27]. Their research aims
to improve the efficiency of dust devil observations on Mars by
utilizing small satellites and efficient scheduling. They imple-
mented a dust devil detection model using the CNN algorithm,
achieving an average precision (AP) of 0.7. This study provides
a novel approach for tracking dust devils on Mars.

Furthermore, there have been studies on plume tracking and
related topics. For instance, researchers have proposed a model-
based method for detecting plumes on comets that do not rely on
machine learning techniques [28]. Their research automatically
detects and tracks plumes on the 67P/Churyumov–Gerasimenko
comet using OSIRIS/Rosetta image sequences. In addition, there
have been studies on surface feature detection and tracking on
small bodies using onboard computer vision techniques [29],
[30]. These studies provide insights for tracking dust devils on
other celestial bodies.

Moreover, there have been numerous studies on deep learning
processing onboard satellites. Researchers have investigated the
use of deep neural networks for satellite Earth observation [31].
Their research utilizes deep learning models onboard satellites
for Earth observation and achieves good results. Furthermore,
there have been studies evaluating the performance of deep
learning models for space application [32]. These studies pro-
vide references for applying deep learning models for dust devil
detection onboard satellites.

In order to solve the problems of poor generalization ability,
low detection efficiency, and low accuracy of the traditional
automatic detection algorithm of Martian dust devils, we made
targeted improvements on the faster region-based convolution
neural network (faster R-CNN) algorithm and proposed Martian
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Fig. 2. Faster R-CNN network architecture diagram.

dust devil detection network (MDDD Net). The main improve-
ments include adding a feature pyramid network (FPN), resetting
preset anchor boxes, introducing a region of interest align (RoI
align) unit, and soft nonmaximum suppression (soft-NMS) al-
gorithm. In addition, we constructed a dataset for Martian dust
devil object detection in view of the lack of Martian dust devil
image data to verify the algorithm.

The rest of this article is organized as follows. Section II in-
troduces the background of faster R-CNN. Section III describes
the proposed improved methods in detail. The experimental
and result analysis are given in Section IV. Finally, Section V
concludes this article.

II. BACKGROUND ON FASTER R-CNN

Faster R-CNN is a two-stage object detection algorithm [33],
and its biggest innovation is the proposed region proposal net-
work (RPN). By sharing the convolutional feature layer, the RPN
network and fast R-CNN are unified into one network, which
solves the time-consuming problem of candidate box generation
in the R-CNN and fast R-CNN algorithms, and greatly improves
the efficiency of the two-stage detection algorithm.

The basic network architecture of faster R-CNN is shown
in Fig. 2, which is mainly composed of a feature extraction
network, RPN network, region of interest pooling (RoI pooling)
unit, and classification and regression networks. In the specific
implementation, the faster R-CNN algorithm first uses a convo-
lutional neural network to extract features from the input image
and obtain a feature map with high-level semantic information.
The PRN network uses the feature map to generate anchor boxes,
trains the anchor boxes, obtains the regions of interest, and gives
the classification of whether the proposed area belongs to the
foreground or the background. The classification and regression
network is trained on the proposed region output by the RPN to
classify and locate the objects in the proposed region.

As the basic network of faster R-CNN, the feature extraction
network mainly uses a series of combined operations of convolu-
tion, activation, and pooling layers to extract image feature maps
and provide them to the RPN layer and fast R-CNN module.

Generally speaking, a good feature extraction network has
strong feature expression ability, which can provide great help
for subsequent detection tasks. Therefore, the selection of a
feature extraction network is particularly important. With the
development of convolutional neural networks, more and better
feature extraction networks are emerging. The most representa-
tive network models are Alex-Net, ZF-Net, VGG-Net, Google-
Net [34], residual network (Res-Net) [35], and so on. After

referring to the advantages and disadvantages of each network
model and analyzing the Martian dust devil detection task, we
selected ResNet50 as the feature extraction network. Its network
is deep and can extract more advanced features. The unique
skip connection of deep Res-Net can make the information of
the previous residual block flow into the next residual block
without hindrance. It not only improves the information flow but
also avoids the vanishing gradient problem and the degradation
problem caused by the deep network.

III. PROPOSED MDDD NET

According to the characteristics of the Martian dust devil
detection task, we have made the following improvements to
the original faster R-CNN network and proposed an MDDD
Net. Its network structure is shown in Fig. 3.

A. Multilayer Feature Fusion Based on FPN

The feature extraction network used in this subject is the
ResNet50 network. The network structure is deep enough to
learn advanced features. But in the original faster R-CNN, its
feature extraction network only uses a single high-level feature
layer as a shared convolutional feature layer for the subsequent
RPN and fast R-CNN to use. This will cause an obvious issue.
Some small-sized dust devil objects have less pixel information
than large-sized ones, so their feature information is easily lost
in the downsampling process. In order to solve the problem that
the model is very sensitive to the difference in the size of the dust
devil, we add an FPN design to the feature extraction network
ResNet50, as shown in Fig. 4. By superimposing and connecting
the feature maps of each connected feature layer in the feature
extraction network, the FPN [36] solves the problem that small
object features are blurred or even lost after multiple convolution
and pooling operations.

1) Bottom-Up Route: In ResNet50 network convolution
bottom-up, this process has {C1, C2, C3, C4, C5} five con-
volution layers.

2) Top-Down Route: In the FPN network, the feature infor-
mation of {M4, M3, M2, M1} is upsampled from top to bottom
using the nearest neighbor interpolation method to preserve the
semantic information of the feature map to the greatest extent.

3) Horizontal Connection Route: Use a 1∗1 convolution ker-
nel to convolve each layer of the ResNet50 network and fuse the
corresponding feature layers of the FPN network so as to obtain
a feature map with both good spatial information and strong
semantic information.

After the ResNet50 is fused with the FPN network, the convo-
lution kernel needs to be used to convolve the P layer to reduce
the aliasing effect caused by the nearest neighbor interpolation.
Finally, the feature maps fused with different scales are provided
to the subsequent network for use.

B. Anchor Boxes Design Based on K-Means++

In the original faster R-CNN algorithm, the anchor boxes
(priori bounding boxes laid out in a grid) are combined according
to different preset sizes and aspect ratios. The sizes are 128, 256,
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Fig. 3. Structure diagram of the MDDD Net.

Fig. 4. Feature extraction network.

and 512, and the aspect ratios are 1:1, 1:2, and 2:1. However,
this method generates too many suggested regions, and these
parameters are not well adapted to the shapes and sizes of
Martian dust devils, resulting in relatively slow training and
testing processes. Therefore, it is necessary to choose a more
appropriate set of anchor boxes to make the model easy to learn.

By using the K-means clustering algorithm to learn the sizes
of the real object boxes, we obtained the shape distribution
rule of the dust devil in the training set and reset the size of
the anchor boxes. K-means clustering algorithm is a typical
unsupervised learning algorithm, which uses distance as the
similarity evaluation index, and is mainly used to divide n
samples into k categories. The clustering process is shown as
follows.

1) Extract and normalize the size of each real object box from
the training set, including the area and aspect ratio of the
object, and use this as the n input samples for the K-means
clustering algorithm.

2) Set the number of categories to k and randomly select k
points from the n samples as the center points of the first
round of clustering.

3) Calculate the distance between n samples and k cluster
centers, and cluster the n samples (each sample belongs to
the category whose cluster center is closest to the cluster
center). Finally, we calculate the mean of all samples for
each cluster to get a new cluster center.

4) Repeat step (3) until the conditions for stopping iteration
are met. The final k cluster centers are k prior anchor boxes.

In this task, we use (1) to define a new distance expression
to calculate the similarity between sample points and center
sample. GT is the real object box marked on the training set.

CE is the calculated cluster center; RIoU is the quotient of
the intersection (IoU) and union of GT and CE. The calculation
method is shown in (2). The function J(GT, CE) defined in the
clustering process is shown in (3)

D (GT,CE) = 1−RIOU (GT,CE) (1)

RIOU (GT,CE) =
S (GT ∩ CE)

S (GT ∪ CE)
(2)

J (GT,CE) =
n∑

i=1

Di (GT,CE) (3)

which represents the sum of the distances from all ground truth
to the nearest cluster center. The stopping condition of the
clustering process is to reach a certain number of iterations or
the value of J(GT, CE) does not change.

However, the traditional K-means algorithm also has certain
defects. Its convergence speed and simplicity come at the ex-
pense of accuracy. There are many specific examples that the
cluster centers generated by this algorithm do not achieve our
desired results. Furthermore, these examples also show that the
clustering results depend on the location of the starting cluster
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Fig. 5. Dense dust devils.

centers and that the use of standard random assignment of
starting points makes the clustering results less robust.

In order to solve the above problems, we used K-means++
to replace K-means. The basic thought of K-means++ is to
initialize the cluster centers by choosing random starting centers
with probability function. The specific steps for selecting the
initial cluster center point are shown as follows.

1) Randomly select a sample as the first cluster center c1.
2) Calculate the shortest distance between each sample and

the current existing cluster centers (that is, the distance
from the nearest cluster center), represented by D(x).

3) The bigger the D(x) value, the higher chance the sample
being selected as the cluster center in this round.

4) Use the Roulette method to select the next cluster center.
5) Repeat steps (2)–(4) until k cluster centers are selected.
Through the probability function, we found that the cluster

centers selected by the K-means++ algorithm are relatively
scattered. This clustering algorithm achieved a better clustering
effect than K-means. Therefore, in this project, we use the
K-means++ algorithm for the anchor boxes of the Mars dust
devil detection algorithm so that the anchor boxes can better
adapt to the morphological characteristics of the dust devil.
When k= 5, the clustering results are (26, 13), (41, 20), (63, 29),
(97, 43), and (164, 75), which represent the heights and widths
of the anchor boxes. These anchor boxes were applied to the
feature maps of different scaled outputs from the FPN.

C. Candidate Boxes Filtering Based on Soft-NMS

In order to avoid repeated detection of the same object, faster
R-CNN uses a nonmaximum suppression algorithm (NMS) to
complete the selection of candidate boxes, which will suppress
candidate boxes with Intersection over Union (IoU) value greater

than the threshold of the current candidate box. Hence, the
NMS algorithm is sensitive to the setting of the threshold. If the
threshold is too small, the candidate frame with a lower score will
be completely suppressed by the adjacent high-scoring candidate
boxes, which will lead to a high missed detection rate. If the
threshold is too large, NMS cannot suppress duplicate detection
boxes well, which will lead to duplication object detection.
Therefore, the traditional NMS algorithm is prone to missed
detection when dealing with multiple dust devils intensively
occurring scenes.

As shown in Fig. 5, there is an overlap between the candidate
boxes when multiple adjacent high-scoring dust devil candidate
boxes are present. If the IoU threshold setting is unreasonable,
the adjacent dust devil candidate boxes with relatively low
score may be suppressed, resulting in the occurrence of missed
detection.

To avoid this issue, we used soft-NMS [37] to replace NMS
in faster R-CNN. In NMS, the score for candidate boxes with
IoU value higher than the threshold will be set as 0, as shown
in (4). In contrast, soft-NMS does buffering work and uses an
attenuation function to adjust the score of the candidate box with
an IoU value higher than the IoU threshold. The commonly used
attenuation functions include linear weighting and Gaussian
weighting. Linear weighting is used in this project, as shown
in (5)

si =

{
si, iou (M, bi) ≤ Nt

0, iou (M, bi) ≥ Nt
(4)

si =

{
si, iou (M, bi) ≤ Nt

si (1− iou (M, bi)) , iou (M, bi) ≥ Nt.
(5)

D. Feature Maps Pooling Based on RoI Align

Since dust devils are small in size and often appear densely
in images, the extraction accuracy of regions of interest is
particularly critical for small and dense dust devil objects. The
RoI pooling in faster R-CNN is used to map the candidate
boxes generated by the RPN to the feature map output by the
shared convolution layer to obtain the regional feature maps
of the candidate regions. Finally, the regional feature maps are
evenly divided into blocks according to the output requirements,
and maximum pooling is performed on each block to generate
fixed-size feature maps.

However, since RoI pooling includes two rounding opera-
tions, the region proposal box mapped on the feature map is
biased. For example: Assuming that there is a candidate frame
size of 88 × 88 in the original image, the size of the feature
map obtained after the feature extraction network is reduced by
16 times (that is, it becomes 5.5 × 5.5). At this time, the first
rounding will be performed, and the size of the obtained feature
map will become 5 × 5. Assuming that the subsequent network
requires the input of a 2 × 2 fixed-size feature map, then RoI
pooling will divide the 5 × 5 candidate area into 2 × 2 small
blocks. The side length of each small block is 5/2 = 2.5, that
is, the small block size is 2.5 × 2.5. At this time, the second
quantization is performed, and the obtained small block size
will actually become 2 × 2. Finally, max pooling is performed
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Fig. 6. Bilinear interpolation algorithm.

TABLE I
EXPERIMENTAL ENVIRONMENT DETAILS

in each small block to obtain a 2 × 2 feature map. From the
above process, we can see that, after two rounding operations,
the 5.5 × 5.5 regional feature map is actually mapped to a 4 × 4
local feature map. Such pixel deviation will definitely affect the
regression positioning of the subsequent network, especially for
small-sized dust devils.

For this problem, we use RoI align proposed in the mask
R-CNN algorithm [38] to replace RoI pooling. It retains floating-
point numbers and uses bilinear interpolation to calculate corre-
sponding pixel values, which avoids the loss of precision caused
by rounding and improves spatial symmetry.

When the same situation is handled in RoI align, since
floating-point numbers are reserved, the 5.5 × 5.5 candidate
frame feature map will be obtained after the first quantization,
and the side length of the small block will become 2.75/2 =
2.75 after the second quantization. Assuming that the sampling
point is set to 4 (dividing each 2.75 × 2.75 block into four small
cells), RoI align will use the bilinear interpolation algorithm to
calculate the center pixel value of each small cell (see Fig. 6), and
then take the maximum pixel value of these four sampled pixels
as the pixel value of this small block (similar to max pooling).
In this way, we can get a feature map of size 2 × 2 without
mapping bias. Fig. 7 shows the process of feature map mapping
and pooling for the above example using RoI pooling and RoI
align, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment

The experimental platform used in this project is a desktop
computer with AMD Ryzen 7 3700X processor and NVIDIA
TITAN RTX (24G) graphics card graphics card (as shown in
Table I). The operating system is Ubuntu 20.04.1 LTS. The de-
velopment language is Python 3.6. The deep learning framework
used is PyTorch.

Fig. 7. Process of feature map mapping and pooling. (a) RoI pooling. (b) RoI.

Fig. 8. Different morphologies of Martian dust devils. (a) Narrow, tightly
defined column. (b) Inverted V-shaped dust cloud with a less well-defined
column. (c) Poorly defined inverted V shape with no visible internal column.

B. Martian Dust Devil Detection Dataset

Since there is currently no authoritative and public Martian
dust devil detection dataset available in the world, we used model
iteration method to construct a VOC format dataset for Martian
dust devil detection based on CTX images, which not only has
a large number of dust devil samples (2315 objects) but also
covers different morphologies of dust devils (see Fig. 8). The
establishment of this dataset lays the foundation for preventing
overfitting problems and improving the generalization ability of
detection models.

The data source we selected is the CTX on the Mars explo-
ration orbiter. The CTX camera primarily provides a context
for high-resolution analysis of key spots on Mars provided by
HiRISE and CRISM. Its image set covers almost the entire
Martian surface and has an image resolution of up to 6 m/pixel,
which makes it ideal for our mission. Previous studies have
indicated that the Amazon Plain is a frequent place for dust
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Fig. 9. Use the “labelImg” tool to mark the dust devil.

devils [3], [8], [39], so we used the CTX images of this area
(W:140°–180°; N:0°–40°) to make a dataset.

First, from the official website (viewer.mars.asu.edu), we
downloaded all the CTX images shot over the Amazonis Planitia
so far, a total of 3958 images. Then, dozens of CTX images
containing more dust devils were preliminarily screened out
through artificial vision. In order to take into account the model’s
requirements for the size of the input image and the retention
of more details, we cut each large CTX image into hundreds of
small images close to 750× 750 pixels using the sliding window
method. Next to use artificial vision for further screening to
obtain 400 small images containing dust devils, and use the
“labelImg” tool to mark the positions of the outer rectangles
of these dust devil samples (see Fig. 9).

So far, we have constructed the initial detection network
dataset. Through the first round of training, the initial results of
the Martian dust devil detection model were obtained. Although
the Martian dust devil detection model has been trained with
400 dust devil images, a small part of the dataset, they contain
different morphologies of dust devils, which makes the model
robust. By using the initial model, other images in the untrained
dataset can be used to obtain the initial prediction box of the dust
devils. The initial training dataset contains only 400 dust devil
images, although most of the untrained images can be detected,
a general model with strong generalization ability has not been
obtained. Therefore, it is necessary to further expand the dataset
to continue iterative training.

The initial detection model trained on 400 labeled dust devil
images was used to detect the remaining untrained more than
500 000 small images, and the preliminary prediction results of
the dust devil positions in the image were obtained. Through the
inspection of the initial detection results, the bounding boxes
of the wrongly detected image were corrected as the label of
the target position in the image, and the expanded dataset after
the initial training was obtained. Fig. 10(a) shows the predicted
result by checking the initial detection model, and Fig. 10(b)
shows the adjusted result.

After revising the prediction results of nearly 500 000 small
images, a total of 2000 images of marked dust devils were

Fig. 10. Schematic diagram of detection frame correction. (a) Initial model.
(b) Corrected image.

obtained (including 2315 multiscale and multimorphological
dust devil objects), which were used as training sets to train
the dust devil detection algorithm based on faster R-CNN. The
method of preliminary prediction and iteration through the initial
detection model can effectively reduce the workload of image
screening and location marking. In addition, batch operations
also ensure the accuracy and consistency of labeled data, which
lays a good foundation for the final detection accuracy.

We have made this dataset publicly available on GitHub.1

Restricted by the difficulty of data collection, the dataset we
made is still difficult to meet the number of images required
to optimize network parameters, which may easily lead to the
situation that the model is not robust and the detection accuracy
is not high. Therefore, in order to improve the robustness of
the algorithm model, reduce overfitting, and improve detection
accuracy, we can use data augmentation to expand the dataset.
Data augmentation refers to the method of performing some
changes on the training data to generate new effective data.

There are many methods of image enhancement, such as
random cropping, mirroring, shifting, rotation, zooming, con-
trast transformation, and adding noise. However, in the specific
practice process, the appropriate method should be selected
according to the task requirements. After analyzing the original
collected data and detection tasks, we chose shifting, rotation,
and zooming to expand the original dataset, which is shown in
Fig. 11. It enabled the Martian dust devil detection algorithm to
learn more image-invariant features.

Finally, we selected 15% of the dataset as the test set, and the
remaining data were divided into training and validation sets in
an 8:2 ratio.

C. Model Training and Evaluation

The selection of the following experimental parameters is
based on our experiments and experience. The optimal com-
bination of parameters may vary for different datasets and
problems.

1[Online]. Available: https://github.com/a1025922331/Mars_Dust_Devil_
Data_Set

https://github.com/a1025922331/Mars_Dust_Devil_Data_Set
https://github.com/a1025922331/Mars_Dust_Devil_Data_Set
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Fig. 11. Data augmentation diagram.

1) Initialize the parameters of the feature extraction network
using the pretrained ResNet50 model trained on the Ima-
geNet dataset. This is because ResNet50 has demonstrated
excellent performance on large-scale image classification
tasks and has strong feature extraction capabilities, which
can provide a good initial feature representation for our
model.

2) Set the training batch size to 16. Through experimentation,
we have found that this batch size achieves a good balance
between training speed and model performance.

3) Set the initial learning rate to 0.005. This value is de-
termined by trying different learning rates and selecting
the one that yields better convergence performance during
training.

4) Set the number of training epochs to 100. Through experi-
mental observation, we have found that within this number
of epochs, the model can sufficiently learn the features of
the data and achieve good performance.

5) Set the learning rate decay step to 30 and the learning
rate decay rate to 0.1. This setting gradually reduces the
learning rate during training to help the model converge
better.

6) Set the threshold for NMS to 0.5 and the IoU threshold to
0.7. The threshold for NMS is used to suppress bounding
boxes with significant overlap to obtain more accurate
prediction results. The IoU threshold is used to determine
the degree of overlap between candidate boxes and ground
truth boxes to determine whether to treat them as positive
or negative samples for training. In our experiments, the
combination of an NMS threshold of 0.5 and an IoU
threshold of 0.7 has shown good performance.

Fig. 12. Train loss and learning rate.

Using precision, recall, and average precision (AP) as evalu-
ation metrics

R =
TP

TP + FN
(6)

P =
TP

TP + FP
(7)

AP =

∫ 1

0

P (R) dR. (8)

TP represents the positive samples predicted to be positive;
FN represents the positive samples predicted to be negative; and
FP represents the negative samples predicted to be positive. F(R)
is the precision–recall curve.

D. Result Analysis

Using the constructed Martian dust devil detection dataset, we
verified the detection performance of the MDDD Net algorithm
proposed in this article. The changing trends of training loss
and learning rate are shown in Fig. 12. It can be seen that
the training loss decreases rapidly at the beginning and then
gradually becomes flat, which indicates that the model has
converged. The AP curve is shown in Fig. 13. Among them, the
best score is the 9th epoch, whose average precision is 90.1%
and recall is 96.5%.

The results of testing on the Martian dust devil detection
dataset using the original faster R-CNN and other commonly
used object detection algorithms are as follows. As can be seen
from Table II, the MDDD Net proposed in this article achieves
the best results in both the average precision and recall on
Martian dust devil detection (Bold lines in Table II). Compared
with the original faster R-CNN, the improved strategy proposed
in this article has a significant effect, the AP is increased by
4.7%, and the recall is increased by 6.8%.

In terms of detection speed, although the aforementioned
improvement methods have increased the computational com-
plexity to some extent (especially with the introduction of the
RPN), the reduction in frames per second (FPS) compared with
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Fig. 13. AP curve.

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS

the original faster R-CNN is negligible. The processing time per
frame is approximately 83 ms, which is still high and meets the
requirements for real-time processing. Taking the CTX image
data used in the experiment as an example, it is possible to
scan almost 241 km2 of the Martian surface per second while
maintaining high accuracy.

Furthermore, although the aforementioned improvement
methods have increased the computational complexity to some
extent (especially with the introduction of the RPN), the reduc-
tion in FPS compared with the original faster R-CNN is negli-
gible. The processing time per frame is approximately 83 ms,
which is still high and meets the requirements for real-time
processing. Taking the CTX image data used in the experiment as
an example, it is possible to scan almost 241 km2 of the Martian
surface per second while maintaining high accuracy. Compared
with the traditional detection methods based on Gaussian filters
[22], [23] and CNNs [27], MDDD Net achieves a 3–6 times
improvement in detection latency.

In addition, we evaluated the four improvement strategies
employed in this study by setting up independent experimental
groups and conducting ablation experiments. The results of
these experiments are presented in Table III. It is evident from
the results that, compared with the other control groups, the
improvement strategy based on FPN had the most significant
impact on the model’s performance (Bold lines in Table III).

TABLE III
ABLATION EXPERIMENTS

Specifically, the FPN improvement strategy resulted in a notable
increase of 3.5% in average precision (AP) and 4.6% in recall.
On the other hand, the other improvement strategies showed
relatively smaller improvements in model performance. This can
be attributed to the fact that these strategies primarily focused on
optimizing specific scenarios, such as challenging positive and
small sample size. Since these scenarios constitute a smaller pro-
portion within the dataset, their impact on the model’s validation
results was consequently limited.

Fig. 14 shows a comparison of the detection results be-
tween MDDD Net and faster R-CNN on the test dataset. From
Fig. 14(a) and (b), we can see that the detection effect of MDDD
Net for small-sized dust devils is significantly improved, which
indicates that the use of feature pyramids to fuse multiscale
feature maps and the introduction of RoI align to solve feature
map mapping deviations are effective. From Fig. 14(c) and (d),
we can see that the dust devils with low dust density and at diffuse
state are also accurately detected, which shows that the model
has strong generalization ability, and the data augmentation
methods used to prevent the overfitting are effective. From
Fig. 14(e) and (f), we can see that MDDD Net shows a significant
improvement in difficult negative instances, correctly avoiding
the misclassification of small craters and hills that resemble dust
devils. From Fig. 14(g), we can see that when multiple dust devils
are adjacent and the bounding boxes overlap, the model also
accurately detects all dust devils, which shows that the method
of using soft-NMS to complete candidate box screening is wise.
The above discussion also explains why MDDD Net has a large
improvement in recall compared with the original faster R-CNN.

But from Fig. 14(h), we can also find that some dust devils are
repeatedly detected. We think the main reason is that some dust
devils are affected by surface winds and other factors, resulting
in discontinuous dust columns, which makes it more difficult
to define the boundaries of those dust devils. Although this
situation will reduce the precision of the model to a certain
extent, in the Martian dust devil detection task, we pay more
attention to the recall than the precision. The detection results
can be manually screened for a second time to eliminate a small
number of false positive objects.

In addition to testing with the Amazonis Planitia dataset, we
constructed a small supplementary test set consisting of 80 non-
Amazonis Planitia images (such as Utopia Planitia, Deuteronilus
Mensae, and Xanthe Terra) to evaluate the generalization ability
and robustness of our model in the field of object detection.
These images encompassed three different devices: CRISM,
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Fig. 14. Detection results comparison (faster R-CNN versus MDDD Net). (a) and (b) Small-size dust devils. (c) and (d) Dust devils with low dust density and at
diffuse state. (e) and (f) Hard negatives. (g) Dense dust devils. (h) Dust devils that are repeatedly detected.
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Fig. 15. Detection results on the supplementary test set. (a) CRISM. (b) CTX. (c) HiRISE.

TABLE IV
EVALUATION RESULTS OF THE SMALL ADDITIONAL TEST SET

CTX, and HiRISE. The test results, as shown in Fig. 15 and
Table IV, indicate that when tested with non-Amazonis Planitia
CTX images, the model’s performance closely approximated the
evaluation results obtained from the Amazonis Planitia test set.
Moreover, testing on CRISM and HiRISE images also yielded
favorable results, further highlighting the strong generalization
ability and robustness of the MDDD Net.

In short summary, the MDDD Net proposed in this article
improves the detection ability of dust devil objects from Mars
orbiter images.

E. Limitations and Future Work

This study has made progress in automatic dust devil detec-
tion. However, there are still limitations and areas for further
exploration. Specifically, they are as follows.

1) The performance of deep learning object detection models
heavily depends on the quality and diversity of the dataset.
The environment on Mars is highly complex and variable,
with dust devils having different sizes and shapes. They
can also be easily confused with small hills and crater pits.
Due to the current limitation of utilizing only the available
images, constructing a more diverse and larger dataset
becomes challenging. Hence, we plan to utilize generative
adversarial networks [40] to generate a portion of Martian
dust devil images in the future, in order to augment the
dataset and further improve the model’s generalization
ability and detection accuracy.

2) This article solely focuses on the automatic recognition
of dust devils. In the future, we intend to employ addi-
tional image processing methods to extract certain phys-
ical attributes of the detected dust devils, such as using
the shadow method to calculate their heights [8]. This
will provide multidimensional data for subsequent dust
devil research, facilitating a deeper understanding of their
characteristics and behavior.

By taking these measures, we aim to overcome the current
limitations of the study, enhance the performance of the model,
improve the accuracy of dust devil detection, and contribute
to a more comprehensive understanding of dust devils through
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the provision of comprehensive data in the field of dust devil
research.

V. CONCLUSION

Based on the faster R-CNN network, we made several mod-
ifications according to the characteristics of the Martian dust
devil detection task and proposed an MDDD Net. The main
improvements are shown as follows.

1) The FPN is used to fuse the feature maps of all levels
extracted in the ResNet50 feature extraction network to
obtain feature fusion maps with rich location information
and semantic information.

2) The k-means++ algorithm is used to design more rea-
sonable prior anchor boxes to adapt to the morphological
characteristics of the dust devil.

3) The RoI align unit proposed in the mask R-CNN algorithm
is introduced to eliminate the mapping deviation between
the feature maps and the original images.

4) The soft-NMS algorithm is used instead of the NMS
algorithm to complete the screening of candidate boxes,
which solves the problem of missing detection caused
by mutual suppression between the adjacent dust devil
candidate boxes in the same image.

With the Martian dust devil dataset, compared with the orig-
inal faster R-CNN network, the MDDD Net network improves
AP by 4.7% and recall by 6.8%, respectively. At the same time,
it effectively solves the problems of poor generalization ability,
low detection efficiency, and low accuracy of the traditional
Martian dust devil automatic detection algorithm, and achieves
the expected detection effect. It has reference significance for
subsequent research on extracting the characteristics of Martian
dust devils based on big data.
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