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Explainable Artificial Intelligence for Machine
Learning-Based Photogrammetric Point

Cloud Classification
Muhammed Enes Atik , Zaide Duran , and Dursun Zafer Seker

Abstract—Point clouds are one of the most widely used data
sources for spatial modeling. Artificial intelligence approaches have
become an important tool for understanding and extracting seman-
tic information of point clouds. In particular, the explainability of
machine learning approaches for 3-D data has not been sufficiently
investigated. Moreover, existing studies are generally limited to
object classification issues. This is a pioneer study that addresses
the classification of photogrammetric point clouds in terms of
explainable artificial intelligence. In this study, the explainability
of black-box machine learning models in the context of the clas-
sification of photogrammetric point clouds was investigated. Each
point in the point cloud is defined using geometric and spectral
features. In addition, the effect of selecting the most important
of these features on the classification performance of ML models
such as Random Forest, XGBoost, and LightGBM was examined.
The explainability of ML models was analyzed with Shapley ad-
ditive explanation (SHAP), an explainable artificial intelligence
approach. SHAP analysis was compared with filter-based infor-
mation gain (IG) and ReliefF methods for feature selection. Using
the features selected with SHAP analysis, overall accuracy (OA) of
85.50% in the Ankeny dataset, 91.70% in the Building dataset, and
83.28% in the Cadastre dataset was achieved with LightGBM. The
evaluation with XGBoost shows an OA of 85.22% for Ankeny,
91.21% for Building, and 82.47% for Cadastre. The evaluation
with RF shows an OA of 83.70% for Ankeny, 89.08% for Building,
and 79.36% for Cadastre.

Index Terms—Classification, explainable artificial intelligence
(XAI), feature selection, machine learning, photogrammetry, point
cloud.

I. INTRODUCTION

THREE dimensional (3-D) objects can be represented in
different ways; together, they form complex point cloud

structures [1]. Due to their widespread use and comprehensive
3-D description, point clouds are popular data sources. The
main interest of photogrammetry is the 3-D reconstruction of
objects from images [2]. Recently, dense point clouds of large
areas can be produced using algorithms such as structure from
motion (SfM) [3]. Direct processing of point clouds has become
one of the main research areas in recent years, as it prevents
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information loss and provides maximum utilization of multi-
dimensional information of points. The geometric information
in point clouds is valuable as a basis for many applications.
Point cloud classification is one of the basic tasks in point
cloud processing. The purpose of point cloud classification is
to identify each point with a label to determine the general or
local characteristics of the point cloud [4]. The features produced
using the 3-D structure of the point cloud are used for point cloud
classification using machine learning. Although deep learning
extracts features with hidden layers, methods using geometric
features as input data have also been developed. Large-scale
point cloud segmentation is performed independently for each
point or voxel, using handcrafted features derived from its local
neighbors. However, due to the complexity of 3-D scenes caused
by irregular point sampling, varying point density, and very
different object types, there are several difficulties in calcu-
lating appropriate local geometric features [5]. Defining the
local geometric features correctly is a problem to be solved,
since many additional features are used besides the 3-D coordi-
nate information of the point cloud only. Particularly, machine
learning algorithms require features other than 3-D coordinates
to define a point. To determine the distinctions between the
classes well, it is necessary to determine the geometric features
appropriately.

Explainable artificial intelligence (XAI) techniques give a
favor for solving the challenges of using artificial intelli-
gence on point cloud classification by providing more inter-
pretable AI models. Not only does XAI allow understanding of
the complexity of artificial intelligence models due to the black
box, but it also assures decision-makers over the model. XAI
is being used especially in crucial industries, where it’s impor-
tant to understand the model’s functioning and key characteris-
tics [6]. XAI provides a great contribution to decision-makers
and researchers when comparing and conducting AI algorithms,
especially through the data, likewise point cloud complexity and
the needs of expertise perspectives. Because XAI methods aid
in increasing the machine learning models’ transparency and
trustworthiness [7]. The XAI models can produce the important
values of spectral bands or features to contribute to the proper
models’ decisions.

As more features are used to generate more information
and increase the distinctiveness of algorithms, investigating the
effects of the features on point cloud classification has been
considered an additional step in recent studies [8], [9]. Because
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each feature can have a different effect on point cloud classi-
fication, it is necessary to determine the minimum number of
attributes accurately representing the data. Therefore, feature
selection is an essential step in point cloud classification. Fea-
ture selection algorithms are used to improve the accuracy of
classifiers, increase computational efficiency in terms of time
and memory consumption, and find compact and robust subsets
of relevant and informative features. [10]. Although feature
selection and XAI approaches are used extensively for 2-D
data, their use in 3-D data is still a very new field of research.
Studies have been carried out on the use of geometric features
for machine learning-based classification of photogrammetric
point clouds. However, the effect of these geometric features on
the predictions of black-box machine learning models has not
been examined by XAI methods.

In this study, research on the use of XAI methods in the
classification of photogrammetric point clouds with machine
learning is presented. The important values of the 3-D geomet-
ric features obtained from the point cloud were calculated by
XAI and filter-based feature selection methods. The effect of
selection of optimum features on the classification performance
of ML models was investigated. In addition, class-based impact
analysis of each feature was performed with SHAP, one of the
XAI approaches. Experiments were carried out using three aerial
photogrammetric point cloud datasets. Ensemble classifiers RF,
XGBoost, and LightGBM were used as ML models. Particularly,
a unique contribution to the literature on the use of XAI methods
for ML-based point cloud classification is presented.

II. RELATED WORKS

Many methods have been developed for point cloud clas-
sification in the literature. Initially, rule-based methods were
used to distinguish between different land cover classes [11],
[12]. However, rule-based approaches have limited ability to
describe complex relationships between classes. Recently, suc-
cessful results have been obtained in point cloud classification
with machine learning algorithms. The main problem in stud-
ies is how to define a point. Geometric features are used for
point identification in many studies [8], [13], [14], [15], [16].
Weinmann et al. [8] published extensive research on different
features, classifiers, and feature selection methods for machine
learning-based point cloud classification. In [14], point cloud
classification was performed by calculating 19 geometric fea-
tures. In addition to the geometric features, there are also studies
using the spectral features of the points. Thus, not only the
geometric structure of the point cloud is used, but also the color
information of the objects. Sevgen and Abdikan [17] presented
a study on the classification of mobile LiDAR point clouds
with LightGBM using hand-crafted features. Moorthy et al. [18]
tested Random Forest (RF), XGBoost, and lightGBM algorithms
with individual tree and field data from tropical and deciduous
forests, using geometric features calculated at multiple spatial
scales. By using multiple spatial scales, it is aimed to eliminate
the need for optimal neighborhood size selection. LiDAR point
clouds are preferred as data source in many studies in point cloud
classification. Public datasets generally contain LiDAR point

clouds. The classification of photogrammetric point clouds is a
current research topic. Becker et al. [16] presented a study on the
controlled classification of photogrammetric point clouds with
machine learning. In the study, color information was added
to the point feature vector along with 15 geometric features.
Sharma and Gark [19] applied RF classification using geometric
features to extract buildings from photogrammetric point cloud.
Zeybek [20] applied UAV point cloud data classification with RF
using spectral and geometric features. In the study published
by Carbonell–Rivera et al. [21], Mediterranean shrub species
were classified from UAV point clouds with different ML clas-
sifiers using geometric, spectral, and neighbor-based features.
Weidner et al. [22] presented smartphone and UAV photogram-
metry point cloud datasets to classify with RF. The geomet-
ric and spectral features of each point were used to classify
datasets containing multiple slope morphologies and lighting
conditions.

Deep learning has become popular in the field of computer
vision because it requires less human processing in process-
ing large and complex data [23], [24]. Recently, deep learn-
ing approaches have been used for point cloud classification.
Deep learning-based point cloud classification is used in many
research areas such as autonomous driving, virtual reality,
cultural heritage, and augmented reality [4]. Deep learning
approaches also calculate distinctive rules and features within
the network. Although most deep learning approaches take 3-D
coordinates as input, few approaches take additional features
as input. In the study conducted by Atik and Duran [10], a
comprehensive research was presented by giving geometric
and spectral features as input to RandLA-Net [25] and Super-
point graph [26] in addition to 3-D geometric features. Kurdi
et al. [27] designed a DL-based classification network using
eleven geometric features to classify LiDAR point clouds. Oz-
turk et al. [28] proposed a fusion strategy that combines the
use of optical images and geometric features obtained from
point clouds to improve the road segmentation performance
of a deep learning model. Although deep learning approaches
come to the fore with successful results, processing Big Data
such as point cloud with deep learning requires high hardware
requirements.

One of the first attempts to use XAI methods for point cloud
classification is the PointHop algorithm [1]. PointHop consists
of two steps: local-to-global feature creation through iterative
one-stop information exchange and classification. Gupta et
al. [29] proposed a model-agnostic approach for point cloud
classification. According to the study, edges and vertices are
important features in 3-D data, while planar surfaces are less
important. Zheng et al. [30] developed a salience map to measure
the importance of each point in a point cloud. In this study, they
show that the contribution of a point is roughly proportional
to the slope of the loss with respect to the point under a scaled
spherical coordinate system and can be scored by approximating
the point drop with a point shift. In another study published
by Matorne et al. [31], a new multimodal fusion framework,
BubblEX, was proposed to learn 3-D point features. BubblEX
consists of two modules, the “Visualization Module,” which
enables the visualization of features learned from the network,
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Fig. 1. Point clouds and their ground truths used in this study. (a) Original data (Ankeny). (b) Original data (Building). (c) Original data (Cadastre). (d) Ground
truth (Ankeny). (e) Ground truth (Building). (f) Ground truth (Cadastre).

TABLE I
POINT CLOUD DATASETS USED FOR EXPERIMENTS

and the “Interpretability Module,” which explains the contri-
bution of neighboring points to feature extraction. Tan [32]
proposed the fractal projection forest (FPF) method, which
takes advantage of fractal properties to improve the perfor-
mance of machine learning-based classifiers. FPF proposed two
perturbation-based explanations: Gini Importance and grouped
feature ablation.

Although current studies have started to apply explainable
AI to point clouds in the last few years, these studies have
generally been limited to object classification studies. To the best
of our knowledge, this is the first study to apply XAI methods
to photogrammetric point cloud classification. There is a gap in
the literature on examining the effect of the geometric structure
and the spectral information of photogrammetric point clouds on
machine learning models. By presenting an XAI-based approach
to the use of geometric and spectral features in machine learning
approaches, a novel contribution is presented to the point cloud
classification literature.

III. MATERIAL AND METHODS

A. Datasets

In this study, point clouds produced by aerial photogram-
metry were used for analysis. The datasets used are pub-
licly available [16] and produced with Pix4Dmapper Pro. The
datasets consist of three parts: Ankeny, Building, and Cadastre.

Ground sampling distances (GSDs) of aerial images vary in
each dataset. The entire dataset contains six classes: ground,
high vegetation, building, road, car, and human-made objects.
The GSD varies significantly between datasets. Ankeny has
2.3 cm/piksel GSD, Building has 1.8 cm/piksel GSD and Cadas-
tre has 5.1 cm/piksel GSD. The area and density are calculated
manually. The details about all datasets are given in Table I.
The point clouds and ground truth labels are presented in
Fig. 1.

B. Geometric Features

Photogrammetric point clouds generally contain only spatial
3-D coordinates and spectral color information. In order to in-
crease the discrimination power of machine learning algorithms,
local geometric features of the point cloud can be calculated
using 3-D coordinates. Geometric features are produced from
the covariance matrix calculated from the local neighborhood
area of the central point [13]. Other points within a certain radius
around a point in the point cloud are called adjacent points.
The area containing neighboring points is also defined as the
support area. The geometric features of a point are calculated
depending on the relationship of the point with its neighboring
points around it. The coordinates of a point in the point cloud can
be defined as P = (x, y, z). The covariance matrix is calculated
from neighboring points of P point within a certain support
radius. Covariance is a metric that measures the amount of
deviation from the mean [33]. The covariance matrix of a sphere
centered at point P = (x, y, z) is

C =

⎡
⎢⎣Cov(xi, x̄) Cov(xi, ȳ) Cov(xi, z̄)

Cov(yi, x̄) Cov(yi, ȳ) Cov(yi, z̄)

Cov(zi, x̄) Cov(zi, ȳ) Cov(zi, z̄)

⎤
⎥⎦ (1)
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where Cov(x, y) is the covariance of x, y computed by using the
following:

Cov(x, y) =
1

n− 1

k∑
i=1

(xi − x̄)(yi − ȳ) (2)

where n refers to afterward, the eigenvalues of the covariance
matrix C are calculated. The eigenvalues are ordered from
largest to smallest as λ1 > λ2 > λ3. After the eigenvalues are
obtained, the geometric features are calculated. In this study,
nine geometric features, whose equations are given below, were
calculated. In addition to these nine features, height of point (Z),
roughness, mean curvature, gaussian curvature, normal change
rate, number of neighbors, and volume density are added to
the feature vector. The eigenvalue-based geometric features are
calculated as follows [8]:

Sum of Eigenvalues = λ1 + λ2 + λ3 (3)

Linearity = (λ1 − λ2)/λ1 (4)

Planarity = (λ2 − λ3)/λ1 (5)

Sphericity = λ3/λ1 (6)

Omnivariance = 3
√

λ1λ2λ3 (7)

Anisotropy = (λ1 − λ3)/λ1 (8)

Eigenentropy =

3∑
i=1

λi ln λi (9)

Surface variation = λ3/(λ1 + λ2 + λ3) (10)

V erticality = 1− λ3/(λ1 + λ2 + λ3). (11)

C. Color Features

In order to increase the discriminative power of the feature
set, color features of each point were added to the feature set in
addition to geometric features. There are studies showing that
color information improves the photogrammetric point cloud
classification performance of the algorithms [34]. Color features
are obtained in the RGB color space from the photogrammetric
point cloud for each point. Using aerial images, the correspond-
ing RGB information for each point is calculated along with
the 3-D coordinates. The datasets used in the study also include
color features.

D. SHAP Analysis

Since the gain value showing the total loss reduction in en-
semble tree models is inconsistent in describing the importance
of a feature, Lundberg and Lee [35] proposed Shapley values to
calculate feature importance in order to eliminate this inconsis-
tency. Shapley additive explanations (SHAP) is an XAI approach
that explains the relevance and interrelations of input features
based on game theory. Shap analysis determines the contribution
degrees of selected features to classification according to the
final outputs of machine learning models. By assessing the
overall relevance of each feature and its local influence, SHAP
analysis determines how interpretable the black box ML models.

The Shapley value is calculated generally as follows:

ϕi =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[gx(S ∪ {i})− gx(S)]

(12)

gx(S) = E [g(x) | xK ] (13)

where N is the set of the all features. φi represents the contribu-
tion of feature i. S is defined as any feature subset not including
the feature i. g(x) refers to the expected value for each feature in
the subset S. The expected value of each observation is obtained
by summing the Shapley values of all the features [36].

There are many different types of SHAP (e.g., DeepSHAP,
Kernel SHAP, LinearSHAP, and TreeSHAP) which is imple-
mented by Lundberg and Lee. TreeSHAP, which is used to
describe the predictions of machine learning algorithms in this
study, uses a linear explanatory model and Shapley values to
predict the initial prediction model [36]. The linear explanatory
model is calculated as follows:

h (z′) = ∅0 +
K∑
I=1

∅iz′i. (14)

In (14), h(z′) is explanation of the model. K is the number of
features. ∅ refers to the feature attribution.

E. Filter-Based Feature Selection

The features calculated to increase the distinctiveness of the
algorithms do not have the same effect on the classification.
Some features are more suitable for classification, while others
are less suitable. Thus, in order to improve the classification
performance of the algorithm, increase efficiency in terms of
time and memory consumption, and preserve effective fea-
tures, feature selection methods have been developed to detect
important features. Finding the minimum number of features
that will adequately describe the data is referred to as feature
selection [37]. Feature selection methods can be grouped as
filter-based, wrapper-based, and embedded methods. Wrapper-
based methods and embedded-based methods may have better
performance than filter-based methods because they work based
on a classifier. However, they only identify features that are
optimized for a specific classifier. Filter-based methods are
model-agnostic, simple, and efficient. Popular filter-based fea-
ture selection methods such as information gain (IG) and ReliefF
were used in this study.

1) Information Gain: IG [38] is an entropy-based feature
selection algorithm that measures the amount of information
provided by features. The importance of the features in terms of
classification and which features are appropriate to use are de-
cided by applying inflammation gain. The feature’s importance
is calculated as follows:

G(D, t) = −
m∑
i=1

P (Ci)logP (Ci)

+ P (t)
m∑
i

P (Ci|t)logP (Ci|t)
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+ P (t̄)

m∑
i

P (Ci|t̄)logP (Ci|t̄) (15)

where C refers to a set of feature, Ci|t is a feature set without
feature t. The G(D, t) represents the importance of the feature.
The t features with the highest G(D, t) should be selected. m is
the number of class [38].

2) ReliefF: ReliefF [39] is a filter-based feature selection
algorithm that provides high efficiency in solving multiclassi-
fication problems that weight relevant features and eliminates
irrelevant features. ReliefF aims to determine the importance of
features based on the distinction between randomly selected and
close samples from the training set. Randomly selected points
have k neighbor points with the same label and k neighbor
points with different labels. If a feature has different values for
points with the same label, the importance of that feature is
reduced. If it has different values for points with different labels,
the importance of the feature is increased. Rf score is computed
as follows:

Rf (xi) =
1

N

N∑
t=1

{
−1

k

∑
xi∈NH(y)

diff(xt,i, xj,i)

+
∑ 1

k

P (y)

1− P (yi)

∑
xj∈NM(xi,y)

diff(xt,i, xj,i)

}

(16)

where Rf (xi) refers to the score of xi. yi is the class label of
the sample xt. P (y) defines probability of a sample being from
class y.xt,i defines the values ofxt on featurexi and diff(·) is the
function used to calculate the difference between xt,i and xj,i.
NH(xi, y) is neighbors with the same class label. NM(xi, y)
is neighbors with different class label [37]. N is the number of
samples in the input data.

F. Machine Learning Classifiers

Traditional machine learning techniques provide promising
results for many classification problems [40]. Ensemble learning
is a machine learning approach developed with the idea of
creating more powerful models by integrating multiple models
to solve a problem. Especially by using more than one classifier
instead of a single classifier, its variance is reduced and more
reliable results are obtained [41]. Gradient bossing machines
combine weak classifiers to iteratively create a strong classifier,
improving scores compared to the previous iteration. This update
process makes gradient boosting machines superior to single-
step decision tree building methods such as RF. XGBoost and
LightGBM, based on gradient boosting decision tree (GBDT),
have become popular algorithms in machine learning in recent
years because they provide less training time and higher ac-
curacy [42]. In this study, a bagging method named RF and
two boosting methods such as LightGBM and XGBoost were
selected as classifiers. RF, XGboost, and LightGBM have also
been applied for point cloud classification in recent years [17],
[18], [43].

1) Random Forest: There are two basic ensemble learning
methods, boosting and bagging. In boosting, models are trained
sequentially with a data sample. Each model tries to compensate
for the weaknesses of the previous model. In bagging, another
ensemble approach, the stability and accuracy of the models are
at the forefront. To train a model in bagging, multiple subdatasets
are generated from a training set and a subdataset is assigned
to each tree in the tree structure. Bagging improves accuracy
using random features and can be used to give estimates of the
generalized error of the aggregated tree ensemble [44].

RF [45] is the first successful bagging algorithm. RF, as an
enhanced version of bagging, is a machine learning method that
aggregates a large number of trees and decides based on the
predictions of trees. RFs with different tree structures tend to
overfitting and outliers. For this reason, prediction voting for
classification is an approach to prevent overfitting. For regres-
sion problems, the tree estimates are averaged [44].

RF has two basic parameters: number of features used in
each node and the number of trees to develop to determine the
best split. Although a lower number of features provides faster
computation, it can affect classification accuracy by reducing
both the correlation between any two trees and the power of
each tree in the forest. The number of trees can be as large as
possible based on the hardware. To achieve the global optimum,
2/3 of the samples are used to train the bagged trees, and 1/3,
which is out of bag (OOB) data, is used for the calculation of the
test error of the RF model. The error obtained from this process
is called the generalized error

PE∗ = PX,Y (mg(X,Y ) < 0). (17)

Margin function (mg()) measures how much the average number
of votes for correct predictions in (X,Y ) exceeds the average
score for other classes. The margin is higher the more accurately
classification can be made [45].

2) Light Gradient-Boosting Machine (LightGBM): The suc-
cess, precision, and comprehension of the GBDT make it a
popular machine learning approach. GBDT, is a decision tree
ensemble model achieves cutting-edge performance in a wide
range of machine learning tasks [46]. LightGBM [46] is a
tree-based method generated by Microsoft under the notion
of GDBT for quick and efficient prediction issue solution in
huge high-dimensional data. LightGBM is an upgraded version
of XGBoost. In LightGBM, gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB) are proposed.
GOSS is a cutting-edge sampling approach for GBDT that can
maintain the accuracy of trained decision trees while lowering
the amount of data instances. EFB is an innovative technique for
efficiently reducing the amount of features.

Instead of controlling all previous leaves in the decision tree,
LightGBM adopts a histogram-based and leaf-based growth
strategy with a maximum depth limit. In the histogram-based
DT algorithm, a histogram of size s is created with consecutive
floating-point eigenvalues to calculate the required statistics.
Discrete values in the histogram define segmentation points.
The leaf-based growth strategy considers only the leaf with
the most IG in the same layer to increase accuracy and prevent
overfitting [47].
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3) Extreme Gradient Boosting (XGBoost): Extreme Gradi-
ent Boosting, often known as XGBoost [48], is a reliable and
well-known machine learning technique that is typically used to
solve regression and classification problems. It is an enhanced
form of the gradient boosting machine learning approach, which
combines the predictions of multiple weak models (typically
decision trees) to create an efficient predictive model [49]. In (2),
traditional loss function and model complexity define the two
components of XGBoost’s objective function. XGBoost seeks
to minimize the regularized objective function in order to learn
the function applied to the model. The difference between the
prediction yi and the target ŷi calculated using the differentiable
convex loss function in (18)’s first term. In (19), the second term
is utilized to assess model complexity

L(∅) =
∑
i

l (ŷi, yi) +
∑
k

Ω(fk) (18)

Ω(f) = γT +
1

2
λ‖ω‖2. (19)

Tree complexity is adjusted with γ and λ. The extra regu-
larization term smooths the final learning weight and prevents
over-fitting. The output of a tree ensemble model is estimated
using functions of K additive for the provided dataset D=(xi, yi)
with n samples and m features. The formula for prediction is as
follows:

ŷi = ∅ (xi) =

K∑
k=1

fk (xi) , fk ∈ ϕ (20)

ϕ =
{
f(x) = ωq(x)

} (
q : Rm → T, ω ∈ RT . (21)

While xi is one of the samples, fk(xi) is the expected score
for the given sample, and yi is the expected outcome of the
model. ϕ in (5) denotes the collection of regression trees with
the independent q tree topology. T is the number of leaves on
the tree, and w is their weight.

G. Hyperparameter Tuning

The most suitable hyperparameters for the applied dataset
must be determined in order to get the best prediction perfor-
mance from ML models. The learning process of an ML model
can be controlled with hyperparameters. Hyperparameter tuning
is defined as the determination of the optimum hyperparameter
group that minimizes the loss function. In this study, GridSearch
was used for hyperparameter tuning. In this method, a group of
possible values for a hyperparameter is created and the aim is
to determine the most appropriate values. Each model created is
tested on the dataset and the model with the highest classification
performance is determined.

The n_estimators, max_features, min_sample_split, and
random_state hyperparameters were tuned for RF. In the
Building and Cadastre datasets, n_estimators, max_features,
min_sample_split and random_state were selected as 300, 10,
10, and 300, respectively. In the Ankeny dataset, n_estimators,
max_features, min_sample_split and random_state were se-
lected as 300, 10, 10, and 200, respectively. For XGBoost,
n_estimators, max_depth and learning rate hyperparameters

were selected as 300, 10, and 0.1, respectively, for all datasets.
The hyperparameters n_estimators, num_leaves, max_depth,
and min_data_in_leaf have been fine-tuned for LightGBM.
In all datasets, n_estimators=300, min_data_in_leaf=20 and
num_leaves=100 were selected. max_depth is set to 30 for
Building and Cadastre and 50 for Ankeny.

H. Experimental Details

In this study, the effect of determining the optimum features
on machine learning-based point cloud classification was in-
vestigated. In the study, photogrammetric point clouds were
classified using three ensemble machine-learning algorithms:
RF, XGBoost, and LightGBM. Scikit-learn [50] is a Python
library to implement machine learning algorithms. Photogram-
metric point clouds contain color information as well as 3-D
coordinates. In order to increase the classification performance
of machine learning algorithms, the geometric features of each
point in the point cloud are also calculated and included in the
feature space of the relevant point. Geometric features describe
the local geometry that a point creates together with neighboring
points. Experiments were carried out with different support
radius values to determine the most suitable geometric features.
The specified radius values are 0.5, 1, 1.5, and 2 m. In the second
step, in order to determine the effect of using together geometric
features and spectral features, the effect of defining a point with
only geometric features and only spectral features on classifica-
tion was also investigated. As a result, the feature space of a point
contains a total of 19 features along with geometric and spectral
features. The class-based impact of these nineteen features was
analyzed using SHAP, one of the XAI approaches. In addition
to SHAP analysis, feature importance values were calculated
with filter-based IG and ReliefF approaches. By determining
the cut-of-point for each method, fewer features were selected
and the performances of ML classifiers were examined. Thus,
the effect of feature selection on point cloud classification was
investigated. The workflow of the study is presented in Fig. 2.

As the training dataset changed, fine-tuned hyperparameters
for the ML classifier were determined in each training. Fea-
ture selection algorithms were implemented using the WEKA
workbench [51]. For the experiments, i7-11800H, 2.30 GHz
processor, GTX 3070 graphics card, and 32 GB RAM hardware
is used.

Overall accuracy (OA), F1-score, precision, and recall metrics
were used to evaluate the study results. OA represents the ratio
of correctly predicted samples to all samples. TP is the number
of samples that their the estimated label and ground truth are
positive. FP is the number of samples that their the estimated
label is positive, but the ground truth is negative. FN is the
number of samples that their the estimated label is negative, but
the ground truth is positive. The evaluation metrics are calculated
as follows:

Overall accuracy =

k∑
i=1

Nii

N
(22)

Precision =
T P

T P + F P
(23)
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Fig. 2. Workflow of the study.

Recall =
T P

T P + F N
(24)

F1 score = 2× Precision × Recall
Precision + Recall

. (25)

IV. RESULTS

A. Model Interpretation With SHAP Analysis

The SHAP summary graph lists the most relevant features
in descending order, explaining the contribution of features
to the prediction of the classification model. Since each color
represents a class, the effect of each feature on the prediction of
the relevant class can be interpreted in the classification process.
SHAP analysis was performed for each algorithm depending
on the dataset. There is a similar ranking for all three models
in the Ankeny dataset. Height is seen as the most important
feature. For the RF model, Height is the most effective feature in
the Building dataset [see Fig. 3(b)], while blue is the most effec-
tive feature in the Cadastre dataset [see Fig. 3(c)]. In the Ankeny
dataset, height contributed the most to the car class prediction
of the RF model [see Fig. 3(a)]. In the Building dataset, it is
effective in the high vegetation class. In the XGBoost model, a
similar ranking to RF is seen for all three datasets. Height is the

TABLE II
OA OF THE ALGORITHMS ON THE DATASETS BASED ON THE SUPPORT RADIUS

most important feature for Ankeny [see Fig. 4(a)] and Building
[see Fig. 4(b)] datasets, and blue for Cadastre [see Fig. 4(c)]. On
the other hand, sphericity, surface variation, and volume density
do not contribute to XGBoost model estimation in any dataset.
In LightGBM, height has the highest importance in the Ankeny
dataset (Fig. 5(a)), while blue is the most important feature in
Building [see Fig. 5(b)] and Cadastre [see Fig. 5(c)] datasets.
Surface variation and volume density did not contribute to the
predictions of LightGBM model. In addition, it is seen that the
height feature makes a significant contribution to LightGBM’s
building estimations. In all datasets, the effects of features on
the human-made object class are low. Color information is often
among the influential features in all datasets. Considering the
results of the study showing the effect of color information on
point cloud classification, it is understood that significant results
were obtained with the SHAP analysis.

B. Optimum Support Area Selection

In order to avoid strong assumptions about 3-D neighbor-
hoods, many studies have focused on determining the optimum
neighborhood size for each point and, thus increasing the dis-
tinctiveness of geometric features [8]. In this study, the support
area was changed from 0.5 to 2 m in order to determine the
support area to calculate the most suitable geometric features.
For all algorithms, the highest OA value in all three datasets
was reached when a 2 m support radius was selected. Generally,
similar results are obtained with 1.5 and 2 m support areas.
With LightGBM, the highest OA values are achieved in all
three datasets. When all geometric features are used, LightGBM
achieves 85.21% OA in the Ankeny dataset, 91.70% OA in
Building dataset and 82.88% OA in the Cadastre dataset. Point
cloud density is an important parameter when determining the
support area size. When the support radius of 0.5 m is selected
in the Cadastre dataset, the geometric features of many points
cannot be calculated because there are not enough neighbor
points. For this reason, results for 0.5 m could not be presented
in the Cadastre dataset. Classification results are presented in
Table II. The experiments were carried out using the appropriate
support radius determined in this section.

C. Effect of Color and Geometric Features

Each point in the point cloud is defined using two types of
features: color information and geometric features. The effects
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Fig. 3. SHAP values calculated with RF. The selected features are highlighted in red. (a) Ankeny. (b) Building. (c) Cadastre.

Fig. 4. SHAP values calculated with XGBoost. The selected features are highlighted in red. (a) Ankeny. (b) Building. (c) Cadastre.

Fig. 5. SHAP values calculated with LightGBM. The selected features are highlighted in red. (a) Ankeny. (b) Building. (c) Cadastre.

of these feature groups separately were also examined within
the scope of the study. According to Table III, classification
accuracy is significantly reduced when only RGB information
is used. In the Ankeny dataset, the RF algorithm has an OA of less
than 60%. If only spectral features are used, similarly colored
classes are mixed with each other. When only geometric features

are used, classification is performed with higher accuracy than
classification with RGB features. Only in the Cadastre dataset,
the RF and XGBoost algorithms show lower classification per-
formance when only geometric features are used. In the Building
and Ankeny dataset, more than 10% improvement is achieved
in all algorithms compared to the case where only RGB is used.
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Fig. 6. Feature importance calculated by IG for the three datasets. The selected features are marked as red color. (a) Ankeny. (b) Building. (c) Cadastre.

TABLE III
OA OF THE ALGORITHMS ON THE DATASETS ACCORDING TO COLOR AND

GEOMETRIC FEATURES

Finally, in classifications applied with feature spaces where RGB
and geometric features are used together, all algorithms reach
the highest classification accuracy in all three datasets. In the
Building dataset, 88.84%, 91.27% and 91.70% OA were ob-
tained with RF, XGBoost, and LightGBM models, respectively.

D. Feature Selection for Classification

To determine the contributions of spectral and geometric
features classification accuracy, three feature selection strategies
were applied to create optimal subsets. The feature importance
values are ordered from the largest to the smallest. While
determining the relevant features, the feature area was scanned
by adding a certain number of features and the feature set with the
highest accuracy was experimentally determined. The optimal
number of features is different for each algorithm and dataset.
As a result of SHAP, 11, 13, and 9 features were selected for the
RF model, 9, 11, and 8 features were selected for the XGBoost,
and 9, 13, and 8 features were selected for the LightGBM for
Ankeny, Building, and Cadastre datasets, respectively. Since
the filter-based methods are independent of the classifier, only
one importance assessment was made for each dataset. In the
three datasets, both IG and ReliefF identify the height attribute
as having a high impact on classification. Only in the Cadastre
dataset, when feature selection with IG is applied, height has
low importance. It is seen that spectral information (RGB) is
generally among the selected features. The feature importance
and selected features are presented in Figs. 6 and 7.

In the Ankeny dataset, all three algorithms achieve the highest
classification performance when the features determined by
SHAP are used. With LightGBM, 85.50% OA and 75.43%
F1-score were obtained. Algorithms have similar performance
when the features determined by ReliefF and SHAP are used in
the Building dataset. In the Cadastre dataset, when the methods
selected with IG are used, the algorithms reach higher OA.
83.88% OA was achieved with RF, 85.22% OA with XGBoost,
and 85.70% OA with LightGBM. The details of the classifi-
cations based on the selected features with IG, ReliefF, and
SHAP are presented in Table IV. The classified point clouds
are illustrated in Figs. 8–10.

V. DISCUSSION

In this section, the results of the research are evaluated in
terms of the feature selection in point cloud classification with
machine learning. The presented work includes a comprehensive
set of experiments that allow to evaluate the classification of
photogrammetric point clouds from different perspectives. The
results of the study allow general inferences to be made regarding
the feature selection with XAI and filter-based algorithms for
machine learning-based point cloud classification.

The support area of the point is the basic parameter in de-
termining the geometric features. According to the results of
this study, as the support area increases, the distinctiveness of
the geometric features increases. The classification performance
of algorithms with a radius of 0.5 m support is significantly
reduced. Because the number of neighbors of the points is
insufficient to define the local geometry (see Table II).

It is understood that the point cloud GSD and classifica-
tion accuracy are inversely proportional. While ML classifiers
achieved the highest OA in the Building dataset with 1.8 cm
GSD, the lowest OA was obtained in the Cadastre dataset
with 5.1 cm GSD. In aerial images with high GSD, details
decrease and objects become difficult to distinguish from each
other.

For feature selection, we focused on both geometric and spec-
tral features. As in other studies [16], using geometric and spec-
tral features together significantly improves the performance of
ML classifiers. The distinguishability of classes with similar
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Fig. 7. Feature importance calculated by ReliefF for the three datasets. The selected features are marked as red color. (a) Ankeny. (b) Building. (c) Cadastre.

TABLE IV
CLASSIFICATION RESULTS OF THE ALGORITHMS ACCORDING TO SELECTED FEATURE IG, RELIEFF AND SHAP ANALYSIS

Fig. 8. Classified point clouds for Ankeny dataset. (a) Ground Truth. (b) RF (SHAP). (c) XGBoost (SHAP). (d) LightGBM (SHAP). (e) RF (IG). (f) XGBoost
(IG). (g) LightGBM (IG). (h) RF (ReliefF). (i) XGBoost (ReliefF). (j) LightGBM (ReliefF).

geometric features is increased by spectral features. Ground and
road classes can be easily distinguished from each other using
spectral features. When only spectral features are used, classes
such as building and road with similar reflectance values may
not be distinguished. Feature selection increases the accuracy
of ML classifiers in all three datasets. Thus, it has been shown
that it is possible to achieve higher accuracy classification by

using fewer features. Features with low importance negatively
affect the classification performance of ML algorithms. SHAP
and ReliefF produce very similar results. According to F1-score
values, it showed slightly higher performance in most of the
classification scenarios performed with the features selected by
SHAP analysis. Higher accuracy classification is achieved with
the features selected with IG in the Cadastre dataset.
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Fig. 9. Classified point clouds for Building dataset. (a) Ground Truth. (b) RF (SHAP). (c) XGBoost (SHAP). (d) LightGBM (SHAP). (e) RF (IG). (f) XGBoost
(IG). (g) LightGBM (IG). (h) RF (ReliefF). (i) XGBoost (ReliefF). (j) LightGBM (ReliefF).

Fig. 10. Classified point clouds for Cadastre dataset. (a) Ground truth. (b) RF (SHAP). (c) XGBoost (SHAP). (d) LightGBM (SHAP). (e) RF (IG). (f) XGBoost
(IG). (g) LightGBM (IG). (h) RF (ReliefF). (i) XGBoost (ReliefF). (j) LightGBM (ReliefF).

When the selected features are examined, the geometric fea-
tures that most affect point cloud classification are height and
features describing surface changes. Linearity, sum of eigen-
values, and volume density appear to be less effective features.
Cadastre dataset is a dataset that covers a larger area and has more
topographic change. The height differences between classes are
not as clear as in the other two datasets. For this reason, it is
less important than other features in both SHAP analysis and
filter-based feature selection algorithms. In addition, it appears
that spectral information is generally a feature with high impact.
The results in Table IV confirm this consequences. Photogram-
metric point clouds with spectral information obtained from
high-resolution aerial images have significant advantages for
point cloud classification.

Although SHAP analysis and filter-based feature selec-
tion algorithms have similar results, filter-based feature selec-
tion algorithms do not provide information about the impact

of features on class predictions. On the other hand, SHAP
analysis helps to explain the working principles of black-box
ML models. Particularly, the effects of handcrafted features on
the decision-making process of ML algorithms can be examined
through SHAP analysis. While ReliefF and IG algorithms gen-
erally present the feature effect, SHAP analysis also reveals the
class-based effects of geometric and spectral features. In terms
of classification results, the features selected by SHAP analysis
offer competitive results with filter-based feature selection algo-
rithms, and in addition, it can quantitatively calculate the effects
of each feature in the feature set on the classification process.
This shows the advantage of SHAP analysis as an XAI approach
over classical filter feature selection algorithms for point cloud
classification with ML. For this reason, it was concluded that
it would be more appropriate to use SHAP to perform more
detailed analysis and achieve high accuracy in photogrammetric
point cloud classification.
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VI. CONCLUSION

The need for efficient and effective processing of high-
dimensional 3-D data encourages the development of consistent
models for the correct interpretation and classification of such
complex data with high accuracy. Although traditional feature
selection algorithms are used for point cloud classification, they
are far from providing a detailed and class-based analysis. In
this context, XAI approaches that have come to the fore recently
have great potential for interpreting and effectively classifying
the geometric structure of point clouds. Although geometric
features are widely used for point cloud classification in existing
studies, the effects of these features on the decisions of classifier
algorithms is an important gap in the literature. In this study,
the effects of SHAP analysis and filter-based feature selection
algorithms on the photogrammetric point cloud classification
performances of ensemble ML models were investigated. Spec-
tral features as well as geometric features produced from the 3-D
coordinates of the point cloud were used to define a point. With
point clouds being one of the main data sources for describing
the environment, the features used for information extraction
and the explainability of artificial intelligence-based models are
becoming an important research area. This study is one of the
pioneer works which examine the effects of geometric features
on point cloud classification using XAI approaches.

XAI approaches have inspiring results for the explainability
of black-box ML models in point cloud classification. In future
studies, thanks to explainable deep learning networks and effec-
tive feature selection, the computational load required by deep
learning networks can be reduced and high-accuracy point cloud
classification can be achieved.
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