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Abstract—The performance of a deep learning-based synthetic
aperture radar (SAR) automatic target recognition (ATR) model
largely relies on the scale and quality of training samples. However,
it is time-consuming and expensive to collect sufficient data in
practice. Although generative adversarial network (GAN) provides
a way for SAR target image generation, existing GAN-based meth-
ods cannot confirm what features the generator learns, thus they
struggle in generating precise SAR target images. In this article, we
propose an angle transformation GAN (ATGAN) that can generate
azimuth-controllable SAR target images while preserving the tar-
get details. The key idea of our ATGAN is to reframe the generation
task from the perspective of image-to-image translation. To this
end, ATGAN consists of two modules, a coarse-to-fine generator
that aims to learn the angle transformation in the deep feature
space, and then, apply it to manipulate the representation of an
input SAR target image to generate a new one, while a spectral-
normalized patch discriminator that tries to estimate the probabil-
ity that an input SAR target image is real rather than fake using a
patch-averaged strategy. Combining with spatial transformer and
adversarial training paradigm, ATGAN can generate precise SAR
target images for ATR. Extensive experiments verify the effective-
ness of the proposed ATGAN, and our method outperforms the
state-of-the-art method qualitatively and quantitatively.

Index Terms—Angle transformation (AT), automatic target
recognition (ATR), generative adversarial network (GAN),
synthetic aperture radar (SAR) target image generation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has the capability to
generate high-resolution images of the Earth’s surface by

actively emitting electromagnetic waves, regardless of meteoro-
logical and sunlight conditions [1]. SAR automatic target recog-
nition (ATR) is one of the most considerable research topics in
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SAR image interpretation [2]. Most of recognition models are
data driven [3], [4], [5], [6], [7], [8], and their performances rely
strongly on the scale and quality of training data [9]. However,
due to the principles of coherent imaging and the characteristics
of motion imaging, acquiring sufficient SAR target images for
practical use is time-consuming and costly [10], [11]. Moreover,
the distribution of strong scattering points and shadow areas in
SAR target images is highly sensitive to observation parameters.
For instance, the scattering characteristics of a target vary with
azimuth angle, but due to the restrictions of the flight routes and
operating costs, only SAR target images with limited azimuth
angles can be collected in a hanging flight test. The data scarcity
problem has become a major hindrance to implement deep
learning-based methods for SAR ATR.

To alleviate this problem, virtual images obtained by SAR
simulators can be served as supplementary data [12], while
the typical SAR simulators can be divided into two categories:
echo signal simulation [13], [14] and image simulation [15],
[16]. The former type focuses on the process of electromagnetic
scattering, typically utilizing Kirchhoff physical optics approx-
imation and geometrical optics approximation [14], while the
latter type directly establishes a geometric mapping relationship
between the target and the image using techniques, such as the
rasterization [15] and ray-tracing approaches [16] for SAR target
image simulation. However, both of them are developed based
on computer-aided drawing (CAD) models, and the quality of
the simulated SAR images depends on how accurate the models
are [17]. Deviations in modeling and simplifications made to
electromagnetic characteristics will make the simulated SAR
target image quite different from the real one. But, in most
practical scenarios, it is infeasible to design accurate CAD
models and parameters for each target within the scene.

In recent years, generative adversarial network (GAN) [18]
has achieved striking successes in various computer vision tasks
[19], [20], [21]. The capability to produce SAR target images
without any electromagnetic calculation has made GAN an im-
portant data augmentation method for SAR ATR. For example,
Guo et al. [17] proposed a conditional GAN (CGAN) with a clut-
ter normalization method to generate SAR target images while
easing the mode collapse. Wang et al. [22] proposed an improved
Wasserstein autoencoder for SAR image generation, and its loss
function was designed according to the characteristics of SAR
images. Cao et al. [23] proposed a label-directed GAN to provide
labeled samples for SAR ATR based on the ideas of Wasser-
stein GAN (WGAN) and CGAN, which can provide labeled
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Fig. 1. T-SNE visualization results of feature distribution for real SAR target
images and random noise sampled from a Gaussian distribution.

generated samples for SAR target recognition. Meanwhile, Cui
et al. [24] employed a Wasserstein GAN with gradient penalty
(WGAN-GP) to generate SAR target images and used a support
vector machine (SVM) to filter the results. A target recognition
method based on constrained naive GAN was proposed in [25]
to overcome the problem of low signal-to-clutter-noise ratio. Hu
et al. [26] put forward a CVAE-GAN model to generate SAR im-
ages with given class labels and observation angles. To generate
the SAR target images more faithfully at intended pose angles,
a novel GAN-based method for SAR target image generation,
called PeaceGAN, was proposed in [27]. Du et al. [8] proposed
a multiconstraint GAN to generate high-quality multicategory
SAR target images. Recently, Song et al. [9] and [28] proposed
an adversarial autoencoder (AAE) for SAR target recognition
few-shot learning tasks, which had the ability to generate SAR
target images with aspect angular diversity. Despite their SAR
target image generation ability, existing GAN-based methods
still have difficulty in providing precise results. First, most of
GAN-based methods take random noise and category label as
input [8], [17], [22], [23], [24], thereby generating the SAR
target image with the random azimuth. Second, the significant
distribution differences (as shown in Fig. 1) between random
noise (sampled from a Gaussian distribution) and real SAR
target images make it difficult for these methods to confirm
what features the generator learns [28], [29], leading to the
degraded performance of target generation. Finally, some GAN-
based methods require additional prior knowledge [9], [28] (e.g.,
semantic maps and pretrained classifiers) as support, which is
not available in practical scenarios.

For SAR target image generation, existing GAN-based meth-
ods only focus on mapping random noise to the desired im-
ages, and thus, they neglect the target feature representation
in the training data. Motivated by the notion of representation
equivariance [30], we argue that there is a shared knowledge,
i.e., angle transformation (AT), between the same target with
different azimuth angles in the deep feature space, which can
be learned from data and then utilized to enrich samples in
the target domain. Thus, different from previous works, we
creatively reframe the SAR target image generation task from the
perspective of image-to-image translation. Specifically, we pro-
pose an angle transformation GAN (ATGAN) that can generate

precise SAR target images based on the AT learned from training
data. With the aid of spatial transformer and adversarial training
manner, ATGAN first learns the AT from training data in the
deep feature space. Then, the learned AT is used to manipulate
the representation of an input SAR target image to generate a
new one in a coarse-to-fine manner. Finally, given a SAR target
image with an arbitrary azimuth angle, the trained ATGAN is
able to “rotate” the target by a small angle, that is, the new
SAR target images with other azimuth angles can be obtained.
Compared with existing GAN-based methods, the main idea of
the proposed ATGAN is to improve the quality of generated
SAR target images by encoding real SAR images. Thus, our
ATGAN can generate azimuth-controllable SAR target images
while preserving the details of targets without additional classi-
fiers or semantic maps. These generated SAR target images can
help to alleviate the data scarcity problem to some degree and
promote the recognition performance in SAR ATR. The main
contributions of this article are summarized as follows.

1) We creatively reframe the SAR target image generation
task from the perspective of image-to-image translation.
The proposed scheme can improve the quality of generated
images by encoding real samples using the AT learned
from training data.

2) We propose an ATGAN, it combines the advantages of
spatial transformer and adversarial mechanism. By im-
plementing this method, azimuth-controllable SAR target
images can be generated and target details can be pre-
served.

3) Experimental results demonstrate the effectiveness of gen-
erating SAR target images by encoding real SAR images,
and our method outperforms the state-of-the-art method
qualitatively and quantitatively.

The rest of this article is organized as follows. Section II
presents preliminary knowledge about the GAN-based SAR tar-
get image generation methods and representation equivariance.
The proposed ATGAN is described in detail in Section III, and
Section IV presents the experimental results on MSTAR dataset.
Section V discusses the contribution of spatial transformer layer
(STL) and the transferability of transformation. Finally, Sec-
tion VI concludes this article.

II. FUNDAMENTAL

In this section, we briefly review the principles of traditional
GAN-based SAR image generation methods and their problems,
and then, representation equivariance, i.e., the basis of our idea,
is presented for subsequent model designing.

A. GAN-Based SAR Target Image Generation

GAN is arguably one of the most commonly used techniques
for generating SAR target images [3]. To control the generated
results, traditional GAN-based SAR target image generation
methods are based on the idea of CGAN [31], and their architec-
ture can be roughly summarized, as shown in Fig. 2. It mainly
consists of two parts: the generator G and the discriminator D.
During the process of training, G takes random noise z and
class label c as input and generates the corresponding SAR
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Fig. 2. Architecture of traditional GAN-based SAR target image generation methods. The red font represents additional labels or prior knowledge introduced by
existing GAN-based methods to improve the quality of generated SAR target images.

target image to capture the data distribution [17]. For D, it
takes both category label c and SAR target images as the input,
and outputs a single scalar, which represents the probability
that images come from real data rather than the generator G
[18]. All in all, the core of these GAN-based methods can still
be considered as a two-player minimax game [23], and the
generatorG and the discriminatorD are continuously optimized
until they reach Nash equilibrium. As a result, G can generate
new SAR target images similar to the real ones for SAR ATR or
other applications. The main objective function can be written as

min
G

max
D

V (D,G) = Ex∼Pr
[logD(x|c)]

+ Ez∼Pz
[log (1−D(G(z|c)|c))] (1)

where D(x|c) denotes the probability that the SAR image x
comes from the real data distribution Pr, and G(z|c)denotes
the sample comes from generated SAR image distribution Pz .

To alleviate the problem of hard training and mode collapse,
WGAN-GP was introduced to modify the loss function in (1)
[23], [24]. However, this type of GAN-based SAR target image
generation method only takes random noise z and target type
c as input, resulting in the inability to control the azimuth of
the generated SAR image. To address this issue, recent research
works introduced azimuth angle v = [cos θ, sin θ] as an addi-
tional input [26], [27], [28]. In addition, the discriminator D is
first asked to predict the azimuth angle of its input SAR target
image, and then, the purpose of generating a SAR target image
with the desired azimuth angle is achieved by minimizing an
additional loss function, which can be written as [17]

Lazi = 1/Nb

Nb∑
i=1

(|vr − vp|)

= 1/Nb

Nb∑
i=1

(|cos θr,i − cos θp,i|+ |sin θr,i − sin θp,i|)

(2)

where Nb is the number of SAR target images in a batch, and
vr = [cos θr, sin θr] and vp = [cos θp, sin θp]denote the real and
predicted azimuth angles, respectively.

However, the regression of the azimuth angles is an under-
determined problem, and sometimes the edges and shapes of
targets in SAR images are not sharp or distorted, which will
make it even harder for the discriminator D to predict the

azimuth angles [17], and too many loss functions may cause the
network to be difficult to train. Besides, for better SAR target
image generation, some prior knowledge (e.g., semantic maps
[9], [28]) or extra methods (e.g., pretrained classifier [23], [24])
are introduced, which are not available in practical application
scenarios.

Despite their SAR target image generation ability, existing
GAN-based methods still struggle in generating target images
with desired azimuth angles while preserving the details of the
targets. On the one hand, they take random noise (generally
sampled from a standard normal distribution) and conditional
information as input, and output a single scalar, tending to
generate SAR images that conform to the global distribution,
while neglecting local target details [32]. On the other hand,
they focus on mapping random noise into a high-dimensional
space to gradually approximate the distribution of real SAR
images, but neglect the in-depth exploration of random noise.
Recently, StyleGAN proposed in [33] also proves that editing
random noise vector can control target visual features. More
importantly, the distribution differences between random noise
and real SAR target images also make it even harder to generate
SAR target images with high quality.

Therefore, instead of directly mapping random noise to the
desired SAR target images, our idea is to improve the quality
of generated SAR target images by using AT to manipulate
the features of real samples, which is based on the notion of
representation equivariance.

B. Representation Equivariance

Traditional data augmentation techniques, such as cropping,
rotation, flipping, and noising [3], can increase the number of
the training samples. However, these methods only transform
the data in the spatial domain, and the new features cannot be
generated to increase the data diversity. Although the effect of
these data augmentation approaches is very limited, they give
us an inspiration: whether the SAR image features of the same
target with different azimuths can be mapped to each other in
the deep feature space.

Interestingly, one of the notable properties of representations,
that is, equivariance, is presented in [30]. It focuses on how
the representation changes upon transformations of the input
image. This article demonstrates that most representations,
including layers in deep neural networks, change in an easily
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Fig. 3. Schematic of the proposed ATGAN for SAR target image generation and its applications.

predictable manner with the input. More importantly, these
equivariant transformations can be learned empirically from
available images.

Generally, the convolutional neural networks (CNNs) can be
thought of as functions φ mapping an image x ∈ χ to a vector
φ(x) ∈ R

d. A representation φ is deemed equivariant with a
transformation g of the input image when the transformation
can be transferred to the representation output. Specifically,
equivariance with g is obtained when there exists a map Mg:
R

d → R
d such that [30]

∀x ∈ χ : φ(gx) ≈ Mgφ(x). (3)

Motivated by representation equivariance, we creatively re-
frame the SAR target image generation task from the perspective
of image-to-image translation. During the training stage, our
goal is to obtain the transformed representation of the input SAR
target image through the mapping function Mg (i.e., represent
the intrinsic AT) satisfying (3). Estimating Mg is naturally
formulated as an empirical risk minimization problem [28].
Specifically, given an input image xi and a target image xt

sampled from a set of SAR target images, learning amounts to
optimizing the reconstruction loss

E(Mg) =
1

n

n∑
i=1

�(δ(φ(gxi)), δ(Mgφ(xi))) (4)

where n represents the number of input SAR target images in
the training samples, and � denotes reconstruction loss whose
choices are described in Section III-C. δ represents the image
reconstruction block. According to the assumption of repre-
sentation equivariance, when xt ≈ gxi, referring to (3), xt =
δ(φ(xt)) ≈ δ(Mgφ(xi)).

By requiring the same mapping function Mg to work for
any SAR image pair, Mg can capture intrinsic AT of the fea-
tures. Hence, to achieve this goal, our ATGAN is proposed
in Section III.

III. APPROACH

In this section, we first elucidate the framework of the pro-
posed ATGAN for SAR target image generation, as shown in
Fig. 3. Then, the three core modules of the proposed network

are described in detail. Finally, the loss function of the proposed
ATGAN is presented.

A. Framework of Proposed Network

According to the representation equivariance, image rep-
resentations, such as CNNs change upon transformations of
the input image, and these equivariant transformations can be
learned empirically from data [30]. Furthermore, the manifold
learning theory also demonstrates that the target distribution in
SAR images is stable and learnable [34]. Thus, we propose a
new GAN-based network, i.e., ATGAN, for SAR target image
generation. Benefiting from its specific structure and objective
function, the proposed ATGAN can gradually learn the AT
through a mapping function Mg in the deep feature space, and
then, utilize it to manipulate the representation of the input SAR
images to generate realistic SAR target images with specific
azimuth angles. The general process of the proposed ATGAN
for SAR target image generation is explained as follows.

Given two SAR target images, namely, input SAR image,
represented as xi with azimuth angle θ and target SAR image,
denoted by xt with azimuth angle θ +Δθ. Motivated by (3),
our idea is to obtain a transformed representation of the input
SAR image xi through a mapping function Mg . To this end,
the generator’s encoder first takes xi as input and maps it from
the image to φ(xi). Then, the decoder of our generator will
generate the fake SAR target image xf with azimuth θ +Δθ by
reconstructing Mgφ(xi), i.e., xf = δ(Mgφ(xi)). In the initial
state, the network has not yet learned the AT by the mapping
functionMg , resulting in an obvious difference between the fake
SAR image xf and the real SAR image xt. The image pairs,
{xi,xf} and {xi,xt}, are subsequently fed into the discrimi-
nator, and the discriminator will determine whether each image
pair is real or fake. Through minimizing the reconstruction
loss (i.e., �(xt,xf = δ(Mgφ(xi)))) and the adversarial loss,
our generator is optimized, and it gradually learns the AT by
estimating Mg . Finally, given a real SAR target image xr with
azimuth angle θ′, the generator of our ATGAN will generate
realistic SAR target image xg with azimuth angle θ′ +Δθ, i.e.,
xg = δ(Mgφ(xr)).
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Fig. 4. Architecture of the proposed ATGAN.

Due to the high quality of SAR target images generated by
ATGAN, they can be used for data augmentation in SAR ATR
or other applications.

B. Specific Implementation of Proposed Network

Given a real SAR target image xr with azimuth angle θ′, we
aim to generate its corresponding images xg with azimuth angle
θ′ +Δθ. To achieve this goal, the architecture and loss function
of our ATGAN are designed, as shown in Fig. 4.

1) Coarse-to-Fine Generator: SAR target images contain
rich scattering information of ground objects in a relatively small
size [35]. Previous GAN-based methods take random noise z
and conditional information c as input and directly generate
high-dimensional images [22], [23]. The significant distribution
differences between random noise z and real SAR target images
make them struggle to generate precise SAR target images.
Considering the characteristics of SAR images, we design a
coarse-to-fine generator for finer feature representation. Our
generator consists of two subnetworks: a coarse generator Gc

and a fine generator Gf . The former takes the downsampled
real SAR image xr as input to perform initial coarse generation,
while the fine generator Gf generates the final SAR image xg

with better details by taking elementwise sum of two feature
maps from both generators. By applying this generator, global
and local features can be effectively aggregated for the task of
generating SAR target images, while also enlarging the receptive
fields and stabilizing training.

To extract the features of SAR target images and learn the
AT in the deep feature space, we follow the architecture of
encoder–decoder [36] to design our generator. Specifically, both
subnetworks mainly consist of three parts: the downsampling
block (i.e., a convolutional layer followed with an instance
normalization layer [37] and ReLU activation [38]), the residual
block [39], and the upsampling block (i.e., a transposed con-
volutional layer followed with an instance normalization layer
and ReLU activation). The residual block is utilized to increase
the effective depth of networks. More importantly, we integrate
the STL [40] into the encoder–decoder pipeline for better AT
learning.

2) Spatial Transformer Layer: To capture the correlation of
targets between different azimuth angles, one solution is to

Fig. 5. Example of the real SAR image of the target BTR60 and its corre-
sponding SAR image transformed by the STL. (a) Original image of BTR60.
(b) Transformed image of BTR60.

estimate a rotation matrix that is given by [41][
u′

v′

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
u
v

]
(5)

where ϕ is the angle of the input image xi with respect to the
target image xt. (u, v) are the coordinates of xi, and (u′, v′)
are the coordinates of the transformed SAR images x̂t. This
warping operation can be achieved by STL. STL is an opposite
of GAN that reconstructs the target SAR image by warping the
input image according to the acquired affine matrix. However,
for a SAR target image, the gap between input and target is
infeasible to bridge by simply warping the pixels from one to
another, and thus, STL tends to generate blurry images (see
the SAR target images in Fig. 5). Therefore, instead of directly
taking x̂t as the final generation result, we utilize STL as the
guidance for feature representations. As a consequence, the
proposed generator and designed STL can complement each
other for estimating Mg . In this way, both of two strategies can
maximize their advantages for generating azimuth-controllable
SAR target images while preserving target details. Moreover,
STL can automatically select interested regional features in the
process of training [40], which is also important for SAR target
image generation.

As illustrated in Fig. 6, our STL consists of three parts: local-
ization network, grid generator, and sampler. Specifically, the
localization network first takes the feature map I ∈ R

H×W×C
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Fig. 6. Architecture of the STL.

as input, and outputs the affine parameters θ = floc(I) through
hidden layers. Then, the grid generator utilizes these parameters
to create a sampling grid G = {Gi}. Finally, the input feature
map and sampling grid are input to the sampler, generating the
target feature map T ∈ R

H×W×C . As a result, STL has the
ability to actively spatially transform the feature maps or the
input SAR target images into the desired form of the next layer.
Note that as a differentiable module, our STL can be plugged
into the generator and trained with it, without any extra training
supervision or modification to the optimization process [40].

3) Multiscale Spectral-Normalized Patch Discriminator:
Generating high-quality SAR target images is also a significant
challenge for designing discriminators. To this end, we deploy
two subnetworks D1 and D2 as discriminators, which have the
same structure but work at different scales to obtain a larger
receptive field. This design also makes our generator much easier
to train.

The features of the target in SAR images are highly sensitive
to the azimuth angle, which also directly affects the performance
of the ATR model [41]. However, existing GAN-based methods
rely on a global discriminator, which maps from a whole SAR
target image to a single scalar output. To improve the details
of the generated targets, we introduce PatchGAN [42] as the
critic. As a consequence, each subnetwork maps the input SAR
target image to an N ×N matrix by convolutional operation,
while each element in this matrix represents a patch in the
original SAR target image. Therefore, our discriminator focuses
on determining whether these image patches are real or fake
rather than the whole SAR target image. Benefited from this
strategy, the proposed ATGAN is able to improve the global con-
sistency as well as local details. Moreover, we employ spectral
normalization (SN) [43] to further stabilize the network training,
which can control the Lipschitz constant of the discriminator,
converges faster and outperforms WGAN-GP [44].

C. Loss Function

As the goal of the network, the loss function of the proposed
ATGAN mainly consists of two parts: reconstruction loss and
multiscale adversarial loss, which evaluate the generated SAR
target images from different perspectives.

1) Reconstruction Loss: TheL1 norm is utilized to minimize
the pixelwise difference between real target SAR images and
generated SAR images to ensure the image content consistency,
which also facilitates the estimation of the mapping function
Mg . Thus, the reconstruction loss in (4) can be represented as

Lrec(G) = Exi,xt∼Pr
[‖xt −G(xi)‖1] (6)

where ‖·‖1 denotes the L1 norm, and xi and xt are input and
target SAR images sampled from real distribution Pr, respec-
tively. G(xi) is the generated SAR target image conditioned on
the inputxi. By minimizing the reconstruction loss, the network
is trained to estimate the mapping function Mg

2) Multiscale Adversarial Loss: However, using only the
L1 norm tends to produce blurry SAR target images, and it
only obtain the outline of the image rather than high-frequency
details [45]. To alleviate this problem, we train our generator
G and discriminator D in an adversarial manner. Specifically,
the generator G is trained to learn a mapping from input image
xi to target image xt, and then generate G(xi) as realistic as
possible, which tricks D into believing that the generated SAR
target image xg = G(xi) is sampled from the real data [18]. In
contrast, the discriminator D is trained to differentiate the real
SAR target image xt and generated SAR target image xg . The
adversarial loss of proposed ATGAN can be expressed as

Ladv(G,D) = Exi,xt∼Pr
[logD (xi,xt)]

+ Exi∼Pr
[log (1−D (xi, G(xi)))] (7)

where the generator G tries to minimize this function and the
discriminator D tries to maximize it.

With the multiscale discriminators, the objective of the pro-
posed ATGAN in (7) then becomes a multitask objective func-
tion, which can be expressed as

min
G

max
D1,D2

∑
k=1,2

Ladv(G,Dk). (8)

3) Final Objective: Our final objective function for training
the whole model is defined as follows:

G∗ = argmin
G

max
D1,D2

∑
k=1,2

Ladv(G,Dk) + λLrec(G) (9)

where λ denotes the hyperparameters used to balance losses,
which is set as 120 in this article.

IV. EXPERIMENTS AND RESULTS

In this section, after introducing the dataset configuration
and hyperparameters settings, the performance of the proposed
ATGAN for SAR target image generation will be evaluated
qualitatively and quantitatively.

A. Datasets and Settings

1) Experimental Dataset: The moving and stationary target
acquisition and recognition (MSTAR) dataset [46] is utilized
in this article for the validation of our proposed ATGAN.
As a widely used benchmark for SAR algorithm applications,
MSTAR includes 0.3 m × 0.3 m resolution X-band SAR images
of ten categories of ground stationary targets. In this study, seven
types of targets (i.e., 2S1, BRDM2, BTR60, D7, T62, ZIL131,
and ZSU234) at 0°–360° azimuth angles and 15° depression
angle are selected for the proposed ATGAN performance assess-
ment. All the SAR target images are normalized by min–max
scaling to the range [0, 255]. The optical and corresponding
128 × 128 SAR images of these targets are shown in Fig. 7.
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Fig. 7. Optical images and their corresponding MSTAR SAR images for (a) 2S1, (b) BRDM2, (c) BTR60, (d) D7, (e) T62, (f) ZIL131, and (g) ZSU234.

TABLE I
SEVEN TYPES OF TARGETS IN THE MSTAR DATASET

Note that the original chips of size 128 × 128 in MSTAR
dataset instead of cropped SAR target images are used to train
the proposed ATGAN, which is of potential use in SAR ATR.

As mentioned earlier, only SAR target images with limited
azimuth angles can be collected in practical applications [17].
Thus, to simulate the actual SAR target image generation task,
we first select one sample at every 10° interval as the input image
xi, and then find the sample with 10° interval behind the input
image xi as the target image xt. As a result, only 332 of 1838
SAR target images are set as the training dataset, and all the
remaining images are only used for testing purposes, as given
in Table I.

2) Hyperparameters Settings: Our ATGAN is implemented
on the PyTorch framework, performed on NVIDIA GeForce
RTX 3080Ti with a compute capability of 8.6. We train our
ATGAN with Adam optimizer [47] (β1 = 0.5; β2 = 0.999),
and the batch size and learning rate are set to 4 and 0.0002,
respectively.

B. Qualitative Evaluation

The basic goal of a SAR target image generation method is
to correctly reproduce the distribution of the dominant scatters
in the SAR images. To evaluate the generation capability of
the proposed ATGAN, a subjective evaluation of the generated
SAR target images by human visual is described, that is, we first

compare the ATGAN-generated SAR target images with the real
ones in visual similarity.

Fig. 8 presents the qualitative results of the targets BRDM2
and BTR60, where the former is most likely to be confused with
the latter. It can be clearly seen that the generated SAR target im-
ages can accurately capture the geometric features and morpho-
logical structures in real ones. Thus, the ATGAN-generated SAR
target images are highly similar to the real SAR target images
not only in terms of the azimuth angle but also the target features
and shadow areas (as indicated by the red angle rulers and yellow
rectangles), which play an important role in SAR ATR. In con-
trast, their backgrounds are not necessarily the same, indicating
that the proposed ATGAN does not merely perform pixel-level
mapping. Furthermore, upon comparing the two sets of pictures,
it can be observed that although the real SAR target images of
BRDM2 and BTR60 targets may be easily confused at certain
azimuth angles, their corresponding generated SAR target im-
ages are still more similar to themselves than to other targets.

Fig. 9 compares the generated SAR images of the seven
types of targets with their two nearest real SAR target images
in the training data. The purpose is to intuitively validate the
effectiveness of the proposed ATGAN model by using the most
similar training samples as a standard, that is, the new SAR
target images generation relies on learned AT rather than mere
copying or mapping of training samples. It is not difficult to find
that the generated SAR target images are different from their
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Fig. 8. Input SAR images (left column), target SAR images (middle column)
compared with generated SAR images (right column) of (a) BRDM2 and (b)
BTR60.

nearest training samples, particularly in terms of local target
features and shadow areas (as indicated by the red angle rulers
and yellow rectangles). This also demonstrates that our ATGAN
can generate unseen SAR target images by “interpolating” along
the azimuth angle of the target, just like other SAR target image
generation method.

To better verify the effectiveness of the proposed ATGAN,
we also select AAE [25], a state-of-the-art SAR target image
generation method, for comparison. Furthermore, to facilitate
visual similarity comparison, we appropriately modified the
training dataset configuration, that is, the azimuth angles of the
training samples are scaled down to 0◦ − 50◦, while azimuth
angle interval of adjacent input images is set to 5◦. For a
fair comparison, we reproduce AAE and set the same sample
azimuth angle interval on the training dataset.

Fig. 10 shows a visual similarity comparison between real
SAR target images (upper row of each panel) and those generated
by AAE (middle row of each panel) and ATGAN (bottom row
of each panel) for the six types of targets in the test set. It can be
observed that the ATGAN-generated SAR target images have
a clear target profile, obvious scattering characteristic, and they
are more similar to the real ones in terms of azimuth angle. More
importantly, our ATGAN has the ability to generate SAR target
images beyond the available azimuth angles to some extent. In
other words, the proposed ATGAN can generate new SAR target
images by learning the AT. Compared with ATGAN, the quality
of the SAR target images generated by AAE is poorer. AAE
struggles in reproducing local details and azimuth angles (as

Fig. 9. Generated SAR target images (middle column) compared with the two
nearest real SAR target images (left and right columns). From top to bottom are
2S1, BRDM2, BTR60, D7, T62, ZIL131, and ZSU234.

indicated by the red angle rulers and yellow rectangles) and
fails to generate the desired SAR target images beyond 50◦

azimuth angle (as shown in the red rectangles). We argue that
two main reasons contribute to these problems. On the one hand,
AAE takes random noise and conditional information as input
and tends to generate SAR target images that conform to the
global distribution. Due to the significant difference between
the distribution of random noise and real SAR target images
(as shown in Fig. 1), AAE relies heavily on “imagine” targets
and cannot confirm what features the generator learns, leading
to the quality of generated SAR target images degradation. On
the other hand, although AAE performs a regression process to
obtain the desired azimuth angle, the regression of the azimuth
angle is an underdetermined problem [17], and some unsatis-
factory target features make it even harder. Furthermore, the
semantic maps of the test set, which are not available in the
practical scenario, are fed into the AAE as prior knowledge.
However, due to the speckle noise in SAR target images, it
is difficult for traditional semantic map generation methods to
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Fig. 10. Comparison of real SAR target images (upper row) of (a) 2S1, (b) BRDM2, (c) BTR60, (d) D7, (e) T62, and (f) ZIL131, with the corresponding generated
SAR images via AAE (middle row), and generated SAR images via ATGAN (bottom row).

generate accurate semantic maps for targets and shadows, and
thus makes AAE even harder to correctly preserve target shape
and shadow areas.

Through the above visual similarity comparison presentation,
it demonstrates to some extent that the proposed ATGAN has the
ability to generate precise SAR target images with desired az-
imuth angle meanwhile preserving target details. Although this
evaluation criterion is simple and intuitive, it is highly subjective
and susceptible to evaluator bias. In other words, it is not enough
to rely solely on human eye to intuitively assess the quality of the
generated SAR target images. Therefore, an objective evaluation
framework is designed to evaluate the quality of generated SAR
target images quantitatively in Section IV-C.

C. Quantitative Evaluation

Apart from proposing a meticulously designed CNN archi-
tectures and loss functions for SAR target image generation, it
is also crucial to establish an objective framework for evaluating
the authenticity and reliability of generated SAR target images
[48]. The quality of the generated samples directly affects the

performance of the SAR ATR model. However, to the best of the
authors’ knowledge, current works in the literature largely rely
on the histogram to approximate the magnitude distribution of
the SAR target image [23], [28], and there is no comprehensive
framework available that can fully illustrate the accuracy of gen-
erated SAR target images. Therefore, in this work, an objective
evaluation framework is designed to quantitatively evaluate the
quality of the generated SAR target images.

According to the different information concerned, the de-
signed framework consists of three parts: structure level, feature
level, and application level. Specifically, these three parts quanti-
tatively measure the similarity between generated and real SAR
target images from various perspectives, thereby forming an
objective and comprehensive evaluation framework. Different
parts calculate the similarity of images using different indicators,
each with its own advantages and limitations. The flowchart of
the designed evaluation framework is depicted in Fig. 11.

1) Structure Level: This section focuses on measuring the
similarity through structural information. Specifically, it consists
of two indicators: multiscale structural similarity (MSSIM) and
feature similarity index measure (FSIM).
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Fig. 11. Flowchart of the designed objective evaluation framework.

On the basis of structural similarity (SSIM) [49], MSSIM [50]
measures the similarity between generated and real SAR target
images at different scales in terms of contrast and structural
information. In this way, it can reduce the interference caused by
different image resolutions and obtain more accurate evaluation
results. The MSSIM index is calculated as follows:

MSSIM(R,G) = [lM (R,G)]αM

M∑
j=1

[cj(R,G)]βj [sj(R,G)]γj

(10)
where l(R,G), c(R,G), and s(R,G) are designed to compare
luminance, contrast, and structural information of R and G,
respectively. α, β, γ > 0 are used to adjust the weights of these
information. M denotes the scale reduction factor.

For optical images, the profile and edges of the local target
can be well described by gradients [23]. However, extracting
gradient features from SAR target images is a challenging task
due to the presence of speckle noise. To alleviate this issue, we
employ FSIM [51] to capture phase congruency (not SAR phase
information is meant here), which has been proved to be robust
against variations in noise levels [52]. By applying FSIM, phase
consistency and gradient features can complement each other to
measure the similarity between generated and real SAR target
images. The FSIM index is defined as follows:

FSIM =

∑
x∈Ω SL(x) · PCm(x)∑

x∈Ω PCx(x)
(11)

SPC(x) =
2PC1(x) · PC2(x) + T1

PC2
1(x) + PC2

2(x) + T1

(12)

SG(x) =
2G1(x) ·G2(x) + T2

G2
1(x) +G2

2(x) + T2
(13)

SL(x) = [SPC(x)]
α[SG(x)]

β (14)

PCm(x) = max(PC1(x),PC2(x)) (15)

where PC1(x) and PC2(x) represent the phase consistency of
real and generated SAR images, respectively. G1(x) and G2(x)
represent the gradient of two images. T1 and T2 are positive con-
stants.SPC(x) is the similarity measure forPC1(x) andPC2(x),
andSG(x) is the similarity measure forG1(x) andG2(x).α and
β are parameters used to adjust the relative importance of two
features. Ω means the whole image spatial domain.

The structure-level part is capable of quantifying the simi-
larity between real and generated SAR target images by means
of extracting their structural information. Taking Fig. 8 as an
example, the MSSIM and FSIM values of the real and generated
BTR60 are 0.6340 and 0.7063, respectively, while the MSSIM
and FSIM values of the real BRDM2 and generated BTR60
are 0.3608 and 0.5952, respectively. Similarly, the MSSIM and
FSIM values of the real and generated BRDM2 are 0.5267 and
0.6902, compared with 0.3850 and 0.6255 of real BTR60 and
generated BRDM2. These results also quantitatively support the
analysis of the visual similarity comparison, as shown in Fig. 8.

However, relying solely on structural information extracted
by structure-level part is insufficient for evaluating the quality
of generated SAR target images. This part mainly focuses on the
structural information of the target in SAR images, which may
neglect other key features of SAR target images.

2) Feature Level: This section is devoted to evaluating the
quality of the generated SAR target images at the feature level.
Consequently, we introduce Fréchet inception distance (FID)
[53] for this purpose.

FID is a metric that can quantify the similarity between the
distributions of real and generated SAR target images.

Specifically, it involves extracting feature representations
from both sets of images using a pretrained deep neural network,
followed by computing their Fréchet distance. A lower FID score
indicates greater resemblance between the generated and real
SAR images.

3) Application Level: According to Guo et al.[48], the utility
of the generated SAR target images can be evaluated by SAR
target recognition networks, which is the initial purpose of
SAR target image generation. Therefore, the application-level
part utilizes SVM, CNN-SAR [54], and A-ConvNets [55], i.e.,
multiple SAR target recognition models, as the backbone of
the evaluation network. As a consequence, the quality of the
generated SAR target image can be evaluated by how close its
classification results are to that of the real SAR target image.
By applying this part, we can measure the similarity between
the generated and real SAR target images under the premise
of comprehensively considering the target features and data
distribution.

In this section, the designed evaluation framework is used to
evaluate the quality of generated SAR target images. The model
is trained with the datasets and settings given in Section IV-A.
To make a fair comparison, the same datasets and test steps are
applied to AAE.

The first part of the designed evaluation framework can mea-
sure the similarity between the generated and real SAR target
images at the structure level. Table II presents the average values
of MSSIM and FSIM computed between the real SAR target
images and those generated by AAE and ATGAN on the test set.
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TABLE II
STRUCTURE-LEVEL EVALUATION RESULTS OF REAL IMAGES WITH CORRESPONDING AAE-GENERATED AND ATGAN-GENERATED IMAGES ON MSTAR DATASET

Fig. 12. Comparison results of FID scores for AAE-generated and ATGAN-
generated SAR target images.

For these seven types of targets, the average MSSIM values of
AAE range from 0.3859 to 0.5542, and the average FSIM values
of AAE range from 0.6649 to 0.6839. On the contrary, the aver-
age similarity between real and ATGAN-generated SAR target
images calculated by MSSIM and FSIM ranges from 0.5129
to 0.6529, and 0.6869 to 0.7374, respectively. The quantitative
results presented in Table II further demonstrate that the SAR
target image generated by ATGAN is more similar to the real
SAR image than AAE-generated SAR image. In other words,
our ATGAN model performs competitively against AAE.

For feature-level part, Fig. 12 shows a comparison of FID
scores between AAE-generated and ATGAN-generated SAR
target images with real ones. The horizontal axis represents the
number of generated SAR target images, while the vertical axis is
the FID score between the generated and real SAR target images.
It can be observed from Fig. 12 that the FID score between the
ATGAN-generated and real SAR target images is lower than
that of the AAE-generated images. This demonstrates that the
SAR target images generated by our ATGAN are more similar
to the real SAR images than that of AAE. Specifically, the FID
scores of ATGAN range from 54.8435 to 28.1498, compared
with 120.2500 to 98.6148 of AAE. Although both generative
networks’ FID scores decrease as the number of generated SAR
target images increases, the FID score curve of ATGAN is
smoother than that of AAE, which proves that the proposed
network is more stable in SAR target image generation, and the
generated SAR target images are closer to the real one in terms
of feature distribution.

Based on the above quantitative assessment experiments im-
plemented by two parts in the designed evaluation framework, it

is not difficult to find that compared with AAE, the SAR target
images generated by ATGAN are more similar to the real SAR
target images, and they have reproduced the characteristics, such
as the target shape and the shadow areas. As mentioned above,
the proposed ATGAN aims to alleviate the scarcity of SAR
target images for data-driven SAR ATR. However, it is not clear
whether the ATGAN-generated SAR target images have applica-
tion potential in ATR. Therefore, in application-level part, these
generated SAR target images will be utilized as a supplement
to the existing training samples for SAR ATR to evaluate their
quality. In other words, the higher the classification results of tar-
get recognition models obtained using the generated SAR target
images, the more similar they are to real SAR target images.

In the application-level part, we first randomly selected 100
real SAR target images as training samples. Then, to evaluate the
performance of the generated SAR target images across different
scenarios, experiments using augmented data of different sizes
are performed. For example, if the training set size is set to
0.9, then 90% of the 500 SAR target images (real or gener-
ated) are added to the training samples and retrain the target
recognition network. Fig. 13 illustrates the classification results
of three target recognition models using real, AAE-generated,
and ATGAN-generated SAR target images. The horizontal axis
is the size of augmented SAR target images used for training,
while the vertical axis represents accuracy, precision, recall, and
F1-score, respectively. Taking Fig. 13(c), that is, the classifi-
cation results of A-ConvNets, as an example. It can be seen
clearly that when the training samples are insufficient, these four
metrics increase significantly as the three types of SAR target
images are gradually added. However, compared with AAE, the
role that ATGAN-generated SAR target images play in data
augmentation is closer to that of real ones. When the number
of augmented SAR target images is 450 (i.e., training set size
is 0.9), the classification accuracies of A-ConvNets using real,
ATGAN-generated, and AAE-generated SAR target images on
the test set are 0.8760, 0.8394, and 0.7870, respectively.

Similarly, the above conclusion can also be verified by the
precision, recall, and F1-score of A-ConvNets. In summary, the
SAR target image generated by ATGAN is more similar to the
real image than that of AAE, indicating that the proposed method
has the ability to assist in SAR ATR.

V. DISCUSSION

A. Role of the STL

In this article, the STL [40] is introduced to guide the gen-
erator to map the input SAR images to the target SAR images.
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Fig. 13. Classification results of (a) SVM, (b) CNN-SAR, and (c) A-ConvNets, using real, AAE-generated, and ATGAN-generated SAR target images.

Fig. 14. Comparison of real SAR target images (upper row), with the corresponding generated SAR target images via ATGAN (middle row) with STL, and
generated SAR images via ATGAN without STL (bottom row).

To analyze the efficacy of the STL in the proposed ATGAN
network, Fig. 14 compares the SAR target images generated
by ATGAN with or without STL. As mentioned earlier, the
estimation of Mg and the generation of the SAR target images
are mainly implemented in the encoder–decoder pipeline. Thus,
without STL, ATGAN can still generate SAR target images to
a certain extent. However, it can be seen clearly that the shapes
and edges of the targets in some SAR target images generated

by ATGAN without STL are distorted (e.g., the first and fourth
columns of Fig. 14), resulting in deviations from the real targets.
Besides, the shadow areas and the azimuth angles of some
targets (e.g., the fifth and seventh columns of Fig. 14) are also
inconsistent with the real ones. On the contrary, with the STL,
the proposed ATGAN can generate correctly desired SAR target
images. Table III also gives the quantitative evaluation results
between the real SAR target images and images generated by
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TABLE III
AVERAGE EVALUATION RESULTS BETWEEN REAL AND ATGAN-GENERATED

SAMPLES WITH AND WITHOUT STL

TABLE IV
NUMBER OF TRAINING AND TESTING DATASET FOR THE EVALUATION OF THE

TRANSFERABILITY

ATGAN with and without the STL. It can be observed from
Table III that the STL improves the average similarity between
the generated image and real image by about 0.0906 to 0.1166,
which demonstrates that it contributes a lot to the SAR target
image generation. More importantly, STL can make network
training more stable in the desired direction, and ATGAN using
STL can take less time to achieve convergence.

B. Transferability of Angle Transformation

In this article, we assume that the shared knowledge be-
tween the source domain and the target domain is the AT.
Motivated by representation equivariance, the main idea of the
proposed ATGAN is to learn the AT from training data, and
then apply it to reproduce targets with missing azimuth angles
in the target domain. To validate the transferability of the AT
learned by ATGAN between different domains, we also conduct
qualitative and quantitative experiments on the MSTAR dataset.
Specifically, given an input SAR image xi and a target SAR
image xt sampled from training data with 15° depression angle,
the proposed ATGAN is first trained to obtain a transformed
representation of xi through the mapping function Mg . Then,
by optimizing the loss function (9) and requiring the same Mg

to work for any SAR image pair, Mg can capture intrinsic AT
of the representation. Finally, given a real SAR target image xr

with 30° depression angle as input, our generator can generate a
new SAR target image xg for ATR. Similarly, the quality of the
generated SAR target image xg will be evaluated qualitatively
and quantitatively. The details of the dataset configuration are
given in Table IV.

Fig. 15 shows the comparison between real SAR target images
(upper row of each panel) and the SAR target images generated
by the proposed ATGAN (middle row of each panel). It is not
difficult to find that the generated images closely resemble their

TABLE V
AVERAGE EVALUATION RESULTS BETWEEN REAL AND ATGAN-GENERATED

SAMPLES ON THREE TYPES OF TARGETS

TABLE VI
QUANTITATIVE RESULTS OF REAL IMAGES WITH CORRESPONDING IMAGES

GENERATED BY ATGAN

corresponding real SAR target images in terms of the shape
and characteristics of targets and azimuth angle (as indicated by
the real angle rulers and yellow rectangles). Moreover, due to
the differences in depression angle, there may be variations in
shadow range for a given target at same azimuth angle between
training and test sets. Therefore, we also compare the generated
SAR target images with real training samples (bottom row of
each panel) under a depression angle 15°. It can be clearly seen
that the shadow range of the generated SAR target image is quite
different from that of the real image in the training data, and it is
more similar to the expected target SAR image than to the former
(as indicated by the yellow rectangles). These comparison results
demonstrate that the proposed ATGAN model strives to learn the
AT rather than merely duplicating existing training data.

Table V also gives the average quantitative evaluation results
between the generated and real SAR target images on the test set.
These quantitative results further demonstrate that the ATGAN-
generated SAR target images are close to the real ones. Based
on the above results, the transferability of the AT learned by the
proposed ATGAN can be verified.

Moreover, we also conducted experiments to validate the gen-
eralization ability of ATGAN on azimuth angle generalization.
Specifically, following the same setting in [56], the SAR target
images with 17◦ depression angle are divided into two groups
according to the azimuth angle, e.g., [0, π) and [π, 2π], in our
experiments. As a result, only about 50% azimuth angle is used
for training. Fig. 16 illustrates the comparison between the real
(upper row of the panel) and generated SAR targets images
(bottom row of the panel). It can be observed that the SAR target
images generated by ATGAN look similar to the real images
not only in terms of azimuth angle (as indicated by the real
angle rulers) but also the shape and characteristics of targets (as
indicated by the yellow rectangles). In other words, the proposed
ATGAN has the ability to generate SAR target images when only
about 50% of the azimuth angles are available in training set.
The quantitative similarity between the generated SAR target
images and the real images given in Table VI further verify the
generalization ability of ATGAN on azimuth angle.
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Fig. 15. Comparison of real SAR images (upper row) in test set, with the corresponding generated SAR images (middle row) via ATGAN, and corresponding
real SAR images (bottom row) in training set. (a) 2S1. (b) BRDM2. (c) ZSU234.

Fig. 16. Comparison of real SAR target images (upper row), with the corresponding generated images via ATGAN (bottom row).
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Fig. 17. Generated SAR target images and the real SAR target images with different training azimuth intervals. (a) With 5° azimuth interval. (b) With 10° azimuth
interval. (c) With 15° azimuth interval. (d) With 20° azimuth interval. (e) With 30° azimuth interval.

C. Range of Angle Transformation

As mentioned earlier, the distribution of strong scattering
points in SAR target images vary rapidly with the azimuth angle.
Thus, we have conducted some experiments about the borderline
of the training azimuth interval that can generate high-quality
SAR target images. The training and testing combinations are
listed in Table VII. Fig. 17 illustrates the comparison between
generated SAR target images (upper row of each panel) and the
real images (bottom row of each panel) with different training
azimuth intervals. It can be found that, when the azimuth interval
is increasing from 5° to 30°, the quality of the generated SAR
target images is decreasing obviously, and when the azimuth in-
terval is 20°, the generated SAR target images start to obviously
suffer from degradation in quality and azimuth controllability.

TABLE VII
NUMBER OF TRAINING AND TESTING DATASET FOR THE EVALUATION OF THE

RANGE

Furthermore, we have generated SAR target images with the
azimuth interval 30°. It can be observed that the generated SAR
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TABLE VIII
QUANTITATIVE SIMILARITY RESULTS UNDER INCREASING AZIMUTH INTERVAL

target images are not similar to the real images (as indicated
by the red angle rulers and yellow rectangles). The quantitative
similarity between the generated SAR target images and the real
images given in Table VIII further validates the visual similarity
comparison results. Thus, from the results of experiments, the
azimuth interval borderline between the input and target SAR
images should be between 20° and 30°.

VI. CONCLUSION

In this article, an ATGAN model is first proposed, which can
generate azimuth-controllable SAR target images while preserv-
ing target details for ATR. Our idea is to learn the AT in the
training data, and then, apply it to enrich an incomprehensive set
of images in the target domain via image-to-image translation.
Specifically, the proposed ATGAN consists of a coarse-to-fine
generator and a multiscale SN-patch discriminator. The former
aims to learn the AT in the deep feature space and subsequently
utilize it to manipulate the representation of an input SAR
target image to generate a new one, while the latter tries to
estimate the probability that a SAR target image pair is real
rather than fake using a patch-averaged strategy. With the aid
of spatial transformer and adversarial training manner, the pro-
posed ATGAN can provide precise SAR target images, which
avoids the problem of existing GAN-based methods that directly
map random noise to the desired SAR target images. Extensive
experiments show the superiority of the proposed ATGAN in
generating SAR target images, and our method outperforms
the state-of-the-art method qualitatively and quantitatively. In
SAR ATR test, our ATGAN achieves a score that is closer to
real data, proving that it has reliable generation ability, and our
ATGAN can be utilized as a new data augmentation approach
to alleviate the data scarcity problem in SAR ATR and promote
the recognition performance.

We hope that this method can provide new ideas for the gen-
eration of SAR target images with desired physical meaning. In
the future, how to effectively couple the physical parameters as
feedback in the deep generative model for SAR image generation
(not limited to a single target) remains to be explored [57].
The physical parameters will be applied as the supervision of
the output to ensure the physics consistency, e.g., generating
SAR images from different viewing angles given only a single
SAR image as input. There are some examples to learn from in
the field of hyperspectral remote sensing image synthesis [58],
[59]. Moreover, a comprehensive assessment criterion is also
supposed to be developed to evaluate the quality of generated

SAR images because the evaluation approach from the computer
vision field is not completely suitable for SAR images.

APPENDIX

ARCHITECTURE OF GENERATOR IN ATGAN

ARCHITECTURE OF DISCRIMINATOR IN ATGAN
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