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PCCN-MSS: Parallel Convolutional Classification
Network Combined Multi-Spatial Scale and Spectral

Features for UAV-Borne Hyperspectral With High
Spatial Resolution Imagery

Linhuan Jiang , Zhen Zhang , Bo-Hui Tang , Senior Member, IEEE, Lehao Huang , and Bingru Zhang

Abstract—Hyperspectral remote sensing images with high spa-
tial resolution (H2 imagery) have an abundant spatial-spectral
information, holding tremendous potential for remote sensing fine-
grained monitoring and classification. However, challenges such as
high spatial heterogeneity, severe intra-class spectral variability,
and poor signal-to-noise ratio especially in unmanned aerial vehicle
(UAV) hyperspectral imagery constrain and hinder the perfor-
mance of fine-grained classification. Convolutional neural network
(CNN) emerges as a formidable and excellent tool for image mining
and feature extraction, offering effective utility for land cover
classification. In this article, a parallel convolutional classification
network model based on multimodal filters [including independent
component analysis (ICA)-two-dimensional (2-D)-FPN and spec-
tral attention (SA)-3-D-CNN branching structures] PCCN-MSS is
proposed for precise H2 imagery classification. The ICA-2-D-FPN
branch integrates ICA into 2-D-CNN to extract the multispatial
scale and spectral information of H2 imagery by feature pyra-
mid networks, meanwhile, the SA-3-D-CNN branch is designed
to extract the spatial and spectral information by combining SA
mechanism and 3-D-CNN. Taking hyperspectral imagery of UAVs
containing vegetation and artifactual material ground as an exam-
ple, the proposed PCCN-MSS model achieves an overall accuracy
of 78.18%, which outperforms by 9.58% to the compared methods.
The proposed PCCN-MSS method can mitigate the classification
issues of severe salt-and-pepper noise and inaccurate boundary,
delivering more satisfactory classification results with robust clas-
sification performance and remarkable advantages for H2 imagery.
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I. INTRODUCTION

HYPERSPECTRAL remote sensing images (HSIs) encom-
pass an extensive range of continuous spectral informa-

tion, which can distinguish subtle differences across diverse
ground surfaces. Compared with the space-borne and aircraft-
borne platforms HSI, the H2 imagery acquired by the unmanned
aerial vehicle (UAV)-borne hyperspectral sensor possesses su-
perior spatial resolution (centimeter level) [1]. In addition, UAV
hyperspectral observation platforms are cost-effectiveness, in-
creased flexibility, and timely operational efficiency compared
with satellite-based and airborne hyperspectral observation plat-
forms. Consequently, UAV H2 imagery are applied extensively
in military surveying, agricultural production, environmental
monitoring, and urban planning [2], [3], [4], [5].

Compared with traditional HSI, H2 imagery provides a contin-
uous spectral reflectance curve containing a continuous spectral
reflectance curve with an abundance of detailed information
about ground objects. This richness of data significantly en-
hances the accuracy and reliability of image classification. Nev-
ertheless, the notable characteristic of H2 imagery is a profound
spectral heterogeneity of ground objects with the improvement
of spatial resolution. Consequently, this leads to a substantial
different spectrum in the same objects, which grievously exac-
erbates the intra-class variance of the features. This intra-class
variance poses a significant challenge for fine-grained classi-
fication tasks, as it complicates the accurate discrimination of
objects within the same class. For UAV H2 imagery classifica-
tion, traditional image classification methods based on machine
learning, such as support vector machine [6], [7], random forest
[8], decision tree [9], [10], and maximum likelihood [11], are
revealing under-fitting to high-dimensional complex sample,
susceptibility to over-fitting, and large amounts of mixed noise.
Thereby, the limitations of these algorithms restrict the potential
applications and fields of HSI classification.

Deep learning (DL) possesses remarkable capabilities
in learning from training samples, coupled with excellent
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data-driven adaptability and portability. Which can extract com-
plex samples by excavating data laws and stacking multilayer
neural structures, which have performed satisfactorily in HSI
classification. Semantic segmentation and convolutional neu-
ral networks (CNNs) are among the most widely used and
influential DL algorithms in image classification [12], [13],
[14], [15], [16], [17], [18]. Their proficiency in precisely seg-
menting and classifying images based on learned features has
rendered them indispensable in a wide range of computer vi-
sion tasks. CNN excels in minimizing parameters and model
complexity by effectively combining locally perceived regions
with weight sharing. This optimization refines the network
structure, ensuring the invariance to shifts and deviations, ul-
timately enhancing the model’s generalization capability and
stability, while avoiding overfitting. Pixel-level and patch-level
CNN classification methods in HSI are excellently proficient at
distinguishing inter-class differences and precisely delineating
the boundaries of the ground objects, which is particularly
suitable for artificial architecture. The prevalent CNN models
can be primarily categorized into one-dimensional (1-D)-CNN,
2-D-CNN, and 3-D-CNN [19]. While 1-D-CNN effectively
processes one-dimension vector data, it tends to ignore the rich
spatial information during effectively extracting the spectral
information of images. Correspondingly, spatial neighborhood
information is sufficiently utilized in 2-D-CNN. Researchers like
Liu et al. [20], Li et al. [21], and Yu et al. [22] have successfully
applied 2-D-CNN to enhance HSI classification, proposing in-
novative approaches for spectral-spatial classification and noise
mitigation. Certainly, combining 1-D-CNN and 2-D-CNN can
also improve the classification performance for HSI data to a
certain extent. Naji et al. [23] have constructed an imbalance
data HSI generation and classification model based on DL. That
utilizes 1-D-CNN for the extraction of spectral features and
2-D-CNN to extract spatial features, effectively integrating both
types of information for improved classification performance.
The 3-D-CNN architecture extends the 2-D-CNN by adding a
third dimension to the convolutional kernel, enabling the simul-
taneous convolution of spatial neighborhood information along
with the spectral dimension. Researchers have proposed various
3-D-CNN models tailored for HSI classification, incorporating
features like wavelet coefficients prediction [24], deep feature
extraction [25], spatial-spectral pyramid networks [26], and mul-
tiscale three-branch feature fusion [27]. These models leverage
the unique capabilities of 3-D-CNN to extract discriminative
features from complex hyperspectral data, resulting in state-
of-the-art classification performance. To address the challenges
posed by limited samples and the enormous computation for
CNN-based hyperspectral image classification, Bhatti et al. [28]
have introduced a multifeature fusion approach using 3-D-CNN
and graph attention network, which combines the strengths of
both techniques to achieve improved accuracy and efficiency.
Summarily, 2-D-CNN and 3-D-CNN models with the analyzing
data ability are popularly applied and get consistent unanimous
praise. However, to mitigate the impact of the severe spectral
variability and spatial heterogeneity of H2 imagery, several
classification algorithms tailored for H2 imagery have emerged
by “spectral patching” approach [29] and encoder-decoder

architecture [30], [31], which preserve the global spatial in-
formation and nearly all spectral information of the original
hyperspectral image. In addition, innovative methods such as
incorporating adaptive weighting of each channel, pixel, and
scale-awareness of feature maps [32], jointly utilizing spatial
geometric and spectral information for multispectral point cloud
superpoint segmentation [33], assembling 3-D-CNN and 2-D-
CNN layers [34], and developing 3-D-Deep feature extraction
CNN model which uses both spectral and spatial information
[35] have been proposed for fine-grained classification of H2

imagery. Scholars have employed a range of modules to enhance
the capabilities of their models. For instance, the CNN-enhanced
incorporates CNN and graph convolutional network branches to
conduct feature learning [36], the kernel tensor sparse coding
model can enhance linear separation by utilizing the kernel
tensor representation mechanism [37], and the SSAN combines
2-D-CNN spatial extraction and RNN exploitation of spectral
information [38].

However, the increased intra-class variance and pronounced
spatial heterogeneity in UAV H2 imagery complicate the statisti-
cal distribution of spectral features. This complexity pyramidally
diminishes the distinguishability of spectral information, posing
a challenge for accurate analysis and interpretation. Existing
algorithms may struggle to accurately differentiate between var-
ious categories of human-made structures or precisely identify
individual buildings, which are complex structures with the
potential for overlap or proximity. This limitation significantly
impairs the analysis and understanding of urban landscapes,
infrastructure, and other crucial components of H2 images that
encompass human-made constructions. To bridge this gap, this
study introduces PCCN-MSS, a cutting-edge parallel convolu-
tional classification network combined multispatial scale and
spectral feature. The proposed PCCN-MSS model incorporates
two distinct branches to comprehensively extract spatial and
spectral information from H2 imagery. The first branch com-
bines a 2-D-CNN with feature pyramid networks (FPNs) and
independent component analysis (ICA) to effectively capture
the multispatial scale and spectral information (ICA-2-D-FPN).
In spectral attention (SA)-3-D-CNN branch, augments a 3-
D-CNN branch with SA with an enhanced focus on spectral
nuances to extract the spatial and spectral information. The
proposed model, PCCN-MSS, aims to maximize the utilization
of spatial-spectral information by leveraging the strengths of
its constituent models. The parallel convolutional classification
network model makes significant contributions in three crucial
areas.

1) SA Mechanism in 3-D-CNN: The integration of an SA
mechanism into 3-D-CNN enhances the extraction of
spectral information while considering spatial neighbor-
hood features. This enhancement not only improves the
robustness of the network but also deepens the understand-
ing of the spectral features in H2 imagery with greater
precision.

2) FPN in ICA-2-D-CNN Branch: The utilization of FPN
within the ICA-2-D-CNN branch, which leveraging the
high resolution of lower level features and the rich seman-
tic information of higher level features simultaneously.
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This simultaneous leveraging of multiscale feature maps
is crucial for detecting and recognizing small targets.

3) Parallel Network Structure for Spatial-Spectral Informa-
tion Extraction: Parallel convolutional classification net-
work structure, which combines 2-D-FPN with ICA and
3-D-CNN with SA mechanism, simultaneously extracts
spatial and spectral information from images.

The rest section of this article is structured as follows. Sec-
tion II describes the methodology employed in this article, de-
tailing the proposed classification method for UAV H2 imagery.
The experimental results based on the parallel neural network
structure for comparison are presented in Section III. Section IV
discusses about experimental results and Section V concludes
this article.

II. METHOD

A. Prerequisite

ICA is a computational method that employs linear trans-
formation to decompose multivariate statistical signals into
their constituent additive subcomponents, which is presumed
to exhibit statistical independence and non-Gaussian, enabling
ICA to effectively disentangle complex data mixtures and re-
veal the underlying independent sources. ICA remains rele-
vant even when perfect statistical independence is unachiev-
able, and it facilitates the independent examination of observed
signal statistics and deeper exploration of data characteristics.
ICA effectively reduces the dimensionality of HSI data and
eliminates extraneous and useless information while preserving
crucial details. Numerous scholars have capitalized on ICA in
hyperspectral image classification, building upon its theoretical
foundations as outlined in [39], [40], [41], and [42].

The FPN architecture, designed for tasks such as target de-
tection and semantic segmentation, tackles the intricacies of
detecting and segmenting objects at different scales [43]. By
constructing multiscale feature pyramids and training them for
an “end-to-end” approach, FPN effectively handles various scale
targets. This process involves two pivotal steps: bottom-up fea-
ture extraction, which captures the finer details and top-down
feature extraction for focusing on the coarser context. The
prediction results are then seamlessly combined via lateral con-
nections to yield the ultimate prediction, ensuring both precision
and contextual awareness.

Attention mechanisms endow different weights for various
positions to emphasize critical information, thereby enhancing
model performance, robustness, and generalization. In the con-
text of adjusting spectral information, this mechanism is referred
to as the SA mechanism. Involving recalibration of the spec-
trum features. Numerous scholars have successfully integrated
attention mechanisms into spectral similarity measurements,
effectively aggregating similar spectra and optimizing cognitive
performance of CNNs [44], [45], [46], [47].

B. Parallel Convolutional Classification Network Combined
Multispatial Scale and Spectral Features

In our study, the application of ICA effectively extracts high-
level statistical information and accomplishes dimensionality

reduction. This improves the efficiency of the data utilization,
significantly reducing the computation burden on the 2-D-CNN.
In addition, FPNs are incorporated into this branch to facilitate
learning of the image features by different spatial scales. One
notable strength of PCCN-MSS lies in its meticulously crafted
SA design. This design recalibrates the original data by amplify-
ing critical bands while suppressing redundant or unnecessary
ones, ensuring optimal utilization of spectral information. 3-
D-CNN incorporates the SA mechanism, which significantly
enhances model performance and classification accuracy by
efficiently attending to critical spectral features. Finally, the
outputs from the two cotraining branches are comprehensively
evaluated through a weighted summation approach, to obtain
the precise and reliable final classification results. The complete
architecture of the proposed model, PCCN-MSS, is depicted in
Fig. 1. The innovative model comprises an ICA-2-D-FPN branch
that utilizes 2-D multiscale spatial feature pyramids with ICA
for dimensionality reduction and SA-3-D-CNN spatial-spectral
information extractor with an SA mechanism. The network
configuration for PCCN-MSS model is meticulously outlined
in Table I. Specifically, the ICA-2-D-FPN branch is delineated
on the left and SA-3-D-CNN branch is presented on the right.

In the ICA-2-D-FPN branch, the top 10-band processed by
ICA are retained to optimize both computational efficiency and
memory utilization. A patch neighborhood P, with dimensions
of m × m × c is selected from the ICA-processed features. Fea-
ture maps at different scales are extracted from the input image
through a bottom-up feature extraction stage, using three 2-D
separable convolutional layers. The higher level feature maps
undergo two upsampling operations to align their dimensions
with the corresponding lower level feature maps. Subsequently,
these maps are seamlessly fused through element-wise summa-
tion, layer by layer. Lateral connections are then employed to
compute the ultimate probability for each category.

Concurrently, the SA-3-D-CNN branch is fed with origi-
nal image data without dimensionality reduction. Recognizing
that the original bands often contain a considerable amount
of redundant information, some of which may be unless, the
branch adopted the SA mechanism. This mechanism serves to re-
calibrate the original spectral data, emphasizing salient features
while suppressing unnecessary or noisy band information. The
recalibrated data is expanded dimension and fed into 3-D-CNN,
which are then learn by flattened and fully connected. Finally,
the Softmax function is employed to classify these features.

Critical to PCCN-MSS is the synthesis and analysis of the
results from the two branches mentioned above. In acquiring
the ultimate prediction results, PCCN-MSS utilizes a weighted
summation approach, the mathematical formulation of which is
presented in the following equation:

P = argmax (a× P1 + b× P2) (1)

where P represents the final output of the model, which is the
prediction result of the parallel network PCCN-MSS at the pixel
level. The weights assigned to P1 and P2 are represented by
“a” and “b” respectively. Here, P1 and P2 correspond to the
prediction result of the ICA-2-D-FPN branch and the SA-3-
D-CNN branch, respectively. The argmax function is exploited
to pinpoint the variable value associated with the maximum
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Fig. 1. Model architecture of parallel CNN PCCN-MSS. The 2-D-FPN branch with ICA and the SA 3-D-CNN branch are followed by a weighted summation
that is used to aggregate the spatial and spectral information.

TABLE I
NETWORK SETUP OF PCCN-MSS DESIGNED BASED ON ICA-2-D-FPN BRANCH AND SA-3-D-CNN BRANCH

function value, thereby identifying the prediction category with
the greatest reliability.

In addition, Loss function is adopted in our proposed model
to quantitatively evaluate the discrepancy or error between the
predicted results of the model and the ground truth (GT). This
approach enables a more nuanced understanding of the perfor-
mance of model, pinpointing specific areas where improvements
are needed. The experiments conduct a comprehensive evalua-
tion of Loss function for both branches by the weighted equation,
which takes into account the contributions, and the Loss function
of PCCN-MSS is presented in the following equation:

Loss = a× Loss1 + b× Loss2 (2)

where Loss denotes the final loss function in our model, Loss1
and Loss2 represent the output of the loss function for ICA-2-
D-FPN and SA-3-D-CNN branch respectively. Both Loss1 and
Loss2 are cross-entropy loss functions. The weighted coefficient
of Loss1 and Loss2 are denoted by “a” and “b” respectively.
Particularly, both “a” and “b” above are self-defined, and in
this article, “a” and “b” is setted by 1/3 and 2/3, respectively.

C. ICA-2-D-FPN Branch

The input to 1-D-CNN is restricted to 1-D vector data. 1-D-
CNN utilizes 1-D convolution, 1-D pooling, and fully connected
for feature extraction, followed by Softmax for classification.
Contrary to 1-D-CNN, 2-D-CNN extracts spatial neighborhood
information using 2-D convolution and 2-D pooling. Reshaping

images are unnecessary and can be directly fed into the 2-D-
CNN network. The following equation presents the computation
process of 2-D-CNN:

vxyl,j = f

(∑
m

Hl−1∑
h=0

Wl−1∑
w=0

k
hw
l,j,mv

(x+h)(y+w)
(l−1),m + bl,j

)
. (3)

Depthwise separable convolution represents a distinctive sub-
category within the realm of 2-D convolutions, encompassing
SeparableConv2D and DepthwiseConv2D. The latter solely ex-
ecutes the initial phase of spatial convolution along the depth
axis, while SeparableConv2D can implement the entire gamut of
depth-separated convolution work. SeparableConv2D combines
spatial convolution in the depth direction with the point-by-point
convolution in the output channel. In this article, the 2-D-CNN
block utilizes SeparableConv2D, which has fewer trainable
weight parameter. This judicious approach not only mitigates
computational burden but also enhances model performance.
For each input channel, spatial convolution can be convolved
using SeparableConv2D and then the output channels are mixed
by point-wise convolution (1 × 1 convolution).

FPN extracts feature through both Bottom-up and Top-down
processes. In the bottom-up block, each layer systematically
produces a feature map “A,” and feature map “B” will be derived
from the preceding feature map through Upsampling2D in the
top-down block. Feature map “A” and feature map “B” are
seamlessly merged through lateral connections for elementwise.
As illustrated in Fig. 2, the ICA-2-D-FPN branch generates
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Fig. 2. Model architecture of ICA-2-D-FPN in PCCN-MSS involves an initial
processing of the original H2 data using ICA to reduce its dimensionality. And
the neighborhoods of pixels resulting from the ICA processing are fed into the
2-D-FPN for extraction of multispatial scale features.

probability results at three distinct spatial scales. These outputs
are subsequently averaged to arrive at the ultimate prediction.
The employment of the FPN architecture is pivotal in extracting
features from images at different spatial scales, thereby substan-
tially bolstering the classification performance of the model.

However, the original data is often high-dimensions and re-
dundancy, leading to significant computational and memory de-
mands. ICA can separate data or signals into linear combinations
of statistically independent non-Gaussian sources, effectively
reducing the dimensionality while preserving the essential fea-
tures. Consequently, combining 2-D-FPN construction with ICA
can alleviate the curse of dimensionality, tackle computational
and memory challenges, and yield superior results. The ICA-
2-D-FPN branch model structure is depicted in Fig. 2. In this
structure, the data processed by ICA is segmented into multiple
neighborhoods P of size m × m × c centered around a pixel.
These blocks are then used as inputs for the 2-D-FPN. The
ICA-2-D-FPN branch incorporates three stacked 2-D convolu-
tion blocks. Each convolutional block comprises a convolutional
layer, a batch normalization layer, and a ReLU nonlinear activa-
tion function. Pooling and dropout have not been utilized in the
ICA-2-D-FPN branch. The feature map of the current layer is
combined with the one derived by applying the Upsampling2D
function to the preceding layer, through lateral connections that
facilitate the integration of features across layers. The three
results are then passed to a flattened layer and a fully connected
layer. The fully connected layer uses the Softmax function to
calculate results. Ultimately, the ICA-2-D-FPN branch yields
its results through the utilization of an averaging technique.

D. SA-3-D-CNN Branch

The 3-D-CNN extends the principles of 1-D-CNN and 2-D-
CNN to analyze 3-D input data directly. By employing 3-D
convolution and 3-D pooling, this model effectively extracts
both spatial and spectral information from the input image. As
depicted in Fig. 3, the architectural design of the 3-D-CNN bears
some resemblance to that of the 2-D-CNN. Nevertheless, the
utilization of both spatial and spectral information in the 3-D-
CNN requires a larger memory capacity and longer processing
time compared to the 2-D-CNN. But its deeper analysis ability

can extract more informative features and then typically yield
superior classification results

vxyzl,j =f

(∑
m

Hl−1∑
h=0

Wl−1∑
w=0

Rl−1∑
r=0

k
hwr
l,j,mv

(x+h)(y+w)(z+r)
(l−1),m +bl,j

)
.

(4)

Compared to conventional 3-D-CNN models, PCCN-MSS
introduces an SA block, which is designed to decipher distinct
spectral information and augment feature learning. In our SA
mechanism, the input data is first subjected to global convolution
and then applies (5) to derive the output

zc = x× (−yc) (5)

where x represents the input data utilized for the SA mechanism.
In addition, yc denotes the feature result obtained from the cth
global convolution of the original data. Equation (5) introduces
the variable zc, which can be interpreted as a comprehensive
mapping of the spectral sequence within a defined spatial prox-
imity. This variable effectively encapsulates both the spectral
and spatial attributes inherent in the images, serving as a unified
representation. By considering the cth spectral representation
zc alongside the corresponding cth spectral band x, a linear
mapping is obtainable, as outlined in the following equation:

hc = x× zc = x× x× (−yc) . (6)

However, when tackling complex UAV H2 imagery with
rich spectral and spatial information, simple linear mapping is
insufficient for extracting effectively. Therefore, in this article,
(6), which is the initial SA block of PCCN-MSS, is updated
and presented in (7), and the UAV H2 imagery is adequately
extracted using nonlinear mapping

f = exp (zc)− exp (−zc))/(exp(zc) + exp (−zc)). (7)

By integrating (5) and (7), we can summarize the SA mech-
anism adopted in this article, leading to the formulation of the
following equation:

f = (exp (−x× yc)− exp (x× yc)) /

× (exp (−x× yc) + exp (x× yc)) . (8)

III. RESULTS

A. Dataset and Experimental Setup

1) Dataset: Field-acquired H2 imagery is utilized for ex-
perimental purposes in this article. Fig. 4 presents the false
composite image along with its corresponding GT. The data
is acquired using Hyspex sensor equipped on the UAV, offer-
ing a spatial resolution of 5 cm and 200 bands available for
the experiment. Bands cover visible and near-infrared spectral
ranges from 380 to 1000 nm. In conjunction with field-collected
photographs, the experiment establishes the ground-truth label
mapping depicted in Fig. 4. The GT contains a total of 450
× 1000 pixels, with labeled pixels classified into 8 categories.
These categories are Fallen withered grass, Standing withered



6534 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. Model architecture of SA-3-D-CNN in PCCN-MSS. The SA block is the SA mechanism module that is placed before the first convolution block to
enhance the model’s performance. It achieves this by applying spectral recalibrating for the original image neighborhood data.

Fig. 4. False composite image of UAV H2 imagery (R:621 nm, G:715 nm, B:
829 nm) and GT.

TABLE II
CLASSES NAME AND SAMPLES NUMBER

grass, Impervious surface, Tree, Buildings, Nudation, Cars, and
Flowers in clusters, as detailed in Table II.

2) Training and Testing Setup: As depicted in Table II, 300
samples are randomly selected from each category for model
training, while all remaining labeled samples are reserved for
testing the classification accuracy of the model. Notably, the
number of training samples is a mere fraction of the total,
accounting for only 0.071% of the overall labeled samples.

3) Parameters Setting and Configuration of Operating En-
vironment: In addition to the network sample number settings
outlined in Table II, the other training parameters of the model
are as follows. The initial learning rate (lr) is established at
0.001, with an exponential decay rate of 0.1 applied every 1000
steps. The training process involves a batch size of 100 and runs

for 30 000 epochs. During the experiment, 9 × 9 neighborhood
cubes with all spectral data of H2 imagery are fed into the model.
Furthermore, testing is performed in batches of 100 samples.

The programming language used in this experiment is Python
3.6, installed on the Ubuntu 20.04 system. The configured
environment contains CUDA 11.4, CUDNN 7.6, and essen-
tial packages such as Tensorflow 1.14, Scipy 1.5, and Numpy
1.19.

B. Classification Results

In this section, our attention is on assessing the efficacy of the
proposed model for UAV H2 imagery dataset. To determine its
accuracy, three metrics including overall accuracy (OA), average
accuracy (AA), and Kappa coefficient are used for accuracy
evaluation are employed. The experiments compare PCCN-MSS
against traditional machine learning methods such as SVM,
and popular DL methods including 1-D-CNN, 2-D-CNN, 3-D-
CNN, and parallel networks SSAN. The classification outcomes
achieved by these various methods when applied to UAV H2

imagery are showcased in Fig. 5. Specifically, Fig. 5(a)–(f)
presents the results obtained by SVM, 1-D-CNN, 2-D-CNN,
3-D-CNN, SSAN, and the proposed PCCN-MSS, respectively.
Fig. 5(g) depicts the visual representation of the GT mapping,
serving as a benchmark for assessing the classification accuracy
of the various methods.

SVM [see Fig. 5(a)] exhibits acceptable classification results,
distinguishing various categories well, and successfully distin-
guishing most categories, it nevertheless falls short in some
instances. Notably, the model partially misclassifies impervious
surfaces as buildings, highlighting a limitation in its ability to
differentiate between these two closely related categories. How-
ever, the centimeter-level UAV H2 imagery with unprecedented
detail utilized in the experiment presents significant challenges.
Objects that may appear similar or overlapping in such imagery
are difficult to distinguish solely on spectral information with-
out incorporating comprehensive spatial information. Fig. 5(b)
reveals that the 1-D-CNN model faces considerable difficulties
in accurately classifying certain categories, which struggles to
distinguish between standing withered grass, tree, and nudation
due to its reliance on spectral information, resulting in noticeable
salt-and-pepper noise. This issue can be attributed to the model’s
heavy reliance on spectral information alone, without adequately
incorporating spatial features. Furthermore, the presence of
numerous shadows in the imagery poses a major challenge
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Fig. 5. Classification results of UAV H2 imagery based on six methods. Classification results of (a) SVM, (b) 1-D-CNN, (c) 2-D-CNN, (d) 3-D-CNN, and
(e) SSAN. (f) Parallel model PCCN-MSS classification result proposed in this article. (g) GT reference images.

to classification algorithms, especially 2-D-CNN. As shown in
Fig. 5(c), this model has difficulty handling shadow interference,
resulting in the misclassification of impervious surfaces as clut-
ter/background. This misclassification highlights a significant
weakness in 2-D-CNN’s ability to accurately interpret complex
visual information in the presence of shadowing effects. Fig. 5(d)
demonstrates the improvement achieved by utilizing 3-D-CNN,
which integrates spatial and spectral information, to significantly
alleviate noise and enhance overall classification performance.
Indeed, a noticeable portion of the noise observed in Fig. 5(b)
is mitigated in Fig. 5(d), and the misclassification in Fig. 5(c)
is conspicuously alleviated. These improvements demonstrate
the effectiveness of 3-D-CNN incorporating multidimensional
data in enhancing classification outcomes. Contrarily, the SSAN
parallel network depicted in Fig. 5(e) plagues significant mis-
classification issues resulting in a notably poor classification
result. The parallel convolutional classification networks PCCN-
MSS presented in this article, as illustrated in Fig. 5(f), exhibit
a remarkable decrease in misclassification compared to previ-
ously mentioned algorithms, underscoring its improved accu-
racy and effectiveness in handling complex classification tasks.
In Fig. 5(f), the classification result of PCCN-MSS reveals a
notable decrease in misclassification compared with 2-D-CNN.
Furthermore, an enhancement in the classification results of each
category depicted in Fig. 5(d) shows improvement when com-
pared to those obtained using the 3-D-CNN. Despite the signif-
icant advancements with 3-D-CNN, there remains a substantial
scope for further improvement. The incorporation of a parallel
network enhances the performance of the model, delivering
superior classification results. Specifically, it effectively avoids

the misidentification of impervious surfaces, demonstrating its
superiority in accurately distinguishing various categories.

In addition to analyzing the classification results, quantitative
analysis is paramount in assessing model performance. Table III
presents the accuracies achieved on the UAV H2 dataset using
the five aforementioned models (SVM, 1-D-CNN, 2-D-CNN,
3-D-CNN, SSAN). Notably, the OA of the SVM, 1-D-CNN,
and 3-D-CNN classification results is approximately similar,
with values hovering around 68.60%, 68.18%, and 65.33%,
respectively. In contrast, the SSAN classification result exhibits
the most pronounced misclassification problems, culminating
in the lowest OA at 50.13%. Conversely, the parallel networks
PCCN-MSS emerge victorious for other models with an out-
standing OA, AA, and Kappa of 78.18%, 80.80%, and 0.716,
respectively. Compared to these models, PCCN-MSS demon-
strates significant improvements in OA, surpassing them by
a margin of at least 9.58%. Moreover, the proposed network
exhibits exemplary performance across all ground classes. No-
tably, the accuracy of seven classes exceeds 70%, comprising
predominantly of Fallen withered grass, standing withered grass,
impervious surface, tree, nudation, cars, and flowers in clusters.
In conclusion, both qualitative results and quantitative evalua-
tions emphasize that PCCN-MSS attains optimal classification
results for the UAV H2 imagery when compared to traditional
machine learning and DL methods.

IV. DISCUSSION

This chapter comprehensively encompasses three distinct dis-
cussions designed to demonstrate the performance of the model
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TABLE III
CLASSIFICATION RESULTS FOR UAV H2 IMAGERY USING VARIOUS MODELS AND THE PROPOSED METHOD

proposed in this article: ablation study, parametric analysis,
and analysis of model stability. Ablation study, methodically
evaluates the ramifications of eliminating specific components
from the model, thereby elucidating their respective contribu-
tions. The parametric analysis delves into the intricacies of
how alterations in pivotal parameters influence the performance
of PCCN-MSS. Ultimately, the analysis of model stability in-
vestigates the robustness and consistency of the model across
repeated empirical endeavors.

A. Ablation Study

This article meticulously conducted three sets of abla-
tion experiments to thoroughly investigate the impact of
FPN, SA mechanisms, and ICA on the performance of
PCCN-MSS. These experiments are specifically designed
to delineate the contributions of these individual compo-
nents to the overall model performance, elucidating their re-
spective roles and significance in augmenting classification
results.

1) Impact of the Construction of FPN in ICA-2-D-CNN
Branch: The FPN module is superior for extracting features
at different spatial scales in the image. A comparison of the
classification performance between the PCCN-MSS network
without FPN and with FPN for H2 imagery is illustrated in
Fig. 6. Specifically, Fig. 6(a) depicts the performance of PCCN-
MSS without the inclusion of FPN, whereas Fig. 6(b) presents
PCCN-MSS with FPN. The visual results vividly illustrate the
disparities between the two sets of experiments.

Fig. 6(b) illustrates the superior performance of PCCN-MSS
when incorporating the FPN for UAV H2 imagery classification.
Fig. 6(a) shows the model without FPN, whereas Fig. 6(b)
demonstrates the improved PCCN-MSS. Fig. 6(c) serves as the
GT benchmark for evaluation. The result maps exhibit reduced
salt-and-pepper noise, indicating a more refined and accurate
classification. In addition, the adoption of the FPN structure has
led to a notable decrease in misclassifications caused by shading
effects. The OA of PCCN-MSS with FPN surpasses that of its
counterpart without FPN by approximately 1.23% (as presented
in Table IV). The improvement can be attributed to the FPN
to facilitate the model’s learning of feature information across
various spatial scales, thereby enabling it to extract and utilize

Fig. 6. Comparative analysis highlights the impact of integrating the FPN
structure in the ICA-2-D-CNN branch. (a) PCCN-MSS without FPN. (b) PCCN-
MSS. (c) GT.

TABLE IV
CLASSIFICATION RESULTS ABOUT ICA-2-D-CNN BRANCH OF PCCN-MSS

ADOPTS FPN STRUCTURE

multispatial information more effectively from UAV H2 imagery
for classification purposes.

2) Impact of the Addition of SA Mechanisms: To validate
the effectiveness of the SA mechanisms proposed in this study,
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Fig. 7. Comparative analysis is conducted to assess the results achieved by
incorporating SA under different conditions. (a) PCCN-MSS without SA. (b)
PCCN-MSS. (c) GT.

TABLE V
EVALUATION OF CLASSIFICATION ACCURACY OF SA MECHANISMS

two distinct sets of attention mechanism combination exper-
iments were conducted. Specifically, the PCCN-MSS model
was implemented without SA blocks, as illustrated in Fig. 7(a),
featuring a parallel configuration of ICA-2-D-FPN and 3-D-
CNN branches. Additional experiments integrated SA blocks
into the PCCN-MSS architecture and evaluated their impact
on model performance, with the results presented in Fig. 7(b).
Fig. 7(c) depicts the GT mapping for UAV H2 imagery. To offer
a comprehensive quantitative assessment, Table V presents a
detailed overview of the classification accuracy achieved in each
configuration, emphasizing the significant role played by SA
blocks in enhancing model performance.

Fig. 7 illustrates a discernible improvement in performance
boost for PCCN-MSS when the SA block is integrated, as com-
pared to the parallel network model with SA. This is evident in
the performance of the model to effectively mitigate the impact
of shadows on the imagery. Furthermore, Table V provides
unequivocal evidence that the integration of the SA block into
the parallel network results in a progressive enhancement in the

Fig. 8. Impact of ICA of 2-D-FPN for UAV H2 imagery classification.
(a) PCCN-MSS without ICA. (b) PCCN-MSS. (c) GT.

accuracy of the classification model. Prominently, the model
incorporating SA blocks exhibits a remarkable 10.50% increase
in OA in comparison to the one without SA. These findings
underscore the efficacy of the proposed SA block in extracting
significant spatial and spectral information from images, thereby
significantly improving model performance.

3) Impact of the Addition ICA: This section investigates the
influence of ICA on the performance of the model through
conducting two sets of experiments. A comparative analysis
assessed the impact of implementing the ICA algorithm on the
performance of PCCN-MSS. These experiments aim to explore
both the effects and the overall performance gains achieved
through the integration of the ICA algorithm on the 2-D-CNN
branch. The results of these investigations are visually repre-
sented in Fig. 8, with Fig. 8(a) depicting the model without
ICA and Fig. 8(b) showcasing PCCN-MSS, which incorporate
the ICA algorithm on the 2-D-FPN branch and introducing SA
in the 3-D-CNN branch of the parallel network. The accuracy
of H2 imagery pertaining to the ablation experiment is clearly
illustrated in Table VI.

As evident from Fig. 8 and Table VI, the performance of
Fig. 8(b) conspicuously surpasses that of Fig. 8(a). Therefore,
it can be deduced that the integration of the ICA algorithm in
the 2-D-CNN branch of the parallel convolutional classification
network, which fuse multispatial scale and spectral feature, ef-
fectively enhances overall network performance for UAV H2 im-
age classification. The experimental figures clearly demonstrate
that the classification performance of PCCN-MSS undergoes
substantial improvement when incorporating the ICA algorithm
in the 2-D-FPN branch. This enhancement is predominantly
reflected in its proficiency to precisely identify buildings and
effectively differentiate nudation and standing with withered
grass. ICA separates data or signals as statistically independent
linear combinations of non-Gaussian signal sources by linear
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TABLE VI
RESULTS OF THE PARALLEL NETWORK BEFORE AND AFTER ADDING ICA IN

2-D-CNN BRANCH

transformation, ultimately elevating the classification accuracy
of UAV H2 images.

B. Parametric Analysis

The model performance of the PCCN-MSS model is in-
tricately tied to its parameters. Hence, this section is dedi-
cated to exploring the ramifications of adjusting the parameters
within the PCCN-MSS model on image classification results.
The parameters under examination encompass a range of SA
mechanisms, dimensionality reduction techniques, the number
of bands retained for ICA, the placement of the SA mechanisms
proposed in this article, and the weights “a” and “b” in (1). The
comprehensive discussion encompasses all experiments con-
ducted using the PCCN-MSS parallel network, which comprises
two distinct branches: the 2-D-FPN branch that leverages ICA
to excavate multispatial scale features and facilitate reduction
dimensionality, and the 3-D-CNN branch with SA to extract
spatial-spectral information. By delving into these parameters,
we aim to gain a deeper understanding of how they collectively
influence the model’s performance and ultimately contribute to
improved image classification accuracy.

1) Impact of Different SA Mechanisms for PCCN-MSS
Model: The initial ablation experiment has demonstrated a sub-
stantial improvement in the performance of the proposed model
after incorporating the SA mechanism. Attention mechanisms,
known for their ability to enhance network performance by
focusing on either spatial or spectral information, have proven
beneficial in prior studies. In previous studies, the self-attention
(SE) mechanism [48] stands as a classical approach. To val-
idate the efficacy of the SA block introduced in this study,
a comparison was made between the SE mechanism and the
SA block within the context of the PCCN-MSS model. Fig. 9
illustrates the performance of PCCN-MSS with SE or SA, and
GT. Furthermore, Table VII presents a quantitative comparison
of classification accuracy, providing further evidence of the
effectiveness of the SA block.

In Fig. 9, when examining the classification of standing with-
ered grass, PCCN-MSS equipped with the SA block achieves
notably better results than when using the SE mechanism.
Specifically, the model with SA block reduces a considerable

Fig. 9. Impact of different attention mechanisms for PCCN-MSS model.
(a) PCCN-MSS model with SE mechanism. (b) PCCN-MSS model with SA
block. (c) GT.

TABLE VII
CLASSIFICATION ACCURACIES OF PCCN-MSS WITH DIFFERENT ATTENTION

MECHANISMS FOR UAV H2 IMAGES CLASSIFICATION

number of misclassifications, whereas the SE method tends
to misidentify Standing withered grass as flowers in clusters.
Table VII further illustrates this comparison: the left column
presents the classification accuracy when the SE network is
integrated into the PCCN-MSS, while the right column reflects
the accuracy gained by adding the SA block to the 3-D-CNN
branch of PCCN-MSS. Moreover, by incorporating the SA block
proposed in this study into the parallel network, OA surpasses
that of the SE network by 2.69% for the UAV H2 imagery
dataset. This underscores the superior ability of the SA block to
preferentially learn more spectral features, leading to improved
categorization of UAV H2 image categorization.

2) Impact of Methods for Dimensionality Reduction in
2-D-FPN Branch: PCCN-MSS comprises two branches: the
SA-3-D-CNN branch and the ICA-2-D-FPN branch. In the
ICA-2-D-FPN branch, the input data undergoes processing and
dimensionality reduction using ICA. Ablation experiments fo-
cusing on ICA reveal its beneficial impact on model perfor-
mance. While principal component analysis (PCA), another
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Fig. 10. Results of 2-D-CNN branch with (a) PCA or (b) ICA, and (c) GT
mapping for UAV H2 imagery.

TABLE VIII
IMPACT OF USING ICA OR PCA IN 2-D-FPN BRANCH FOR UAV H2 IMAGE

CLASSIFICATION

well-known dimensionality reduction technique, differs from
ICA in its approach to extracting the principal component from
the data. In this section, PCA is employed in place of ICA
in the 2-D-FPN branch to investigate the effects of various
dimensionality reduction methods on model performance. This
comparison aims to provide insights into the relative effective-
ness of ICA and PCA within the PCCN-MSS framework. The
results of this series of experiments are visualized in Fig. 10.
Specifically, Fig. 10(a) illustrates the performance of the PCA
method within the 2-D-FPN branch, while Fig. 10(b) showcases
PCCN-MSS, wherein the raw data has undergone processing via
ICA. To quantitatively assess the impact of these dimensionality
reduction techniques, Table VIII presents the accuracy metrics
associated with each experiment.

Fig. 10 reveals a notable difference in the performance of
PCA and ICA when applied to UAV H2 imagery. While both
methods aim to reduce dimensionality, their impact on classi-
fication results varies. In particular, the results obtained using
PCA exhibit slightly worse performance compared to ICA. One

observable issue in the PCA classification is the presence of
significant salt-and-pepper noise within the impervious surfaces.
This noise is believed to be primarily caused by shadows, which
interfere more prominently with PCA than with ICA. A closer
examination of Table VIII further underscores this point. The
accuracy achieved by PCCN-MSS, which incorporates ICA for
data processing, marginally exceeds that of PCA by approxi-
mately 2.33%. This relatively small margin, however, can be
crucial in certain applications where high classification accuracy
is paramount. These findings suggest that ICA is considerably
more robust to shadow interference than PCA. This enhanced
robustness may stem from the ability of ICA to capture non-
Gaussian and higher order statistical dependencies within the
data, which are often missed by PCA. Consequently, when
dealing with complex imagery such as UAV H2 data, where
shadows and other forms of noise are prevalent, the use of ICA
may be preferred.

3) Impact of Retained Bands in ICA Data on the Performance
of PCCN-MSS Model: The ablation experiments conducted in
chapter three underscore the pivotal role of ICA within the
PCCN-MSS model. Consequently, this section provides a de-
tailed discussion on determining the optimal number of bands
retained for ICA. The dataset utilized in this study comprises
a total of 200 bands from the original UAV H2 data. To gain
a comprehensive understanding, the experiments with varying
numbers of ICA bands are retained, specifically 10, 20, 30, 40,
50, 100, 150, and the full 200 bands.

The results presented in Fig. 11(a) offer valuable insights
into the relationship between the number of retained bands and
the classification accuracy achieved by the 2-D-FPN when fed
with ICA-processed data. This indicates that the optimal clas-
sification accuracy is attained when retained ICA components
are 10. However, beyond a certain point, retaining additional
bands may not necessarily contribute to improved accuracy but
could instead introduce redundancy and potential noise into the
model.

4) Impact of the Placement of the SA Mechanisms for PCCN-
MSS Model: As evident from the preceding discussion, the SA
mechanism (SA block) introduced in this article demonstrates
remarkable performance. To further investigate its impact on
model performance, a series of experiments were conducted
by varying the position of the SA block within the model
architecture. Specifically, the SA block was positioned ahead
of the first convolutional block (Conv0), the second (Conv1),
the third (Conv2), and the fourth (Conv3). The experimental
results, presented in Fig. 11(b), provide valuable information
for the optimal positioning of the SA block.

The findings depicted in Fig. 11(b) reveal a clear trend, indi-
cating a gradual decline in model performance as the SA block is
positioned deeper within the architectural design. One possible
explanation for this trend is that the SA mechanism in this study
employs global convolution to learn image features. As such, it is
likely that the original data contains the richest and most relevant
information for the SA block to learn effectively. Placing the
SA block earlier in the architecture allows it to process this raw
and unfiltered information, potentially leading to better feature
extraction and ultimately superior model performance.
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Fig. 11. Performance of the PCCN-MSS model is influenced by several key parameters. (a) Number of ICAs. (b) Positioning of the SA block. (c) Weights “a”
and “b” utilized in (1).

Fig. 12. Statistics of OA, AA, and Kappa accuracy obtained from 10 experiments respectively for the six models, SVM, 1-D-CNN, 2-D-CNN, and 3-D-CNN,
and parallel network SSAN and PCCN-MSS, respectively.

5) Impact of the Weights “a” and “b” in Two Branch Net-
works: The model introduced in this article utilizes a weighted
sum approach to integrate the predictions of the ICA-2-D-FPN
branch and the SA-3-D-CNN branch. This integration method
is mathematically represented in (1), which incorporates the
weights “a” and “b.” These weights play a pivotal role in
determining the model’s performance. Given the significance
of these weights, this section delves into the impact of varying
“a” and “b” on the performance of PCCN-MSS in UAV H2 im-
age classification. Specifically, we conducted experiments with
different weight combinations, where “a” was set to 1/4, 1/3, 1/2,
2/3, and 3/4, while “b” was correspondingly calculated as 1-a.
The resulting accuracy variations are graphically represented in
Fig. 11(c).

Analysis of Fig. 11(c) reveals that the model achieves optimal
performance when “a” is set to 1/3 and “b” to 2/3 for UAV H2

imagery classification. This suggests that a balanced integration
of the ICA-2-D-FPN and SA-3-D-CNN branches is crucial for
achieving high classification accuracy. However, as the value of
“a” increases beyond 1/3, the proportion of the ICA-2-D-FPN
contribution of the branch to the weighted sum grows, leading to
a gradual decrease in OA. This trend underscores the importance

of carefully selecting the weights “a” and “b” to strike an
effective balance between the two branches for optimal model
performance.

C. Analysis of Model Stability

Ten experiments are conducted on SVM, 1-D-CNN, 2-D-
CNN, 3-D-CNN, SSAN, and PCCN-MSS using identical initial
parameters, i.e., epoch = 30 000, lr = 0.001, train number =
300, cube size = 9, and ICA number = 10. The statistics for
the ten experiments are presented in Fig. 10, where from left to
right indicates OA statistics, AA statistics, and Kappa statistics.
The box plot, which includes the maximum, minimum, average
values, and quartiles, effectively illustrates the data variability.
This is specifically designated for the stability evaluation of the
model in this experiment.

As shown in Fig. 12, SSAN exhibits the most significant
fluctuations, followed by 2-D-CNN and 3-D-CNN. PCCN-MSS
demonstrates a narrower OA fluctuation range of 75.45% to
78.29%, with an AA fluctuation of just 3.03%. However, the
SSAN, which is also a parallel network, has an OA fluctuation
range of 52.11% to 48.35%, with an AA fluctuation of 13.01%.
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The PCCN-MSS model proposed in this article based on 2-D-
FPN branch with ICA and the SA 3-D-CNN branch has relatively
favorable stability.

V. CONCLUSION

HSIs with high spatial resolution hold tremendous potential
for remote sensing fine-grained monitoring and classification.
However, challenges such as high spatial heterogeneity, se-
vere intra-class spectral variability and poor signal-to-noise
ratio especially in UAV hyperspectral imagery constrain and
hinder the performance of fine-grained classification. In this
article, a parallel convolutional classification network model,
PCCN-MSS model based on multimodal filters is proposed for
precise H2 imagery classification, which comprises two distinct
branches, the ICA-2-D-FPN branch seamlessly integrates ICA
with 2-D-CNN, leveraging FPN to effectively extract multispa-
tial scale and spectral information from H2 imagery. Meanwhile,
the SA-3-D-CNN branch is meticulously designed to extract
spatial and spectral information by synergistically combining
SA block with 3-D-CNN.

Hyperspectral imagery is captured by UAVs, which con-
tain vegetation and ground-based artifacts, characterized by its
nanoscale spectral resolution and centimeter-level spatial reso-
lution. The experimental results demonstrate that our proposed
method achieves a satisfactory classification performance for H2

imagery. Specifically, the PCCN-MSS model achieves impres-
sive classification results with an OA of 78.18%, surpassing the
compared methods by a significant margin of 9.58%. The ICA
algorithm and SA mechanism of PCCN-MSS can significantly
enhance the network’s performance and improve classification
accuracy. Furthermore, the OA of PCCN-MSS exhibits favor-
able stability, ranging between 75.45% and 78.29%, indicating
a narrow fluctuation of only 3.03%.

By extracting global spatial-spectral information, the pro-
posed PCCN-MSS method effectively tackles classification
challenges related to the significant boundary inaccuracies and
salt-and-pepper noise in traditional classification methods. This
innovative approach delivers more satisfactory classification
results with robust performance and remarkable advantages for
H2 imagery. The method presented in this article offers robust
and reliable technical support for the precise classification and
monitoring of ground features in upcoming widely used H2

remote sensing images. Its versatility can extend to diverse
downstream fields, including military surveying, agricultural
production, environmental monitoring, and urban planning.
In addition, this work lays a foundation for future quantitative
inversion at a finer granularity of detail in remote sensing.
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