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Land Cover Mapping From Multiple Complementary
Experts Under Heavy Class Imbalance

Valerie Zermatten
and Devis Tuia

Abstract—Deep learning has emerged as a promising avenue
for automatic mapping, demonstrating high efficacy in land cover
categorization through various semantic segmentation models.
Nonetheless, the practical deployment of these models encounters
important challenges from the imbalanced distribution of samples
between the classes, a problem inherent to real-world datasets. This
results in models biased towards frequent classes that perform
poorly on rare classes. While existing approaches to fight class
imbalance mainly focus on image classification, here we propose
to address this issue for semantic segmentation with a multiple
complementary experts (MCE) structure. Taking inspiration from
ensemble models, each expert in our MCE specializes in certain
classes and works with other experts in a complementary manner
to generate robust predictions for rare classes. We compare our
approach to other existing methods and also explore different logit
aggregation methods, to identify the performance upper bounds
and improvement directions. Our model is evaluated on a large-
scale and challenging alpine land cover dataset that we make openly
available. In addition, we evaluated our model on an imbalanced
land cover mapping dataset, FLAIR, to highlight its adaptability.
Overall, our MCE model yields notable improvement in perfor-
mances on the medium and rare classes compared to baseline
methods, while only slightly compromising on the overall accuracy.
Despite its simplicity, the MCE approach stands as a practical
solution for more operational semantic segmentation models, not
trading off performances on rare but important classes.

Index Terms—Class imbalance, land cover mapping, multi-
expert model, remote sensing.

I. INTRODUCTION

AND cover (LC) mapping provides information about
L the characteristics and spatial distribution of the Earth’s
surface. It plays a crucial role in many scientific and operational
applications, including environmental monitoring, natural
resources management, planning, disaster management, and
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Fig. 1. Multiple complementary expert (MCE) semantic segmentation model.

First, a common backbone extracts visual features from the input images; Then
each expert’s model predicts land cover classes, with one expert focusing on
all classes, while other experts focus on body and tail or tail-only classes.
The extracted features from each expert are combined via different aggregation
methods to produce the final network predictions.

climate change research [1]. The ever-increasing amount of
generated data created a shift in LC map production from
labor-intensive human annotations towards machine-driven
products. In the past decades, the development of LC maps with
machine learning algorithms has drawn considerable attention
from the scientific community. Computer vision methods and
more specifically deep learning (DL)-based models exhibited
outstanding performance [2] when confronted with visual
recognition tasks such as LC mapping [3], classification [4], or
object detection on remote sensing images [5].

While proficient on carefully balanced datasets with nu-
merous samples, the effectiveness of DL methods diminishes
when confronted with unequal distributions of instances over
different classes [6], [7], [8]. This issue originates from the
classifier’s objective of minimizing overall error rates during
training: Head classes dominate the network parameters update,
which tends to greatly diminish the recognition of tail classes
by the model [6], [9]. This problem called class imbalance is
an intrinsic problem for semantic segmentation, and especially
for land cover mapping: LC classes naturally have very differ-
ent surface coverage; some appear very frequently and cover
large areas, i.e., forested areas, whereas other LC like wetlands
have a limited frequency of occurrence and/or only cover small
proportions of the territory. This leads to an asymmetry in the
number of pixels representing each LC type, with the number of
pixels of rare or “tail” classes being lower by several orders of
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magnitude than pixels belonging to frequent or so-called “head”
classes. Nevertheless, rare classes hold particular significance
for LC mapping since they often represent specialized and
unique regions of the territory that may be of high interest, for
instance, biodiversity hot spots [ 10], or indicators of new patterns
appearing in the landscape [4].

The class imbalance problem is a well-known problem in
computer vision and numerous methods have been proposed to
tackle it. The most intuitive approaches address the problem at
the data level by deploying data resampling [7] or reweighting
methods [11], [12], [13] that give more visibility to samples
from rare classes. In practice, these methods have been shown
to lead to a rapid overfitting of the rare classes [6], [14] and
improve the tail performances at the cost of performances on
the frequent classes [7], [9]. Other methods also focus on aug-
menting the information via data augmentation [15], on experi-
menting with different network architectures, i.e., by learning an
ensemble [6] or by improving the learning process by decoupling
the training [16]. Recently, multi-expert/multi-branch models
have shown promising results [17], [18], [19]. These networks
strategically associate multiple diverse experts/branches to ob-
tain the final predictions. While a majority of the works tackle
the imbalance problem for image classification, only a few
studies address this problem for semantic segmentation [20],
[21], [22]. The transfer of long-tail classification methods to
semantic segmentation is not straightforward due to the inherent
differences between the two tasks: Unlike classification, where
each instance is treated individually, pixels occurring within
the same frame are spatially dependent. Methods that work for
classification might not capture the spatial correlations needed
for segmentation. Similarly, due to class cooccurrence in each
image, classes cannot be isolated easily for sampling or data
augmentation purposes [6].

Inspired by the success of multi-expert models in image
classification [14], [18], [23], we design a multiple complemen-
tary experts (MCE) network for semantic segmentation. MCE
combines a shared backbone with a set of learnable modules
trained on several overlapping subsets of classes. We adopt some
training techniques developed from classification problems and
observe their effectiveness for semantic segmentation tasks.
We explore different training strategies and aggregation
methods to identify the performance’s upper bounds and some
improvement directions. We evaluate our approach on two
large-scale datasets; a large-scale alpine land cover dataset that
we developed and made publicly available, and the FLAIR
dataset, a heavily imbalanced benchmarking dataset for land
cover mapping. Compared to other state-of-the-art methods,
our MCE network manages a significant improvement in rare
classes accuracy while minimally decreasing the performances
in most frequent classes. Therefore biases of classification
towards majority classes are reduced, closing the gap with
national agencies’ production requirements.

II. RELATED WORK
A. Semantic Segmentation for Land Cover Mapping

LC mapping can be designed for image classification, i.e., to
provide a single label for an image, but also as a semantic seg-
mentation task, where each pixel from the input image receives
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a label. Deep learning-based methods fit well with the charac-
teristics of remote sensing images thanks to the large volume of
data available. Rapid advances were made during the past decade
driven primarily by the development of powerful architectures
such as deep convolutional networks (CNNs). The fundamentals
for DL semantic segmentation were established by Long et
al.[24] in 2014 with the fully convolutional networks (FCN5), a
CNN that can learn dense predictions by preserving the spatial
structure of the input image in an efficient and end-to-end way.
Ronneberger et al. [25] designed U-Net, an encoder-decoder
network for semantic segmentation that consists of a contracting
path and an expansive path, which allows it to learn both local
and global features of an image. Later, the DeepLab series
was introduced by Chen et al. [26] where they proposed atrous
convolution and atrous spatial pyramid pooling to enlarge the
receptive field of the network and capture multiscale contextual
information. These remain de facto standard approaches for LC
mapping that are being constantly improved upon, e.g., consid-
ering rotation invariance [3], interpretability [27], or including
more modalities [28].

B. Class Imbalance in Classification Problems

The problem of imbalanced distribution is well studied and
diverse methods have been developed in recent years. Here,
we review briefly two types of methods, class rebalancing
and ensemble learning, we refer to [6] for a more complete
review.

1) Class rebalancing via resampling and reweighting: Re-
balancing methods aim at fighting the imbalance by introducing
prior information about the class distribution and giving more
importance to unfrequent samples. An intuitive solution is data
resampling which tries to achieve a balanced distribution across
classes through oversampling tail classes or undersampling head
classes [7], [29]. Practically, oversampling methods lead to rapid
overfitting of the rare classes, whereas undersampling discards
part of the data that may contain important information.

Instead of acting at the sample level, the reweighting methods
operate at the loss level and introduce a balancing factor to adjust
the loss value for different classes. The vanilla solution is the
weighted softmax that uses the inverse of the class frequency as
a factor. Some approaches also use the prediction difficulty [11]
or the effective number of samples [12] to rebalance the loss,
while others directly modify the gradients [30] or the logits based
on the training labels frequencies [31]. These methods based on
loss function weighting improve rare classes’ performance, but
can often be detrimental to the recognition of frequent classes.

2) Ensemble learning: Multi-expert or multi-branch models
combine multiple network modules in parallel that aim to extract
different representations from the data. Such ensemble learning
method is seen as state-of-the-art for imbalanced visual recog-
nition [6], [23] and their benefits are typically attributed to the
expert’s diversity: Making diverse mistakes [32] or exploring
different local minima in the loss landscape [33].

The diversity among various experts can be introduced by
learning on different groups of classes or different class distri-
butions. Various grouping of classes have been experimented
with: BNN [19] uses a two-branch architecture, one focusing
on original distribution, the other on a rebalanced version of it.
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Tllustration of the aggregation methods for a MCE model with three experts. The blue, green, and orange colors correspond to the logits of head, body,

and tail classes, respectively. (a) Average logits. (b) Maximum logits. (c¢) Zero nontarget logits. (d) Oracle model.

BAGS [34] or LEME [17] groups classes with similar numbers
of samples. ACE [14] and ResLT [35] form overlapping groups
of classes so that experts have specific and complementary
recognition skills.

C. Multi-Expert Model for Imbalanced Semantic Segmentation

Semantic segmentation can be formulated as a per-point/pixel
classification, thus several of the methods presented above have
been extended to segmentation tasks. Inspired by reweighting
methods, Zhou et al. [36] have proposed a dynamic sample
weighting algorithm. Wang et al. [30] introduced the Seesaw
loss that rebalances the expert’s gradients based on the label
frequency and the number of misclassified samples for each
class. Recently, the imbalance problem has been observed from
the representation learning perspective and focused on learning
more balanced features in the latent space [20], [37]. Closer
to our work, [38] uses a region rebalance branch to better learn
rare class features during training. Other multi-expert models for
semantic segmentation have been developed recently [18], [22],
but without specifically addressing the class imbalance problem.

In this work, we take inspiration from the success of multi-
expert models developed for classification problems and we
adapt them to semantic segmentation tasks. We adopt an ap-
proach with an overlapping grouping of classes, that allows the
ensemble to learn specific, but complementary skills.

III. METHOD
A. Model Overview

The overall architecture of our MCE network for alpine land
cover mapping is shown in Fig. 1. The architecture comprises a
shared visual backbone, followed by several separated trainable
layers forming the experts, and finally, an aggregation module
that combines the experts’ predictions and produces the final
model output.

B. Experts Design

The i expert modules £ = {&1, . .., &;} are branched out from
the same visual backbone. They all share the same architecture
but have different parameters to reflect the specificity of their
respective inputs. Each expert is composed of one convolutional
layer with kernel 3 x 3 followed by a ReLU [39] activation, a
batch normalization layer [40], and a final convolutional layer
with a kernel size of 1 x 1. Li et al. [41] observed that learning

a more uniform distribution with fewer samples is sometimes
easier than learning a long-tailed distribution with more samples.
Moreover, following the spirit of rebalancing, tail classes should
be more exposed to the model. Therefore, we divide the C classes
into more balanced but overlapping splits, similarly to ACE [14].
We assign the first expert £; to all the classes, and the consecutive
experts with progressively rarer and rarer classes (i.e., &2 focuses
on middle and rare classes, &3 only sees rare classes). Practically,
we feed each expert with all the pixels while attributing a loss
weight of 0 for samples whose class does not belong to the target
classes of the experts. Consequently, the expert £; only focuses
on its target classes C;, and the losses from pixel belonging to
nontarget classes C; are not back-propagated.

Following the Linear Scaling Rule [42] for multi-expert mod-
els [14],“when the batch size is increased by a factor k, the
learning rate should be multiplied by a factor k,” we adapt each
expert learning rate and assign smaller values to those trained
with less data to avoid overfitting. The base learning rate g is
used to train the backbone and the most general expert £;. The
ith expert &; is trained with the adapted learning rate 7);

77 _ ’I7 ZceCi Ne
r — 10—~
Zjec i

where 7. is the number of pixel in class ¢ belonging to the target
classes C; seen by expert & and C; C C.

ey

C. Loss Function

The model is trained with a combination of classification
losses and complementary losses. We compute a classification
loss on each expert output separately, to learn expert-specific
features. Given the label 3. and the logits z; € R'*¢ from expert
&;, the classification loss for expert &; is a cross-entropy loss over
its target classes C;

‘Ccls7i = - Z Ye IOg(O(Zz)) (2)

ceC;

with o (.) representing the SoftMax operation.

Similarly to [14], we use a complementary loss that penalizes
the experts for predicting any of the nontarget classes C;. Since
the classification loss is not computed on the pixels belonging
to these classes, no gradient updates the parameters, therefore
their output should be close to zero. It is defined as a Lo-penalty
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where z; . € R is the logit of &; for the class ¢ belonging to the
nontarget classes C;. Thus, the network loss for K experts for a
given pixel can be written as

K K
L= Z £cls,i + Z ccom,i- 4)
i=1 i=1

It is interesting to notice that there is no loss on the final model
output; we avoid updating together the experts’ weights to ensure
diversity between their predictions.

D. Aggregation

The aggregation module combines the logits from all the
experts into the final model output via algebraic operations as
shown in Fig. 2.

1) The output logits o, of class ¢ can be computed as the

mean of the logits from all experts

1 K
Oc,mean = E Z Zi,c (5)
i=1

where z; .. are the logits for class ¢ from expert 7. The logits
coming from nontarget classes (i.e., logits from a head
class in the rare class expert) can be ignored by setting
them to zero at the expert level, i.e., z; . = 0if c € C~’i.
2) Asan alternative, we consider the group maximum logits
for each class, where
Oc,max = 1211,%};({21‘@}- (6)
3) We conduct an oracle case study to establish an upper
bound on the performance of the MCE model. As each
expert concentrates more than the others on some subset of
the classes, i.e., the tail expert predicts best the tail classes,
the model would achieve optimal performance when each
pixel gets predictions only from the expert who specializes
in its category. For this assumption, we introduce prior
knowledge about the best expert for every pixel in the
inference phase and obtain the oracle results. Note that
this approach is used only for benchmarking, as it requires
the ground truth to be applied at inference.

IV. EXPERIMENTS

In this section, we present the data, the experimental details,
and the evaluation metrics.

A. TLM Dataset

1) TLM Raw Image Data: Consists of very high-resolution
aerial images and a digital elevation model (DEM) that cov-
ers approx. 2300 km? of land above 2000 m altitude in the
southwestern part of Switzerland as shown in Fig. 4. The raw
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Fig.3. Examples of alpine land cover classes from our dataset, where the entire
surface is occupied by the specified target land cover category. (a) Bedrock. (b)
Bedrock with grass. (c) Snow and Glaciers. (d) Scree. (e) Scree with grass. (f)
Forest. (h) Large blocks. (i) Large blocks with grass. (j) Water and rivers.
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Fig. 4. Map of the study area located in southwest Switzerland with altitude
above 2000 m.
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Fig. 5. Pixel distribution among the alpine land cover classes in the TLM

dataset on a logarithmic scale.
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data are made openly available by the Federal Office of To-
pography swisstopo! under the Open Government Data policy.
The aerial images with RGB channels have been taken from the
swissSIMAGE product from the year 2020 and have RGB bands
and a spatial resolution of 25 cm. The DEM is derived from
the swisSALTI3D product from the year 2019 with a ground
resolution of 0.5 m and accuracy of 1 to 3 m. RGB data have
been upsampled to 50 cm to have a consistent resolution with
the DEM.

2) TLM Land Cover Labels: Focuses on alpine land cover
(hence the choice of limiting the dataset to areas higher than
2000 m). The labels are taken from the Swiss Topographic Land-
scape Model model (swissTLM3D) layer generated through
visual photo-interpretation by experts from swisstopo based on
the aerial images from 2014 to 2017. The nine land cover types
in our study area include bedrock, bedrock with grass, large
blocks, large blocks with grass, scree, scree with grass, water
area, forest, and glacier and are shown in Fig. 3. Multiple classes
within rocky areas present high visual similarity, adding to the
challenge of imbalance. Areas without labels are regarded as
a background class and images with background (unlabeled)
pixels over 10% of the total number of pixels are removed. The
final dataset contains 229538 tiles with a size of 200 x 200
pixels (1 ha) and is available for download?.

3) Dataset Construction and Splitting: Fig. 5 shows the dis-
tribution of pixels among classes and presents a typical case of
a long-tailed distribution with an imbalance factor, defined as
the ratio of the most frequent to the rarest class, close to 1000.
The classes are grouped by frequency into “head,” “body,” and
“tail” groups. We divide the images into training, validation, and
test sets with a ratio of [0.6 : 0.2 : 0.2]. To achieve a balanced
distribution in each split, we perform stratified sampling at the
tile level based on the most frequent label in each tile.

B. FLAIR Dataset

The FLAIR [43] dataset was developed by the French Na-
tional Institute of Geographic and Forest Information (IGN) and
is a comprehensive benchmarking dataset that combines aerial
imagery with land cover annotations. This dataset contains an ex-
tensive collection of more than 77 412 high-resolution patches,
each measuring 512 x 512 pixels, with a spatial resolution of
0.2 m and with 19 semantic classes. For our work, we use the
RGB bands, the elevation channel, and the land cover labels.
We discard other spectral bands. The pixel distribution across
different land cover classes exhibits a significant long-tailed
distribution with an imbalance factor of approximately 2000,
as shown in Fig. 6.

C. Experimental Setting

We selected two semantic segmentation visual backbones
for our experiments: the DeepLabv3+ [26] architecture and
the U-Net [25]. Both backbones use a ResNet-50 [44] image
encoder that is initialized using the pretrained weights from

Uhttps://www.swisstopo.admin.ch/en/geodata/images
Zhttps://dx.doi.org/10.21227/n61c-k282
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Fig. 6.  Pixel distribution in the FLAIR dataset on a logarithmic scale.

ImageNet-1K [45] for the RGB channels and the DEM channel
weights are copied from the first (red) channel. Other convolu-
tion layers are initialized with the He initialization method [46]
and normalization layers, with zero mean and unit norm. We
use the Adam [47] optimizer with a weight decay value of 0.01,
a base learning rate of le™*, and a batch size of 64 for the
DeepLabv3+ backbone, respectively, and 1e~> and 32 for the
U-Net backbone. The hyperparameters were chosen through a
grid search on the validation set. We train all models for 50
epochs, with a learning rate decay factor of 0.1 if no improve-
ment occurs over the last 10 epochs.

We use basic data augmentation (random horizontal and verti-
cal flips, rotations, color jittering, and normalization) for training
all models, but only normalization for testing and validation. All
the experiments are implemented with Pytorch and run with one
GPU NVIDIA GeForce RTX 3090, delivering 120 samples/s for
inference, and 68 samples/s in training.

D. Evaluation Metrics

The performance of different classes is usually considered to
be equally important in long-tail recognition. We thus report
results with overall accuracy (OA), mean Intersection-over-
Union (mloU) as well as macroaverage accuracy (mAcc) on
head, body, and tail groups and accuracy per class. The results
are computed over a separate test set with a distribution similar
to the training and validation set.

V. RESULTS

A. Comparison of Different Methods

Table I presents the results for our MCE network with
two (MCE-2) or three experts (MCE-3) with both DeepLabV3+
and U-Net backbones on the TLM dataset. We compare them
with similar visual backbones trained with a cross-entropy
loss (CEL), with inverse frequency weights (WCEL), with class
balanced weights (CBL) [12] with 5 = 0.9999, and with the
seesaw loss (SL) [30]. We also add the results for the perfor-
mance of the Oracle model based on the MCE-3 model. We
observe an improvement in performance for mloU, mAcc, and
tail classes accuracy for both U-Net and DeepLabv3+ backbones
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TABLE I
COMPARISON OF OUR APPROACH WITH TWO DIFFERENT BACKBONES, DEEPLABV3+, AND U-NET

Backbone Deeplabv3+ U-Net

Methods  mIoU mAcc OA |Head Body Tail || mIoU mAcc OA |Head Body Tail
CEL 53.2 59.6 89.2 | 91.7 60.8 23.6 45.2 51.1 86.8 | 89.6 50.9 0.0
WCEL 27.1 41.5 68.6 | 73.7 40.0 0.0 22.4 35.7 63.0 | 68.9 27.2 0.0
CBL 40.4 52.6 77.0 | 80.4 68.0 0.0 33.2 441 79.6 | 83.2 36.2 0.0
SL 505 646 869 | 89.4 713 376 || 480 650 863 | 886 744 364
MCE-2 53.9 68.8 87.6 | 89.7 73.7 54.2 52.0 66.0 86.1 88.4 73.0 44.0
MCE-3 536 700 872 | 893 728 620 || 490 69.1 850 | 875 712  63.4
Oracle 69.5 82.3 89.3 ‘ 90.6 92.7 91.1 ‘ ‘ 69.2 81.2 88.0 ‘ 89.6 91.7 89.6

We present the results for the MCE model with two (MCE-2) or three experts (MCE-3) with mean aggregation, with a cross-entropy loss
model (CEL), a weighted cross entropy Loss (WCEL), a class balanced loss (CBL), a seesaw loss (SL). Results on head, body, and tail
classes are average accuracy per group. The Oracle model is based on the MCE-3 model. The best results are in bold, second best are

underlined.

TABLE II
COMPARISON OF OUR MCE NETWORK WITH THE DEEPLABV3+ BACKBONE
ON THE FLAIR DATASET WITH TWO (MCE-2) OR THREE EXPERTS (MCE-3)

FLAIR
Methods mloU mAce OA \ Head Body Tail
CEL 379 524 73.1 | 7377 645 17.5
WCEL 33.2 63.0 66.0 | 658 741 50.4
CBL 36.7 59.5 719 | 70.7  66.6 404
SL 374 54.0 713 | 726 66.6 21.9
MCE-2 39.0 55.8 728 | 70.5  73.0 243
MCE-3 38.8 61.6 733 | 708 733 412
Oracle 49.1 71.9 772 | 72.3 91.4 55.0

We use mean aggregation, with a cross-entropy loss model (CEL), a
weighted cross entropy loss (WCEL), a class balanced Loss (CBL), and a
seesaw loss (SL). Results on head, body, and tail classes are average
accuracy per group. The Oracle model is based on the MCE-3 model. The
best results are in bold, second best are underlined.

with our MCE-2 and MCE-3 models, compared to all other
approaches. A small decrease in the performance on head classes
and overall accuracy is observed compared to the CEL. However,
this tradeoff between head-tail accuracy is shared among all re-
balancing methods, with the MCE-2 and MCE-3 models offering
the smallest or second smallest deterioration in performances for
the frequent classes. The seesaw loss performance also offers a
generally good compromise between all classes, however, the
MCE models introduce a better performance for tail classes,
mloU and mAcc. With the increase in the number of experts from
MCE-2 to MCE-3, the performance remains consistent between
the head and body classes, but the significant enhancement in
the performance of the tail classes underlines the effectiveness
of the third expert in the network.

Similar results are observed for models trained on the FLAIR
dataset (Table II). The MCE approaches obtain the best metrics
for mloU and OA, and the second-best results for the mAcc,
body and tail accuracy. The results are surprisingly good with
the WCEL loss, which obtained the best body and tail accuracy.
Compared to other re-balancing methods, MCE approaches
consistently exhibit a superior tradeoff, effectively enhancing
the accuracy of both body and tail classes while minimizing
the compromise in accuracy for head classes. It is important to
note that the results reported in FLAIR [43] focus on the 13
most common classes and discard the 6 “tail” classes, thus the
numerical value of the metrics should not be compared.

B. Oracle Model and Accuracy per Class

As expected, the Oracle outperforms all other models in terms
of performance, since we introduce prior knowledge about the
specific expert to look at for each pixel, and thus it forms a
performance upper bound. The results with MCE-2 and MCE-3
models are very close to the oracle upper bounds for the head
classes, however, the body and tail classes exhibit much lower
values. This indicates the head expert predictions are well in-
corporated into the network output, however, the predictions of
body or tail experts could be better taken into account.

Table III provides more details on individual expert predic-
tions for the MCE-3 model, where we look at each expert’s
probabilities before the aggregation module. The high level of
accuracy of each expert on their set of target classes demonstrates
that our training strategy is effective in specializing each expert
on a given subset of classes. Expert 1 closely aligns with the
results observed in Table I for the CEL network for all head,
body, and tail classes, where the CEL is commonly seen as an
upper boundary regarding overall accuracy and head classes.
Each expert focuses on the most frequent classes among its
target classes, and the accuracy is reduced for underrepresented
samples for each expert (i.e., body and tail classes for the head
expert), illustrating that models better learn from smaller but
balanced sets of classes. The complementary loss pushes the
expert’s predictions for nontarget classes toward zero, however,
the logits of the latter are not exactly zeros, leading to some
infrequent but correct predictions of nontarget classes (expert 2
on head, expert 3 on head and body classes). In light of these
results, enhancing the network capabilities seems to depend
upon a more effective aggregation of expert logits, which is
further analyzed in Section V-D.

C. Study of the Training Strategy

The ablation study presented in Table IV compares the ef-
fectiveness of the complementary loss (L.,,,) and the adapted
learning rate for each expert (adapt-Ir) on a MCE model
with three experts. While very effective on body and tail
classes, a model without adapted learning rate and comple-
mentary loss significantly lowers its recognition ability on head
classes, leading to poor overall performance. The adapted learn-
ing rate mechanism upholds an elevated level of accuracy in
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TABLE III
PERFORMANCE IN TERMS OF ACCURACY PER CLASS FROM THE MCE-3 MODEL WITH THE PREDICTION FROM EACH EXPERT, THE MCE-3 OUTPUT AND THE
ORACLE MODEL
x 2 « 2 £ dg4
b5) = < = < =] S =
T |8 £ 5 % |% |88 £ E&|x |2 =&
= A 3 = e 2 AE B BE | H 2 oS
m O E @ g § §F
— —
Expert 1 | 90.6 | 86.8 86.5 92.7 96.5 | 59.2 | 426 940 409 23.0 | 46.1 0.0
Expert 2 | 5.4 5.9 5.6 4.1 5.9 927 | 93.3 99.6 853 68.2 | 90.3 46.1
Expert 3 | 9.2 8.8 119 8.0 7.9 5.0 3.0 0.4 11.5 91.1 | 975 84.7
MCE-3 89.3 | 838 852 926 956 | 728 | 654 967 564 62.0 | 752 489
Oracle 90.6 | 86.8 86.5 927 96.5 | 92.7 | 93.3 99.6 85.3 91.1 | 97.5 847
5The Oracle relies on the ideal aggregation of individual expert predictions to generate the network output, achieving this with the
prior knowledge of which expert to look at for each pixel.
Best results are in bold.
c TABLE IV ) the performance for the body and tail classes drops, indicating
EFFECTS OF THE COMPLEMENTARY LOSS (L o1 ) AND THE ADAPTED . .
LEARNING RATE (ADAPT-LR) ON THE MCE.3 NETWORK that thp network beqeﬁts from the Fo glts. coming from all experts,
even if the expert is not specialized in the subset of classes,
adaptir Lcom | mloU mAcc | Head Body Tail showing that the experts haye a truly complementary action.
The two learnable aggregation methods based on the frozen
- - 37.9 72.1 72.9 87.1 84.1 MCE-3 del with . btain 1 f
v _ 405 07 | 796 831 648 ! -3 mode ~wu mean aggregatlono tain lower per ormance
v v 536 700 | 893 728 620 in all metrics, illustrating the difficulty of the aggregation task.
Best results are in bold. In summary, the mean logit aggregation method appears to be
TABLE V effective for our network, as the network autonomously learned
COMPARISON OF AGGREGATION METHODS FOR MCE-3 to balance and aggregate the sometimes conflicting experts’
predictions.
Aggregation mloU mAcc OA | Head Body Tail This analysis of the aggregation strategy is complemented
MCE-3 (mean) 33.6 70.0 87.2 89.3 72.8 62.0 by Flg 7, which illustrates how the MCE-3 network handles
Max-pool 51.5 72.1 864 | 884 774 676 diverse expert predictions through mean aggregation. Each ex-
Zero-non target z; 546 683 876 | 898 695 573 pert produces diverse LC predictions, focusing on their target
MLP 51.6 59.5 86.0 | 88.9 56.8 34.5 . ..
CNN 500 678 855 | 881 639 672 LC classes. When the experts produce conflicting predictions,

Best results are in bold.

classifying head categories while preserving a satisfactory de-
gree of recognition for less prevalent classes. The incorporation
of the complementary loss further amplifies this effect.

D. Comparison of Aggregation Methods

We study different alternatives for aggregating the experts’
output, as presented in Table V. We run inference passes based
on the MCE-3 model weights and only modify the aggregation
methods: instead of mean of logits (mean), we use maximum-
pooling of logits (max-pool), or we set to zero the logits coming
from nontarget classes for each expert (zero nontarget logits).
We also experimented with the aggregation of the experts’ logits
with learnable layers. We train a one-layer CNN, and respec-
tively a small two-hidden layer multilayer perceptron (MLP), to
aggregate the experts’ logits based on the output of the frozen
best-trained MCE-3 model. We trained these smaller networks
for 50 epochs each with a learning rate of 5e~* for the CNN,
respectively, 1e~® for the MLP, decaying by a factor 0.1 every
10 epochs.

The results indicate that max-pooling pushes again the head-
tail ratio toward the rarest classes, by compromising slightly
the performances on head classes. The zero-ing of the nontarget
classes logits for each expert favors slightly the head classes, but

the aggregation via the mean of the logits allows to determine
whether to pick the predictions from one of the experts (rows a,d,
and e) without disruption from other experts or to locally select
one expert’s predictions (rows b or ¢). When the classes from the
labels are not among one expert target classes (which is often
the case for the Expert 3), the expert predictions are misguiding
and meaningless, but also do not impact the aggregated output
(row a,b,e).

VI. LIMITATIONS

One notable limitation of the MCE models is that while they
show improved performance on rare classes, overall accuracy
might become slightly compromised, most probably because
of the lower recall on the majority classes; this is observed on
the TLM dataset with both backbones, but not on the FLAIR
dataset. For image classification tasks, many rebalancing meth-
ods improve the performance on the rare classes by sacrificing
the overall accuracy, typically reweighting or data augmentation
methods [6], [12]. However, the recent multi-expert methods
seem to better integrate these constraints and several multi-
expert works are advertised as improving both minority and
majority classes accuracy on benchmarking datasets, such as
ACE [14], RIDE [48], or LFME [17], yet in a real-world sce-
nario, it might not always be the case as we observe it here on
the TLM dataset. The drop in overall accuracy in that dataset
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Label

Input image

Fig. 7.

W background, gg water,  glacier, 7 bedrock,

is less than 2%, for a gain of 60% in accuracy on the minority
classes. The choice between emphasizing rare classes or opti-
mizing overall accuracy depends on the specific task objectives
and should align with specific application requirements. In the
real-world scenario of national mapping, the updating of land
cover maps still commonly resorts to manual verification of
the predictions due to stringent accuracy requirements. In such
cases, the priority shifts towards recall of these rare classes that
were maybe forgotten, even if it results in a compromise and
slightly reduces the performances of more prevalent classes,
which already meet very high accuracy standards. Furthermore,
these investigations are based on the assumption that the refer-
ence data is correct. In reality, however, the interpreters who have
collected this reference data are also subject to a certain error
rate, leading to reference data with a certain amount of noise.
Greater uncertainties occur with complex land cover classes,
such as mixed classes (“scree with grass”), as opposed to more
straightforward classes such as water. This a priori error cannot
be determined in practice. The results obtained must be viewed
with this restriction.

Through our experiments, we observed that each expert ob-
tained high accuracy on their designated set of classes, but the
aggregation of their predictions seemed to be the sensitive part of
the network. Even though several approaches have been studied
to better aggregate the individual expert’s predictions (e.g., using
an MLP), the learning of the rare categories in the aggregation
layer remains sensitive to the abundant negative gradients from

MCE-3 Output
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Expert 1 Expert 2

Expert 3

Example of input images, labels, final network output and individual expert predictions for the MCE-3 model. Labels for semantic segmentation maps:
bedrock with grass, g large blocks, g large blocks with grass,

scree,  scree with grass.

frequent classes and does not beat the simple average of each
expert logit.

VII. CONCLUSION

This work has presented a multiple complementary expert
model that effectively addresses the class imbalance problem in
semantic segmentation. These problems are common in several
real-world applications involving remote sensing data, from land
cover mapping to ecosystem classification, or species distri-
bution models. In all those cases, long-tail distributed classes
require specialized approaches to detect and model rare classes
correctly. Extensive experiments conducted on two land cover
datasets have led to the development of an efficient model
and training strategy. Our approach involves training several
experts in a complementary manner, each specializing in a
balanced subset of classes. Through an ablation study, we have
demonstrated the effectiveness of adaptive learning rates and
the complementary loss function, enabling an advantageous
head—tail class tradeoff. Overall, our MCE approach surpasses
the performance of commonly used methods for handling class
imbalance in terms of mloU, mean accuracy, and rare classes
accuracy, showcasing the ability of our experts to learn distinc-
tive features tailored to specific class subsets. These findings
underscore the potential of our approach in advancing semantic
segmentation for real-world applications by mitigating class
imbalance effects.
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