
6338 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

A Novel Deep Learning Architecture for Agriculture
Land Cover and Land Use Classification from

Remote Sensing Images Based on Network-Level
Fusion of Self-Attention Architecture

Hussain Mobarak Albarakati , Muhammad Attique Khan , Member, IEEE, Ameer Hamza , Faheem Khan ,
Naoufel Kraiem , Leila Jamel , Latifah Almuqren , and Roobaea Alroobaea

Abstract—AI-driven precision agriculture applications can ben-
efit from the large data source that remote sensing (RS) provides,
as it can gather agricultural monitoring data at various scales
throughout the year. Numerous advantages for sustainable agricul-
tural applications, including yield prediction, crop monitoring, and
climate change adaptation, can be obtained from RS and artificial
intelligence. In this work, we proposed a fully automated optimized
self-attention fused convolutional neural network (CNN) architec-
ture for land use and land cover classification using RS data. A new
contrast enhancement equation has been proposed and utilized in
the proposed architecture for the data augmentation. After that, a
fused self-attention CNN architecture was proposed. The proposed
architecture initially consists of two custom models named IBNR-
65 and Densenet-64. Both models have been designed based on the
inverted bottleneck residual mechanism and dense blocks. After
that, both models were fused using a depth-wise concatenation
and append a self-attention layer for deep features extraction.
After that, we trained the model and performed classification using
neural network (NN) classifiers. The results obtained from the NN
classifiers are insufficient; therefore, we implemented a Bayesian

Manuscript received 22 December 2023; revised 28 January 2024 and 12
February 2024; accepted 22 February 2024. Date of publication 28 February
2024; date of current version 14 March 2024. This research is supported
via funding from Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2024R333), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia and in part by extend their appreciation
to the Deanship of Scientifc Research at King Khalid University for funding this
work through large group Research Project under grant number RGP2/212/44.
(Corresponding authors: Faheem Khan; Naoufel Kraiem.)

Hussain Mobarak Albarakati is with the Computer Engineering and Network
Department, College of Computer and Information Systems, Umm Al-Qura
University, Makkah 24382, Saudi Arabia (e-mail: hmbarkti@uqu.edu.sa).

Muhammad Attique Khan is with the Department of Computer Science and
Mathematics, Lebanese American University, Beirut 13-5053, Lebanon, and
also with the Department of CS, HITEC University, Taxila 47080, Pakistan.

Ameer Hamza is with the Department of CS, HITEC University, Taxila 47080,
Pakistan.

Faheem Khan is with the Gachon University, Seongnam 13120, South Korea
(e-mail: faheem@gachon.ac.kr).

Naoufel Kraiem is with the College of Computer Science, King Khalid
University, Abha, SA 61421, Saudi Arabia (e-mail: nkraiem@kku.edu.sa).

Leila Jamel and Latifah Almuqren are with the Department of Information
Systems, College of Computer and Information Sciences, Princess Nourah
Bint Abdulrahman University, Riyadh 11671, Saudi Arabia (e-mail: Lm-
jamel@pnu.edu.sa; laAlmuqren@pnu.edu.sa).

Roobaea Alroobaea is with the Department of Computer Science, College
of Computers and Information Technology, Taif University, Taif 21944, Saudi
Arabia.

Digital Object Identifier 10.1109/JSTARS.2024.3369950

optimization and fine-tuned the hyperparameters of NN. In ad-
dition, we proposed a quantum hippopotamus optimization algo-
rithm for the best feature selection. The selected features are finally
classified using fine-tuned NN classifiers and obtained improved
accuracy of 98.20, 89.50, and 91.70%, and the highest precision
rate is 98.23, recall is 98.20, and F1-score is 98.21, respectively, for
SIRI-WHU, EuroSAT, and NWPU datasets. Moreover, a detailed
ablation study was conducted, and the performance was compared
with SOTA. The proposed architecture shows improved accuracy,
sensitivity, precision, and computational time performance.

Index Terms—Agriculture, data augmentation, deep learning,
optimization, remote sensing (RS), self-attention.

I. INTRODUCTION

ADVANCES in remote sensing (RS) technology have made
it possible to obtain a significant amount of satellite data

quickly. For RS community researchers, new challenges are
always opened based on the high-resolution satellite images
[1]. Computer vision researchers have extensively utilized RS
images for many semantic tasks, including but not limited to road
segmentation, building extraction, land cover classification, IOT,
and agricultural land classification [2], [3], [4]. The land cover
classification achieved remarkable attention in computer vision
due to its essential applications such as urban planning, crop
fields, and landslide hazards [3]. The RS data are not easy to use
because several things fall under the same category and might
be seen in the same image, i.e., the vegetation category includes
forest regions, herbaceous plants, and permanent crops [5]. A
few sample images are illustrated in Fig. 1.

Several techniques were introduced in the literature to classify
land cover from RS images [6], [7]. The presented techniques
are based on supervised learning and unsupervised learning. In
unsupervised learning, clustering techniques have usually been
employed for classification [8], [9], such as K-means and fuzzy
C-means; however, these techniques are not suitable and efficient
due to many labeled imaging RS images [10]. The supervised
learning methods used traditional methods such as handcrafted
features and classification using machine learning classifiers.
The handcrafted features are extracted based on prior informa-
tion such as texture, shape, and point features [11]. However, for
complex scenes, it is not easy to extract the most discriminative
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Fig. 1. Few sample images of land cover RS.

features [12], [13]. Feature selection is an important area in
pattern recognition research, and many techniques have been
introduced in the literature. Feature selection techniques mainly
aim to reduce irrelevant information from the original feature
space and minimize the computation time [14].

Deep learning has gained huge success worldwide for several
applications, especially RS and object classification [15]. Deep
learning is famous due to its large learning capacity and better
performance of huge datasets. Convolutional neural networks
(CNNs), a widely used deep learning model, can learn abstract
features from images layer-by-layer, and it is utilized in diverse
fields like healthcare [16], action recognition [17], satellite
imaging [18], fraud detection [19], and many more. A simple
CNN architecture consists of several intermediate layers, such
as a convolutional layer, a pooling layer, a ReLu activation
layer, a batch-normalization layer, an additional layer, a fully
connected (FC) layer, and a softmax layer [20]. Several recent
studies used pretrained deep learning models for land cover
classification using RS images. Papoutsis et al. [21] introduced a
CNN architecture for land cover classification from RS images.
The presented architecture is based on multilayer perceptron and
vision transformers.

Moreover, they added an EfficientNet mechanism to improve
the training time and accuracy. They also compared the presented
architecture with baseline ResNet50, showing improved accu-
racy and time. Ma et al. [22] presented a features enhancement
neural network (NN) for land cover classification. They also
added a self-attention module to extract the local information of
the images and reduce the classification loss. Compared with the
previous model named PSPNet, this network improved accuracy
by 2%. For the crop classification task from the RS images,
Patel et al. [23] presented a comparative study that focused on
the pretrained model’s performance, such as VGG16, VGG19,
ResNet, and DenseNet. They trained these models on the RS im-
age data and analyzed the performance. In addition, they analyze
the performance of 2D CNN and 3D CNN custom architectures.
Based on the results, they conclude that the custom models show
better performance. Helber et al. [24] introduced a novel RS
dataset named EuroSAT for the land cover classification task.
The dataset that was produced was tested on a deep learning
architecture, and improved classification accuracy was obtained.

Kussul et al. [25] introduced a deep learning technique for land
use and crop type classification using RS images. A review
study is also presented by Vali et al. [26] for the land cover
classification techniques. This study discussed the preprocess-
ing, features engineering, and classification techniques for the
land cover classification. Zhang et al. [27] presented a joint Deep
CNN architecture using RS data for the land cover classification.
They combined the patch-based CNN and pixel-based MLP with
joint reinforcement to improve classification accuracy. Otal et al.
[28] presented a framework for postbuyout land cover mapping
using harnessing deep learning. They used FEMA’s and grant
program (HMGP) buyout dataset for experimental purpose.
They gathered 40 053 satellite images of buyout lands and they
employed deep learning models to evaluate the performance and
they achieved 98.86% AUC score. Temenos et al. [5] presented
a deep learning-based interpretable framework for classifying
land use and land cover using satellite images. The authors
use the EuroSAT dataset and employ customized CNNs. They
achieved 94.72% accuracy and they applied SHAP to verify
the performance of models. Vinaykumar et al. [29] presented a
hybrid deep learning and optimal guidance whale optimization
for land cover classification using satellite images. In this article,
the authors applied alexnet and resnet50 for feature extraction
and employed whale optimization for best feature selection.
The authors used bi-lstm for the classification purpose. They
achieved 89.57% on AID and 93.21% on NWHP dataset. A few
more studies are also introduced, such as the high-resolution
adaptive model [30], 3D-HRNET [31], crop classification [32],
and the Northern Border Region technique [33].

Although the techniques mentioned earlier show impressive
performance, there is room for improvement in accuracy and
computational time optimization. The fusion process has shown
an impact in the last few years for the improvement of accuracy;
however, there is a drawback of this step, which is an increase
in computational time. In the fusion process, the researchers
usually fuse the features of two models [34]; however, this
process is inefficient and consumes more time. To overcome
this problem, a few researchers employed feature selection
techniques that remove the irrelevant features from the final
classification. In addition to that, the performance has been
improved significantly after employing the optimization process
[35], [36]. A few latest studies also focused on deep learning for
the agri-yield classification using RS images [20], [37], [38],
[39], [40], [41]. Overall, it is a complex process that first fuses
the features of both models and then selects the best of them;
therefore, it is important to consider a more optimized approach,
such as network-level fusion.

In the network-level fusion, two models are created and
combined within the network for improved classification accu-
racy and less computational cost. However, controlling the total
learnable when performing a fusion process within a network is
challenging. To tackle this challenge, we proposed a novel CNN
architecture based on network-level fusion and optimization
in this work. In the fusion process, we design two custom
networks based on the bottleneck and dense mechanisms and
then concatenate using a depth concatenation layer. After the
fusion layer, a self-attention layer has been added to extract the
local information of the image. Further, the model performance
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Fig. 2. Proposed framework of land cover classification from RS images.

has been optimized using a Bayesian optimization (BO) and
quantum hippopotamus optimization algorithm (QHPO). Our
major contributions of this work are given as follows.
� To address the problem of an imbalanced dataset, we

performed data augmentation at the initial step using the
contrast stretching technique and employed the updated
dataset for the training process.

� The samples of satellite images have complex patterns
and are difficult to recognize; therefore, we proposed a
novel network-level fusion Self-Attention CNN architec-
ture. The proposed architecture’s upper part is based on
two mechanisms bottleneck and dense blocks. The depth
concatenation layer combined both architectures and added
a Self-Attention layer for local information extraction that
followed the FC and softmax layers.

� A BO technique has been implemented using an expected
improvement (EI) acquisition function that optimizes the
hyperparameters of the proposed model instead of past
knowledge selection.

� The irrelevant and redundant features misclassified the RS
classes; therefore, we proposed a new QHPO that selects
the best features and reduces the computation time.

The rest of this article is organized into four main sections.
Section II presented a detailed study of the proposed methodol-
ogy, including dataset description, data augmentation, proposed
CNN-based self-attention model, BO learning, and QHPO-bases
feature selection. In Section III detailed results of the proposed

framework are discussed. Section IV concludes the overall pro-
posed research.

II. PROPOSED METHODOLOGY

The proposed land cover classification framework has been
presented in this section. The proposed framework comprises a
novel CNN self-attention fused architecture for feature extrac-
tion. Fig. 2 illustrates the proposed framework of land cover
classification from RS images. In the proposed framework,
data augmentation has been performed at the initial step us-
ing a hybrid contrast enhancement technique. After that, fused
self-attention deep learning architecture was proposed, and the
hyperparameters used BO for the training process. Deep features
have been extracted from the self-attention layer and optimized
using a novel QHPO. The proposed QHPO selects the best
features for final classification using NN classifiers.

A. Dataset Description

In this work, we employed three datasets for the classification
purposes such as EuroSAT [24], NWPU-RESISC45 [42], and
SIRI-WHU [43]. These datasets are publicly available for the
research purposes of the RS domain. The nature of the selected
dataset is RGB. A brief description of each dataset is given in
the following.

The EuroSAT dataset consists of 10 classes, as summarized
in Table I. The aim of this dataset was land cover and land use
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TABLE I
DESCRIPTION OF SELECTED DATASETS FOR THE CLASSIFICATION OF LAND

COVER AND LAND USE FROM RS IMAGES

classification. Each image of this dataset has 64 by 64 pixels
and a 10-m ground sampling distance. Every one of them was
gathered by the Sentinel-2 satellite. The total number of images
in this dataset is 27 500 [24].

Northwestern Polytechnical University created the NWPU
dataset in 2017 [42]. This dataset is publically available for
the researcher of RS. There are 12 classes in this dataset; each
class contains images in the range of 700 to 1400 with a pixel
ratio of 256×256. Within the scene classes, the spatial resolution
drops from 30.0 to 0.2 m per pixel. The dataset is quite difficult
because of the rich image variations, some discrepancies within
the scene classes, and some commonalities between the scene
classes. Table I shows the number of images in each class.

The SIRI-WHU dataset is a publicly available RS database
used for land use classification [43]. It consists of 12 classes and
2400 images (200 images in each class). Each image is 200 ×
200 and has a spatial resolution of 2 m. Table I demonstrates the
description of each class. Moreover, a few sample RS images
are shown in Fig. 3.

B. Data Augmentation of Training Set

In this work, we utilized the contrast enhancement technique
to generate new images instead of traditional rotate and flip
operations, a few sample images are shown in Fig. 4. A new
mathematical fitness function is proposed for contrast enhance-
ment. Consider I is an input image of dimension 256×256×3,

Fig. 3. Few sample RS images of SIRI-WHU dataset for land cover classifi-
cation.

Fig. 4. Visual illustration of the proposed contrast enhancement approach for
RS images.

and the resultant image is denoted by F. A contrast function
is implemented at the initial step to improve the image pixel
intensity values as follows:

F̃ (u) =
1∫ 1

0 Ia−1(1− I)b−1dI
×
∫ u

0

Ia−1(1− I)b−1dI (1)

where I is an integrated image, a and b are two adjusted parame-
ters that control the brightness of an image during the processing.
Finally, the resultant F̃ is passed to the fitness function and
obtains the final enhanced image as follows:

G

(
F̃
)

= u1 log
((

log(S
(

F̃
)))

+ u2H
(

F̃
)

+ u3 log
(

I + F̃
)

(2)

where u1, u2, and u3 are weight coefficients, S(F̃) denotes
the sum of the fringe intensities of the image, and H(F̃) is
entropy value. This technique is employed for only less number
of images classes such as in EuroSAT, the augmentation is
performed for industrial, pasture, permanent crop, and river
class. In these classes, we generated more images until the total
images are reached to 3000 (maximum images of this dataset).
Similarly, this process is performed for the rest of the datasets.
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Fig. 5. Proposed fused self-attention deep learning architecture for land cover and land use classification.

C. Proposed Methodology

In this work, we proposed a fused self-attention deep learning
architecture for land cover and land use classification from
RS images. The proposed architecture consists of two CNN
architectures (bottleneck and density mechanism) fused in the
last stage and then embedded in a self-attention layer for feature
extraction. Each architecture consists of several intermediate
layers: a convolutional layer, pooling layer, ReLu activation
layer, batch normalization layer, self-attention layer, FC layer,
and a softmax layer. A visual architecture of the proposed fused
self-attention CNN architecture is illustrated in Fig. 5. This
figure illustrates that the enhanced images have been employed
as input to this network called the input layer. After that, two
networks were designed: Inverted bottleneck residual 65 layered
(IBNR-65) and Densenet-64. The IBNR-65 comprises 65 hidden
layers in the inverted bottleneck fashion, whereas the Densenet-
64 includes 64. In the IBNR-65 network, the initial convolutional
layer has been added to convolve the features on depth size
32 and kernel size 3 ×3. Mathematically, the activation of the
convolutional layer has been defined as follows:

φ̃(i) (l) = max

⎛⎝0, β̃j(l) +
∑
j

J i,j(l) ∗ Fi(l)

⎞⎠ (3)

where Fi(l) denotes the input activation map, φ̃(i)(l) is ith output
activation map, β̃j(l) is a bias of jth output activation map, and
J i,j(l) is a convolutional kernel between ith and jth maps.

After the convolutional layer, a ReLu activation layer has been
added to convert nonlinear separable data into linear form and
then fed to the next layer as an input. Another important layer
in this architecture is the max pooling layer. The purpose of this
layer is to scale down the image but keep the important features
for the recognition task. Mathematically, this layer is defined as
follows:

φ̃
(i)
jk = max

(
Fi

js+m,ks+n

)
. (4)

After this layer, a batch normalization layer is added to fasten
the training process. In addition, the skip connections have been
combined using an additional layer. The skip connections reduce
the complexity of the proposed model and improve the efficiency
based on the combined information as follows:

φ̃
(i)
skip = Li + CL (5)

where Li denotes the output layer of the respective path and
CL denotes the skip layer that is connected with Li using an
additional layer.

We added several residual and dense blocks using these layers,
as shown in Fig. 5, for both IBNR-65 and Densenet-64. Each
block consists of a convolutional 2D layer, batch normalization
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Fig. 6. Self-Attention module for local features extraction of the image.

layer, grouped convolutional layer, max-pooling layers, and
ReLu activation. The depth size starts from 32 and ends with
1024. Finally, a global average pool layer has been added for
both networks and depth-wise concatenated in a single layer
named the depth concatenation layer. After the depth-wise con-
catenation, we added a self-attention layer to extract the most
important information of the input image.

1) Self-Attention: Self-attention networks (SANs) are be-
coming increasingly popular because of their high computa-
tional parallelization and adaptability when modeling interde-
pendence. In the CNN architecture, the self-attention module
improves the performance of a network due to the attention on
the more overriding area of the image. Through SAN, local
features of the image have been extracted. Consider we have
a depth concatenation layer features denoted by φ̃ ∈ R

C×N ,
where C denotes the number of channels. A 1 × 1 convolutional
operation has been performed on φ̃ and obtained three 1D matrix
f, g, and h, as shown in Fig. 6. Mathematically, f, g, and h are
defined as follows:

f
(
φ̃
)
= ψf φ̃, g

(
φ̃
)
= ψgφ̃ (6)

h
(
φ̃
)
= ψhφ̃ (7)

ψf , ψg, ψh ∈ RC∗×C . (8)

The feature maps of f(φ̃) and g(φ̃) are combined by perform-
ing a series of softmax.

Sji =
exp (ψij)∑N
i=1 exp (ψij)

(9)

ψij = f
(
φ̃i

)T
g
(
φ̃j

)
. (10)

The final output of the self-attention layer is defined in (11),
which is further utilized for the features extraction map.

Oj = Φ

(
N∑
i=1

Sjih
(
φ̃i

))
. (11)

The resultant attention map feature matrix is fed to an FC
layer. In the FC layer, all features are FC. Mathematically, it is
defined as follows:

φ̃ijk = A (w)

⎛⎝n(l−1)∑
i=1

φ̃l−1 (i) .Xl (i, j) + β
(l)
i

⎞⎠ (12)

where l − 1 denotes the number of neurons in the previous layer
(l − 1), Xl(i, j) denotes the weight for the connection from a
neuron i in layer (l − 1) to neuron j in layer l. The A (w) denotes
the activation function of this layer. The output of this layer is
fed to the softmax layer for multiclass land cover and land use
classification.

D. Training and Feature Extraction

The training was performed after the design of the proposed
self-attention fused CNN architecture. Several hyperparameters
have been employed in the training process, such as learning
rate, mini-batch size, epochs, and optimizer. The values of these
hyperparameters have been computed using BO. The model is
trained on 50% of images that was splited before the augmenta-
tion process. Augmentation was performed on the split images.
After a model’s training, deep features are extracted from the
self-attention layer with the size of N × 2048 that is further
used for classification. Many NN classifiers, such as narrow,
medium, wide, trilayered, and bilayered, have been employed
for the classification results. The accuracy and a few other
measures have been computed for each classifier. This step’s
noted accuracy was insufficient compared with the recently
published techniques; therefore, we optimized the NNs using
BO. Also, we increased the hidden layers for each classifier.

E. BO-Based Learning

Black box optimization problems, in which the objective
function, represented by the symbol f(y), is treated as a black box,
are the focus of deep learning optimization. In such scenarios,
BO is shown to be extremely beneficial, especially when human
expertise cannot significantly enhance accuracy. By combining
previous knowledge of the function f and continuously updating
posterior information, this method minimizes loss and maxi-
mizes model accuracy. In contrast to the difficult and nonrepro-
ducible process of human tuning, BO effectively identifies the
global optima of the black box function of the NN. The first step
of the BO is a Gaussian process to update the prior function F
results and adopt the posterior distribution.

Gaussian processes are deep learning techniques developed
using Bayesian learning theory and Gaussian stochastic pro-
cesses. Any finite subcollection of random variables has a mul-
tivariate Gaussian distribution for a stochastic process called
a Gaussian process. A statistical model of the function is as-
sumed by the Gaussian process, which is based on the idea that
comparable input produces similar output. Similar to a Gaussian
distribution defined by mean and covariance, a Gaussian process
is defined by its mean function, n : μ → R, and its covariance
function, p : μ × μ → R. The Gaussian process is known as
follows:

f (μ) ∼ GP (n (μ) , p (μ, μ′)) . (13)

The probability density function f(μ)for an arbitrary μ is no
longer a scalar but rather a normal distribution function over
all possible values of f(μ). This is how the Gaussian process
differs from the Gaussian distribution assume for convenience
that the mean function n(μ) of the Gaussian process is 0.
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The exponential square function is a common option for the
covariance function p

p (μi : μj) = exp

(
−1

2
μi : μj2

)
. (14)

The following procedure can be used to determine f(μ)′

posterior distribution. As the training set Z1, the first sample
t observations are as follows: Z1:t = {μn, fn}tn=1, fn = (μn).
Assume, a multivariate normal distribution is used to draw the
function values f , which are drawn according to a multivariate
normal distribution f ∼M(0, R).

R =

⎡⎢⎢⎢⎢⎣
p (μ1, μ1) (μ1, x2) . . . ..p (μ1, μt)
p (μ2, μ1) (μ2, x2) . . . ..p (μ2, μt)

. . . .
. . .

p (μt, μ1) (μt, μ2) . . . ..p (μt, μt)

⎤⎥⎥⎥⎥⎦ . (15)

At the new sample point μt+1, compute the function value
ft+1 = f(μt+1) based on the function f1. The function value
ft+1 and f1:tin the training set, under the Gaussian process
assumption, follow the t+1 dimensional normal distribution[

f1:t
ft+1

]
∼M

(
0,

[
R p
pT p (μt+1, μt+1)

])
(16)

where f1:t = [f1, f2, . . . . . . ..ft]
T ,

p = [p (μt+1, μ1) p (μt+1, μ2) . . . ..p (μt+1, μt)] . (17)

And ft+1 follows a one-dimensional normal distribution,
i.e., ft+1 =∼M(�t+1, β

2
t+1). By the properties of the joint

Gaussian (normal distribution).

�t+1 (μt+1) = pTR−1f1:t (18)

β2
t+1 (μt+1) = p1R−1p+ (μt+1μt+1) . (19)

In the second step, the best points are chosen for the function F
by using an acquisition function. We opted for the EI activation
function in this work. When a point is explored in the region
of the present optimum value, function EI computes the EI it
can achieve. The difference between the function value at the
sample point value and the present optimum value is known as
the degree of improvement EI. The improvement function is 0 if
the function value at the sample point value is smaller than the
existing optimum value. Mathematically, it is defined as follows:

I (μ) = max
{
0, ft+1 (μ)− f

(
μ+
)}
. (20)

Our aim in this function is to maximize EI about the existing
optimum value f(μ+).

μ = argmax E
(
max

{
0, ft+1 (μ)− f

(
μ+
)})

(21)

where ft+1(μ)− f(μ+) ≥ 0, when the distribution of
ft+1(μ)with mean �(μ) and standard deviation �2(μ)follows
the normal distribution. Therefore, the normal distribution with
mean and standard deviation �2(μ)is the distribution of the
random variable EI. EI is defined as follows:

E (.) =

∫ ∞

∞
EI.f (l) dl

TABLE II
SELECTED HYPERPARAMETERS AND IT RANGES

=

∫ ∞

l=0

l
1√

2π� (μ)
exp

(
� (μ)− f (μ+)− EI)2

2�2 (μ)

)
(22)

dl = � (μ) [Y ∅ (Y ) + ∅ (Y )] (23)

Y =
� (μ)− f (μ+)

� (μ)
. (24)

In the third step, the suggested area for sampling produced by
the acquisition function is determined. In the fourth step, use an
objective function to validate the results. We are finally adding
the previously chosen data to the best optimized sample points
and modifying the statistical Gaussian distribution model. In
this work, we used BO for the dynamic selection of hyperpa-
rameters for the training of the proposed model. The selected
hyperparameters are listed in Table II.

After the fine-tuning of selected NN classifiers using BO,
classification has performed again and obtained some improved
accuracy; however, there is a drawback: computational time.
Therefore, we proposed a new optimization technique named
QHPO that selects the best testing features of the self-attention
layer.

F. QHPO-Bases Feature Selection

The original HPO is a population-based optimization algo-
rithm in which search agents are hippopotamus (HP). The update
in the position of each HP represents the values for the decision
variables. Hence, each HP denotes a vector, and a matrix defines
the population of HP. Similarly, to other optimization algorithms,
the random initial solutions have been generated; hence, the
vector of the decision variables is generated using the following
formulation:

ξi : φ̃ij = Lj + r. (uLj − lLj) (25)

where i = 1, 2, 3, .., N and j = 1, 2, 3, . . . ,M . The notation ξi
denotes the position of the ith candidate solution, r denotes
the random numbers, uLj denotes the upper bound of the jth
solution decision variable, lLj denotes the lower bound of the
jth decision variable, N denotes the total population size, and
m denotes the total number of decision variables in the problem.

ξ =

⎡⎢⎢⎢⎢⎣
ξ1
ξ2
.
ξi
ξN

⎤⎥⎥⎥⎥⎦
N×m

. (26)
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1) Phase 1. Update Position (Exploration): In this phase, the
male HP position has been updated by employing the following
formulation:

ξmale
i : φ̃male

ij = φ̃ij + φ̃1 ·
(
DHP − I1φ̃ij

)
(27)

where ξmale
i denotes the male HP position and DHP denotes

the dominant HP positions, respectively. After that, the female
HP position has been updated as follows:

ξFmale
i : φ̃Fmale

ij =

{
φ̃ij +H1. (DHP − I2μ)T > 0.625

Ignore, Elsewhere
.

(28)
The ξFmale

i denotes the position of female HP, μ is a mean
value of a few randomly selected HP, and T is a threshold value
that is selected based on the different trails. In the later step, the
immature HP position has been updated based on the following
objective function:

ξi =

{
ξmale
i Fmale

i < Fi

ξi Elsewhere
(29)

ξi =

{
ξFmale
i FFmale

i < Fi

ξi Elsewhere
. (30)

2) Phase 2. HP Defense Against Predators: Security and
safety of the HP is another factor; therefore, it is important to
protect them by heavy-weighted animals. Hence, the predator
position is an important factor and it is defined as follows:

P̃R : P̃Rj = lLj + �r8. (uLj − lLj) (31)

where �r8 denotes a random vector of range 0 to 1 and range of
j = 1, 2, 3, . . . ,m. The distance is computed after the following
mathematical equation:

−−→
Dis =

∣∣∣P̃Rj − φ̃ij

∣∣∣ . (32)

The distance is computed among ith HP to the predator. The
updated HP position is further performed using the following
mathematical equation:

ξHPR
i : φ̃HPR

i,j =⎧⎨⎩
−−→
RV ⊕ P̃Rj +

(
e

(c−d×cos(2πg))

)(
1−−→

Dis

)
F
˜PRj

< Fi

−−→
RV ⊕ P̃Rj +

(
e

(c−d×cos(2πg))

)(
1

2×−−→
Dis+r9

)
F
˜PRj

≥ Fi

(33)

where ξHPR
i is HP position which was focused on the predator,−−→

RV denotes the reduction vector based on the Leavy distribution
(LD). In the next step, a mitigation process has been conducted
as follows:

ξi =

{
ξi

HPRFHPR
i < Fi

ξiF
HPR
i ≥ Fi

. (34)

3) Phase 3. Exploitation With Quantum Gate: In this phase,
the new positions update formulation has been discussed. The
HP which are immature or adult leave the group, they faced by an

attack of predator. Therefore, the position is updated as follows:

lLj
local =

lLj

t
, uLj

local =
uLj

t
,where t = 1, 2, 3, . . . , T

(35)

ξHP∈
1 : φ̃HP∈

i,j = φ̃i,j + r10

· (lLj
local + S1

(
uLj

local − lLj
local
))

(36)

where ξHP∈
1 denotes the position of HP used to find the search

space of the nearest safe place. Hence, the final activation
function is defined as follows:

ξi =

{
ξHP∈
i FHP∈

i < Fi

ξiF
HP∈
i ≥ Fi

. (37)

The selected feature vector (ξi FHP∈
i ) is further refined using

the rotation quantum gate (RQG) approach. In the quantum
modification, we used RQG to speed up HP’s search space. Each
Q-bit individual balances exploitation and exploration to speed
up the search process and maintain a distance from the predator.
The RQG is mathematically defined as follows:

U (g) =

[
Cos (g) −Sin (g)
Sin (g) Cos (g)

]
. (38)

The rotation angle (g) and direction of g is determined from
the lookup table [44]. This equation is embedded with (36) and
updates the position of selected features (HP). The following
fitness function is employed for each binary feature vector as
follows:

Fitness = α ((Err) + β (k) . (39)

And cost functions are defined as follows:∮
cost

= φα × ηerror + φβ ×
(
num_feat
max_feat

)
(40)

ηerror = 1−Aaccuracy (40a)

where φα and φβ are constant variables and presented the values
of φα is 0.99 and φβ is 0.01,

∮
cost denoted the cost function

and Aaccuracy denoted the obtained accuracy from the fitness
function. The features are selected by applying the QHPO and
the size of selected features areN ×M . The selected features are
finally classified using fine-tuned BO hyperparameters selected
NN classifiers. The detailed results are presented in Section III.

III. RESULTS AND DISCUSSION

The results of the proposed framework have been described
in this section. The experiments are carried out on three selected
datasets, as discussed in dataset description Section II-A. Each
dataset is separated into 50:50. This indicates that 50% of
samples are used for training, and the remaining 50% are utilized
for testing. The proposed model is 134 layers deeper with 18.6M
trainable parameters. The 10-k fold cross-validation is employed
to prevent the overfitting problem. For the training of the pro-
posed model, the hyperparameters are learning rate, mini-batch
size, epochs, and optimizer with the values of 0.00012, 128,
40, and SGDM. NN classifiers are selected for the classification
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TABLE III
SELECTED HYPERPARAMETERS FOR TUNING USING BO

TABLE IV
CLASSIFICATION RESULTS OF THE PROPOSED FUSED SELF-ATTENTION CNN

MODEL ON THE EUROSAT DATASET

outcomes. The BO is employed for the hyperparameter tuning
of NN classifiers. The selected hyperparameters for tuning are
described in Table III. The classification outcomes are evaluated
using accuracy, precision rate, Recall rate, F1-score, and compu-
tation time in seconds. All the experiments are performed using
MATLAB2023b using a Desktop Gigabyte Computer designed
with a 13th Gen Core-i5 3.50 GHz processor, 128 GB RAM,
500 GB SSD, 1 TB HDD, and 12 GB NVIDIA RTX 3060
graphic card.

The following experiments have been performed to evaluate
the proposed framework.

1) Experiment 1: Proposed classification results using pro-
posed fusion-based self-attention CNN architecture with-
out using optimized hyperparameters of NN classifiers.

2) Experiment 2: Proposed classification results using
fusion-based self-attention CNN architecture using BO-
based optimized hyperparameters of NN classifiers.

3) Experiment 3: Proposed classification results using QHPO
(features selection, whereas the BO-based optimized hy-
perparameters of NN classifiers are chosen).

A. Classification Results on the EuroSAT Dataset

The classification results of the proposed architecture for
the EuroSAT dataset are presented in this section. The results
of each of the listed experiments have been explained. In ex-
periment 1, the proposed network-level fusion self-attention
CNN was trained on the EuroSAT dataset, and the self-attention
features were extracted. Many NNs such as narrow NN (NNN),
medium NN (MNN), wide NN (WNN), bilayered NN (BNN),
and trilayered NN (TNN) have been employed and computed
the classification results. The results of this experiment are
given in Table IV. This table describes that the WNN classifier
achieved the highest accuracy of 90.3%. The precision rate is
89.05%, the recall rate is 88.59%, and F1-score is 88.82%. These
measures are also noted for the rest of the listed classifiers. The

TABLE V
CLASSIFICATION RESULTS OF BO TUNING OF NN CLASSIFIERS ON THE

EUROSAT DATASET

Fig. 7. Confusion matrix of EuroSAT dataset after employing QHPO-
optimized architecture.

computation time is also recorded for all the NN classifiers. The
shortest time is recorded for the MNN classifier at 493.57 (sec),
while the longest time is noted for the NNN classifier at 1185.9
(sec).

To improve the accuracy and other performance measure, we
fine-tuned the hyperparameters of these selected NN classifiers
in Experiment No 2. The hyperparameters have been fine-tuned
using a BO algorithm. The improved classification results of NN
classifiers are shown in Table V. The table statistics show that the
TNN classifier obtained higher accuracy than the other classi-
fiers. The accuracy of TNN is 90.0%, precision is 89.01%, recall
is 89.14%, and F1-score is 89.07%. The execution is recorded
for all the classifiers, and it is observed that this process increases
the time; however, the accuracy and other performance measure
values have been improved. The longest time of experiment 1
is 1154.4 (sec); however, experiment 2’s longest time is 2278.3
(sec).

To further reduce the computational time of the proposed ar-
chitecture, we implemented a new QHPO algorithm that selects
the best features for the classification. Table VI presents the
classification results of the proposed QHPO. From this table, the
WNN classifier gained 89.5% accuracy. The precision, recall,
and F1-score values are 88.63%, 88.65%, and 88.63%, respec-
tively. Moreover, the confusion matrix of this experiment is also
illustrated in Fig. 7. The confusion matrix gives the number of
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TABLE VI
CLASSIFICATION RESULTS OF THE PROPOSED QHPO ON THE EUROSAT DATASET

TABLE VII
CLASSIFICATION RESULTS OF THE PROPOSED FUSED CNN ON NWPU-RESISC45 DATASET

TABLE VIII
CLASSIFICATION RESULTS OF BO TUNING OF NN CLASSIFIERS ON NWPU-RESISC45 DATASET

observations and TPR values. The confusion matrix can confirm
the TNN classifier’s accuracy and other performance measures.
The computation time is measured for all the classifiers, and it is
observed that the QHPO-based feature selection process signifi-
cantly reduced the computation time and almost maintained the
accuracy. The longest time for this experiment is 284.01 (sec)
for the NNN classifier, and the WNN classifier executed in a
minimum execution time of 193.06 (sec).

B. Classification Results on NWPU-RESISC45 Dataset

The classification results of the proposed architecture for the
NWPU-RESISC45 dataset are presented under this subsection.
The results of each of the listed experiments have been explained.
In the first experiment, the proposed fused Self-Attention CNN
architecture is trained on the NWPU-RESISC45 dataset, and the
eminent features are extracted from the self-attention activation.
The NN classifiers are utilized to obtain the classification results,
as presented in Table VII. From this table, it is observed that
the WNN classifier obtained a maximum accuracy of 87.7%.
WNN’s precision, recall, and F1 scores are 88.3%, 88.1%, and
88.2%, respectively. These values are also measured for all

the listed classifiers. The execution time is recorded, and it is
observed that the BNN classifier requires 371.63 (sec) for the ex-
ecution, and the MNN classifier needs 102.14 (sec) for carry out.

In the second experiment, the BO is utilized to optimize
the hyperparameters of NN classifiers. Table VIII shows the
optimized results of NN classifiers on the NWPU-RESISC45
dataset. The WNN classifier achieved a higher accuracy of
91.8%. The other parameters, such as precision, recall, and
F1-score, are also measured, with 91.81%, 91.51%, and 91.65%,
respectively. The accuracy of the WNN classifier improves from
87.7% to 91.8% after fin-tuned NN classifiers using BO. The
execution time is noted for all the classifiers, and it was observed
that, with the improvement of accuracy, the execution time
increased by ∼37 (sec) for the WNN classifier.

To reduce the computation time of the fine-tuned NN clas-
sifiers, we implemented a QHPO features selection algorithm.
The classification results of the proposed QHPO algorithm are
presented in Table IX. From this table, the WNN classifier
again achieved the maximum accuracy from all the other clas-
sifiers, and it was also better in other parameters, including
precision, recall, and F1-score. The values of these parameters
are 91.91%, 91.44%, and 91.67%, respectively. The confusion
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TABLE IX
CLASSIFICATION RESULTS OF THE PROPOSED QHPO ON NWPU-RESISC45 DATASET

Fig. 8. Confusion matrix of NWPU-RESISC45 dataset after employing the proposed optimized architecture.

matrix of this experiment has been illustrated in Fig. 8. This
figure gives the correct prediction rate for each class, includ-
ing the number of observations. In addition, the computation
time is also noted, and it is observed that the computational
time is significantly reduced after the selection algorithm.
Moreover, the accuracy is also maintained for the features
selection algorithm.

C. Classification Results on SIRI-WHU Dataset

The classification results of the proposed architecture for the
SIRI-WHU dataset are presented in this subsection. The results
of each of the listed experiments have been explained. In the
first experiment, the self-attention layer is utilized for feature
extraction and fed to NN classifiers for classification. Table X
presents the results of this experiment. The WNN classifier
gained a maximum accuracy of 98.2%. The other performance
measures, such as precision, recall, and F1-score values, are
also computed at 98.1%, 98.2%, and 98.1%, respectively. The
testing time is computed for all the classifiers, and the TNN

TABLE X
CLASSIFICATION RESULTS OF THE PROPOSED FUSED CNN ON THE SIRI-WHU

DATASET

classifier takes a long time of 222.77 (sec). The MNN classifier
was executed in a minimum time of 43.94 (sec).

To further improve the performance of classifiers, we fine-
tuned the hyperparameters of the classifiers using BO.

In the second experiment, hyperparameters of NN classifiers
were fine-tuned, and classification was performed. The results of
this experiment are presented in Table XI. This table shows that
the WNN classifier obtained a maximum accuracy of 98.2%. The
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Fig. 9. Confusion matrix of SIRI-WHU dataset after employing the proposed optimized architecture.

TABLE XI
CLASSIFICATION RESULTS OF BO TUNING OF NN CLASSIFIERS ON SIRI-WHU

DATASET

TABLE XII
CLASSIFICATION RESULTS OF THE PROPOSED QHPO ON SIRI-WHU DATASET

precision, recall, and F1-score values are 988.19%, 98.16%, and
98.17%, respectively. The computational time of this experiment
is also noted, and it is observed that the time is increased com-
pared with the time of experiment 1. To resolve this challenge,
we employed the proposed QHPO features selection algorithm.

The results of experiment 3 are listed in Table XII. This table
shows that the BNN classifier achieved the highest accuracy
of 98.2% with a 98.23% precision rate, 98.20% recall rate, and
98.21% of F1-score. The obtained accuracy of this experiment is

almost consistent, and the confusion matrix is also illustrated in
Fig. 9. Using this figure, we can confirm the proposed accuracy
of this experiment and other performance measures. The time
of this experiment is substantially improved than the previous
experiments. The maximum noted time of this experiment is
89.96 (sec) for the TNN classifier, whereas the minimum noted
time is 28.99 (sec) for the BNN classifier. Hence, the proposed
architecture performed well after employing the feature selec-
tion algorithm.

D. Discussion

In this study, we proposed a novel architecture based on the
network level fusion and Quantum HPO algorithm for agri-
culture land cover and land use classification. We designed
two parallel CNN models based on inverted bottleneck and
dense blocks and fused them using a depth concatenation layer.
After that, we embedded a self-attention layer and extracted
deep features. Several NN classifiers have been employed for
classification accuracy. An inclusive comparison is conducted
based on accuracy and computation time with the state-of-the-art
deep learning models, as shown in Figs. 10 and 11. We im-
plemented a few pretrained models, such as AlexNet, VGG19,
ResNet50, InceptionV3, and NasNetMobile, and compared their
accuracy and time with the proposed architecture on selected
datasets. Fig. 10 shows that our proposed model outperforms
the other networks by achieving 98.2% accuracy on SIRI-WHU,
89.5% on EuroSat, and 91.7% on the NWPU dataset. While the
NasNetMobile is a large and complex network from the deep
learning networks, it achieved 94.76% accuracy on SIRI-WHU,
86.03% on EuroSat, and 91.7% on the NWPU dataset.
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Fig. 10. Comparison of the proposed model accuracy with several other NNs using selected RS datasets.

Fig. 11. Comparison of the proposed model testing computational time with several other NNs using selected RS dataset.

The testing computation time is also noted for all the deep
learning models. Based on testing computation time, it is seen
that our proposed network has taken the shortest time, 190.37
(sec) for EuroSat, 28.99 (sec) for SIRI-WHU, and 83.81 (sec)
for the NWPU dataset. From the other deep learning models,
VGG19 takes the largest testing time, which is 956.22 (sec)
for EuroSAT, 114.53 (sec) for SIRI-WHU, and 190.51 (sec) for
the NWPU dataset. Our proposed model is ∼×2 times faster
than the state-of-the-art deep learning models. In Fig. 12, It is
seen that the proposed model has 134 layers deeper with 18.6M
parameters.

We conducted a fair comparison based on datasets with the
existing techniques, as presented in Table XIII. According to
this table, several techniques are added based on the selected
datasets. For the SIRI-WHU dataset, the recent best-attained
accuracy was 94.16% by Khan and Basalamah [1]. However, the
proposed architecture obtained the best accuracy of 98.20% for
this dataset. For the EuroSAT dataset, the recent best accuracy is
88.68% by Zhang et al. [45]. The proposed architecture obtained
a maximum accuracy of 89.50%. For the NWPU dataset, Liu
et al. [46] obtained a maximum accuracy of 90.30%; however,

TABLE XIII
COMPARISON OF THE PROPOSED ARCHITECTURE ACCURACY WITH

STATE-OF-THE-ART (SOTA) TECHNIQUES
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Fig. 12. Comparison of the proposed model with pretrained on the basis of
number of parameters and layers.

the proposed architecture obtained an accuracy of 91.70%.
Based on these facts, it is clear that the proposed method obtained
a better accuracy and precision rate on the selected datasets.

IV. CONCLUSION

As an illustration, the resolution of the sensor and the weather
can impact the quality of the data obtained by RS. Inaccurate
managerial decisions can result from low-quality data, which
can also impact the accuracy of AI models. In this work, we
proposed a novel architecture based on the network-level fused
self-attention CNN architecture for agriculture land cover and
land use classification. A contrast enhancement technique has
been proposed at the initial stage with two important aims to
improve the quality of images and to increase the training data.
A fused Self-Attention CNN architecture is proposed and trained
on the augmented training set. Deep features are extracted from
the self-attention layer and classified using NN classifiers. At
this stage, we obtained the maximum accuracy of 90.3, 87.7,
and 98.2% for EuroSAT, NWPU, andSIRI-WHU datasets. We
used BO to improve the NN classifiers’ performance further.
After BO, the obtained accuracies of the NNs are 90.0, 91.8, and
98.2, and the highest values of precision, recall, and F1-score are
98.1, 98.2, and 98.1, respectively. However, this step increased
the computational time; therefore, we proposed a QHPO feature
selection algorithm and obtained the best accuracy of 89.5, 91.7,
and 98.2% within 200% less computational time with the highest
precision and recall rate is 98.23, and 98.20. Overall, the pro-
posed architecture obtained improved accuracy and consumed
less time for execution. The limitation of the proposed work is
the CNN architecture which required a large amount of labeled
data to achieve reasonable outcomes. In the future, a vision
transformers-based architecture will be designed for the land
cover and land use classification.

DATA AVAILABILITY

The datasets are publically available at Eurostat (https://www.
kaggle.com/datasets/apollo2506/eurosat-dataset/), NWPU_R-
ESISC45 (https://figshare.com/articles/dataset/NWPU-RES-
ISC45_Dataset_with_12_classes/16674166) and the SIRI_
WHU (https://figshare.com/articles/dataset/SIRI_WHU_Data-
set/8796980).
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