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Extracting Photovoltaic Panels From Heterogeneous
Remote Sensing Images With Spatial and
Spectral Differences

Zhiyu Zhao ", Yunhao Chen

Abstract—The accurate extraction of the installation area of the
photovoltaic power station is an important basis for the manage-
ment of the photovoltaic power generation system. Deep learning
has proven to be a powerful tool for rapidly detecting the dis-
tribution of photovoltaic panels in remote sensing images. The
wealth of information from various remote sensing sensors aids
in distinguishing photovoltaic pixels within complex backgrounds.
However, the distinct imaging characteristics of different sensors
present challenges for deep learning models. In this article, we pro-
pose a deep learning extraction method for photovoltaic panels that
effectively improves the spatial and spectral differences inherent in
remote sensing images. Considering the characteristics of different
sensors, two attention modules and a feature fusion module are ap-
plied to suppress the inconsistency of spatial resolution and spectral
resolution. Based on the Unet model, we implement the photovoltaic
power station identification method and compare it with several
commonly used semantic segmentation models. Qualitative and
quantitative accuracy assessments show that the PV-Unet method
can effectively overcome the spatial and spectral differences of
remote sensing images. It achieves 98.04 % F1 score and 96.15% IoU
on the test dataset, verifying the superiority of this method. PV-Unet
method has the potential for identifying photovoltaic panels from
multisource remote sensing data.

Index Terms—Deep learning, feature extraction, photovoltaic
(PV) panels, remote sensing, spatial and spectral differences.

1. INTRODUCTION

N RECENT years, the global demand for renewable energy
has increased significantly due to concerns about climate
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change and the depletion of traditional fossil fuels. The large-
scale use of fossil fuels has led to the increase of greenhouse
gas emissions, the rise of global temperature, and a series
of environmental problems. To this end, many countries have
formulated relevant policies to achieve carbon neutrality goals,
trying to limit global warming to within 2 °C[1], [2], [3]. Among
various renewable energy technologies, solar photovoltaic (PV)
power stations have attracted wide attention for their ability to
utilize solar energy and convert it into electric energy. With the
reduction of PV equipment cost and the improvement of power
generation efficiency, a large number of PV devices have been
deployed, and the installed capacity of solar PV has increased
rapidly [4], [5], [6].

The widespread adoption of PV panels requires effective
methods for identification, monitoring and management. The
estimation of power generation and carbon emission reduction
depends on the accurate assessment of the area of PV devices.
Obtaining the precise spatial distribution of PV devices is the
basis for solving the impact of large-scale PV panels on the
regional environment and ecosystem [7], [8]. The traditional
method for monitoring PV panels requires manual inspection,
which is time-consuming, labor-intensive, and often restricted
by ground roads. Remote sensing images, with their compre-
hensive coverage and rapid imaging advantages, have become a
powerful tool for identifying and analyzing PV panels. The data
obtained by remote sensing technology is very large, whereas
manual inspection requires a high cost of time and manpower.
These limitations have prompted the introduction of advanced
technologies, especially deep learning, to automatically identify
PV panels from remote sensing images and improve efficiency
[9].

Deep learning is a subset of machine learning, which has
achieved remarkable success in various computer vision tasks,
such as object detection, segmentation and classification. Convo-
lutional neural networks are good at extracting hierarchical fea-
tures from image data. These models can learn complex patterns
and representations directly from raw image pixels, enabling
them to accurately identify and classify objects in images. Fully
convolutional networks can perform pixel-level classification
on images, becoming one of the main methods for semantic
segmentation tasks [10]. In addition, Transformer models based
on self-attention have also achieved excellent results in the field
of computer vision. However, Transformer models such as ViT
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(Vision Transformer) perform better than CNN on large datasets,
but worse than CNN-based methods on small datasets [11], [12].
Therefore, for specific tasks with limited data, CNN is still a
more practical method [13]. Semantic segmentation of remote
sensing images is one of the hot topics in remote sensing image
analysis. For example, Nong et al. proposed a boundary attention
module based on the Unet architecture, which showed excellent
performance on remote sensing image datasets [14]. Hou et al.
proposed an enhanced semantic segmentation network to ad-
dress the issues of complex background, large-scale variation,
numerous small objects, and extreme foreground-background
imbalance in remote sensing images [15]. Pixel-level classifica-
tion of semantic segmentation is very effective for determining
the location, boundary and area of PV panels [16]. For example,
models such as SegNet, U-net, FPN, DeepLabV3+ have been
proven to be applicable for PV power station extraction [13],
[17],[18],[19],[20],[21]. Tanet al. proposed a texture-enhanced
deep learning network to automatically extract solar panels in
mining areas with high groundwater levels, achieving excellent
performance [22]. Nasrallah et al. used deep learning-based
case segmentation to extract a building’s footprint from satellite
images to assess rooftop solar potential [23].

These general deep learning frameworks are mainly designed
to solve natural image recognition problems and have achieved
good results in the field of computer vision, but lack the analysis
of PV remote sensing image features. In previous studies, high
spatial resolution remote sensing images were mainly relied
on to achieve accurate identification of PV panels [24], and
most of them used three-channel RGB images, which are vis-
ible light images that conform to the human eye’s ability to
distinguish target features [25]. Remote sensing sensors can
acquire multispectral information, and these remote sensing
images can also be used for target detection. The study in
[20] shows that multisource sensors may provide more effective
information, which helps to accurately identify the location and
area of PV panels. The response of PV panels to multispectral,
background features, especially the vegetation changes, are the
unique characteristics of PV panels, and multispectral images
are very important for distinguishing PV from background [7].
This information is difficult to obtain from single-source images,
but it is valuable for deep learning models. By integrating
images captured at different times and from various sensors,
accurate identification of PV panels can be achieved [20], [26].
At present, obtaining high spatial resolution from multispectral
satellite remote sensing data is challenging. Insufficient spatial
resolution can result in a significant decline in segmentation ac-
curacy [27]. Despite the progress in imaging equipment, satellite
remote sensing images have higher and higher spatial resolution,
temporal resolution, and spectral resolution. However, limited
by the signal-to-noise ratio, sensors have difficulty in providing
data with high spatial and spectral resolution simultaneously. To
capture more spatial and spectral features of PV panels simul-
taneously, it is common to utilize satellite remote sensing data
from various sources, such as Gaofen-2 and Sentinel-2. These
sources can individually provide spatial and spectral features
of PV panels. Therefore, a deep learning model is needed to
accurately extract both the texture and spectral features of PV
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panels from remote sensing images originating from different
sources. However, due to differences in imaging conditions
and variations in spatial resolution and spectral characteristics
among images from different sources, challenges arise [28].
Considering the characteristics of different sensors, to obtain
more texture and spectral information, a deep learning model
that can overcome the spatial and spectral differences of remote
sensing images is needed, to achieve accurate identification of
PV panels.

To address the aforementioned challenges, this study lever-
ages the attention mechanism to enhance both texture and
spectral features. Our approach involves the fusion of diverse
sensor data, aimed at mitigating the impact of heterogeneous
image distribution disparities. Consequently, we propose an ef-
fective method for identifying PV panels, which adeptly amalga-
mates heterogeneous images. By synergizing the high-resolution
Gaofen-2 imagery with the multispectral channels of Sentinel-2,
we integrate spatial and spectral features pertaining to PV power
plants. This integration serves to enhance the segmentation
efficacy of our deep learning model. Building upon this refined
model, we achieve precise segmentation of pixels corresponding
to PV panels and their background counterparts through the
input of multisource data.

II. MATERIALS AND METHOD
A. Materials

1) Data Sources: The remote sensing images are from
Gaofen-2 (GF-2) and Sentinel-2. GF-2 belongs to the “China
High-resolution Earth Observation System,” and was launched
in 2014. The satellite carries two high-resolution panchromatic
cameras and multispectral cameras, which can obtain 1-m
panchromatic and 4-m multispectral images respectively [29].
The multispectral camera can obtain images of four bands:
blue, green, red, and near-infrared. Sentinel-2 belongs to the
European Space Agency Copernicus program, which includes
Sentinel-2A and Sentinel-2B satellites. The Sentinel-2 satellite
carries a multispectral imager, which can obtain images of 13
bands, with spatial resolutions of 10 m for 4 bands, 20 m for
6 bands, and 60 m for 3 bands. It covers the spectral range of
visible light, near-infrared and short-wave infrared.

The images used in this study are located in Ordos City, Inner
Mongolia Autonomous Region, China, and the satellite data
were taken in 2022. The city covers an area of about 87000
km?, belonging to the northern temperate semiarid continental
climate zone, and is relatively dry [30]. The main parts of the
region are the Kubuqi Desert and the Mu Us Desert, which have
abundant PV resources. The GF-2 images used in the study were
mainly taken from October to December, and the Sentinel-2
images were taken in July. The GF-2 images are from the China
Center for Resources Satellite Data and Application. Cloud-free
images with good quality were selected, and the panchromatic
images were radiometrically calibrated and orthorectified; the
multispectral images were radiometrically calibrated and atmo-
spherically corrected and orthorectified. Then, the panchromatic
and multispectral data were fused to obtain 1 m resolution images
containing four bands: blue, green, red and near-infrared. The
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Sentinel-2 images are L2A level data obtained from Google
Earth Engine (GEE) and preprocessed. Compared with L1 data,
there is no B10 band, so there are a total of 12 bands of data.
The Sentinel-2 multispectral data of Ordos City in July 2022
were obtained through GEE, and cloud masking and mosaic
processing were performed. The final remote sensing images
are shown in Table L.

2) PV Sample Production: Before labeling the samples, the
original images were checked and the ones with poor quality,
which contained a lot of clouds or noise, were removed. In
addition, each Gaofen image and Sentinel image was manu-
ally georegistered to minimize image offset. When labeling the
samples, the PV power station range on the Gaofen and Sen-
tinel images was confirmed to be consistent. When annotating
the boundaries, mainly annotate on the Gaofen images with a
higher spatial resolution to ensure clearer and more accurate
boundaries. After the samples were annotated, the boundaries
of the PV panels were checked and they were verified to be
available on the Sentinel-2 images, ensuring the consistency
of the samples on the two images. Finally, after resampling
and cropping, sample images with a size of 512 x 512 were
obtained. Part of the data visualization is shown in Fig. 1. The
leftmost picture in the figure is from GF-2, the middle column is
from Sentinel-2, and the rightmost column shows the annotation
results. The remote sensing images are displayed in true color.
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Fig. 1. Part of the dataset displays in true color. (a) GF-2. (b) Sentinel-2.
(c) Label.
B. Method

1) Photovoltaic Power Station Extraction Framework: To
leverage the distinctive features of GF-2 and Sentinel-2 images,
a deep learning segmentation method has been proposed for
the identification of PV panels. This method aims to overcome
spatial and spectral differences present in remote sensing images
from various sources. The flowchart of the proposed method is
illustrated in Fig. 2.

The first step is the preprocessing of remote sensing data. High
spatial resolution and multispectral remote sensing data were
used. The data sources were explained in the previous section.
The remote sensing data were processed by radiometric calibra-
tion, atmospheric correction, orthorectification, pansharpening,
and cropping. The description of each band is shown in Table I.

The second step is the dataset preparation for model training.
It includes georeferencing and sample annotation. The detailed
annotation method was explained in the previous section.

The third step is the deep learning model for segmenting PV
panels. The deep learning segmentation approach incorporates
two feature extraction branches. The first branch captures texture
features of PV panels from GF-2 images, whereas the second
branch focuses on extracting spectral features from Sentinel-2
images. These features are efficiently fused using a dedicated
feature fusion module (FFM). Built upon the architecture of
a classic semantic segmentation model, specifically the Unet
model, the proposed PV power station identification method is
implemented.

2) Semantic Segmentation Model of Photovoltaic Power
Plants: Unet model is a deep learning network, widely used for
semantic segmentation. Unet was proposed in 2015, and since
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then it has been widely applied and achieved good results in
various fields. Based on it, many improved models have been
developed [31], [32], [33]. Unet is a deep learning network
with an encoder-decoder structure. The encoder part extracts
high-level semantic features from the input image through mul-
tiple convolutional blocks and outputs a feature map with low
resolution and high channel number. The decoder part consists
of multiple deconvolutional blocks, which restore the size of
the feature map by upsampling and concatenate the feature map
of the corresponding level of the encoder by skip connections,
fusing features of different levels. Finally, it outputs a feature
map with the same size as the original image, and reduces the
channel number of the feature map to the number of target classes
by a1l x 1 convolution in the last layer [19], [31]. Based on this
model, we proposed a PV power station segmentation model
PV-Unet, which consists of spatial feature and spectral feature
extraction modules and a FFM.

For the GF-2 image with higher spatial resolution, we are
more concerned about its spatial relationship, whereas for the
Sentinel-2 image with more channels and lower resolution, we
should pay more attention to its channel features. Therefore,
the attention mechanism is introduced into the model. Attention
has been widely used in CNN models, by using the attention
mechanism to focus on the main features in the CNN model and
suppress unnecessary features, which helps to identify objects
in cluttered and complex backgrounds [34], [35].

Photovoltaic power station identification method to overcome the spatial and spectral differences of heterologous remote sensing images.

Convolutional block attention module (CBAM) [34] is a
lightweight and general module that can be easily integrated
into various CNN models. In our method, we inserted the
spatial attention module into the high spatial resolution im-
age feature extraction part and the channel attention mod-
ule into the multispectral image feature extraction part. In
CBAM, channel attention and spatial attention are performed
sequentially. In our model, considering that the GF-2 image
has rich spatial features, whereas the Sentinel-2 image has
large differences among different channels, we divide CBAM
into two parts, i.e., spatial attention module and channel at-
tention module, and apply them to the extraction of texture
features and spectral features of GF-2 and Sentinel-2 images
respectively.

The spatial attention module is used to extract the high spatial
resolution image features. The spatial attention map is generated
by using the spatial relationship among the features. As shown
in Fig. 3(a), in the spatial attention module, the input features
are max-pooled and average-pooled along the channel axis.
Then these results are concatenated to create an effective feature
descriptor. Then, the spatial attention map is obtained by using a
convolutional layer and a sigmoid activation function. The final
spatial attention map M (F') can be expressed by the following
equation:

My (F) = o (f™" ([AvgPool (F) ; MaxPool (F)])) (1)
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Fig. 3. Attention module. (a) Spatial attention module. (b) Channel attention

module.

where o denotes the sigmoid function, f7X7 denotes the con-
volution operation with a kernel size of 7 x 7, AvgPool and
MaxPool denote the average pooling and max pooling operations
respectively, and F'is the given input feature map. In each spatial
attention module, the spatial attention map is multiplied by the
weights of each channel of the input.

The channel attention module is used to extract features from
the multispectral image. As shown in Fig. 3(b), first, the spatial
features of the input feature map are aggregated by the max
pooling layer and the average pooling layer respectively. Then,
they are fed into a multilayer perceptron (MLP) with a hidden
layer. Finally, the output feature vectors are merged by element-
wise addition, and the channel attention weights are obtained by
the sigmoid activation function. The channel attention M. (F)
is calculated by the following method:

M. (F) = o (MLP (AvgPool (F')) + MLP (MaxPool (F)))

©))
where o denotes the sigmoid function, MLP denotes the mul-
tilayer perceptron with a hidden layer, AvgPool and MaxPool
denote the average pooling and max pooling operations respec-
tively, and F' is the given input feature map. These channel
attention weights are broadcasted to the same size as the input
feature map and multiplied elementwise with the input feature
map.

Based on the Unet model, combined with channel attention
and spatial attention mechanisms, a PV power station identifica-
tion method PV-Unet that fuses high-resolution data and multi-
spectral data is proposed. In the encoder part, we used the GF-2
image to extract the main features and used two convolution
blocks with 3 x 3 convolution kernels for downsampling, with
a batch normalization (BN) layer and a rectified linear unit layer
after each convolution. In the decoder part, we restored the size
of the feature map by deconvolution and connected it with the
feature map output by the corresponding layer of the encoder.
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Fig. 4. PV-Unet model structure diagram.

At the same time, we used the multispectral image of Sentinel-2
extracted features through another encoder branch concatenated
the obtained feature map with the feature map of the GF-2
image, and input it into an FFM. The FFM optimized the feature
fusion effect through two convolution blocks and input the result
into the decoder part. Finally, to extract spatial and channel
information more effectively, we inserted a spatial attention
module after each GF-2 downsampling block and a channel
attention module after each Sentinel-2 downsampling block.
Fig. 4 shows the schematic diagram of the model structure.

3) Model Training and Evaluation Metrics: The model was
implemented on the PyTorch framework. A total of 747 groups
of images were used for training (randomly extracting 20% of
them as the validation set), and 107 groups of images were used
for testing the model. Each group of images included the GF-2
image and the Sentinel-2 image of the same area. To increase
the scale of the training data, data augmentation methods were
also used, including random horizontal flip, random vertical
flip, and random rotation. The BCEWithLogitsLoss was used
in the model training process. The loss function is implemented
through PyTorch’s function. The model was trained with the
Adam optimizer, with a learning rate of 0.001, and used an early
stopping mechanism to prevent overfitting. The final segmenta-
tion results were evaluated with five metrics, including accuracy,
precision, recall, F1 score, and intersection over union (IoU).
We compared PV-Unet with some other semantic segmentation
models and calculated their accuracy, precision, recall, F1 score,
and IoU. The calculation methods of each evaluation metric are
as follows:

Accuracy = TP + TN 3)
Y = TP T FP 1 FN + TN
.. TP
Precision = TP TP (@)
TP
l=——
Reca TP+ FN 5)

2 X Precision X Recall

Fl =
Precision + Recall ©
TP
U= SN @
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Fig. 5. Images of Sentinel 2 in different bands. The box plot is the reflectance
value of the specified area in the lower left image. Red is the photovoltaic panel
area, and blue is the background area.

In the formula, TP, FP, TN, and FN stand for true positive,
false positive, true negative, and false negative, respectively.

III. RESULTS
A. Impact of Multispectral Images

The reflectance of different types of land cover to electromag-
netic waves of different wavelengths may vary significantly, so
the difference between PV panels and background in images
of different spectral ranges is different. As shown in Fig. 5, it
can be clearly seen that the difference between PV panels and
background varies in images of different bands. For example,
in the Bandl image, the distinction between the PV panel area
and background area is very low, whereas in the Band5-Band9
images, the PV panel area can be clearly distinguished. The box
plots indicate that the spectral distribution difference between
solar panels and background land cover is small in the first three
bands, whereas the spectral distribution difference is large in
the near-infrared and short-wave infrared bands. Therefore, the
identification of PV panels should not be limited to the visible
light band, the short-wave infrared and near-infrared bands may
have more significant features, and more spectral channels can
help distinguish PV panels and background pixels.

Due to the meteorological conditions at the time of shooting
and the differences between different satellite sensors, images
from different sources are not suitable for sharing weights.
To show the difference between different feature extraction
branches and the effect of feature fusion, we read the parameter
distribution before and after the network feature fusion part.
Include the convolutional layer and BN layer in the first down-
sampling block model and the convolutional layer as well as
the BN layer in the FFM of the trained PV-Unet. The parameter
distribution is shown in Fig. 6, where conv.weight is the param-
eter distribution of the convolution layer, bn.mean is the shift
parameter distribution of the BN layer, and bn.var is the scale
parameter distribution of the BN layer. It is obvious that the
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TABLE II
RESULTS ON DIFFERENT IMAGE DATASETS FOR GF-2 AND SENTINEL-2

Method Accuracy Precision Recall F1 score IoU
Unet+GF-

2+Sentinel-2  96.65%  98.97%  95.63% 97.27%  94.69%
(16bands)

Unet+GF-

2+Sentinel-2  87.56%  92.69%  87.05% 89.78%  81.46%
(RGB)

N -

Unet+GF-2 95.58%  99.28%  93.78% 96.45%  93.14%
(4bands)

+Sentinel-
UnettSentinel-2 o, 00 94970, 88.14% 91.34%  84.06%

(12bands)

parameter distributions of images from different sources have a
large difference, which means that it is unreasonable to directly
mix images from different sources, and different branches learn
different information. In our method, the model tries to extract
valuable features from both images.

To further verify the effectiveness of adding Sentinel-2 im-
ages, as a comparison, we also trained different datasets with
the Unet model, including the following:

1) 12 bands Sentinel-2 images;

2) 4 bands GF-2 images;

3) true color composite images of GF-2 and Sentinel-2 im-

ages;

4) 16 bands images obtained by overlaying GF-2 and

Sentinel-2 images.

They are marked as Unet+Sentinel-2 (12 bands), Unet+GF-
2 (4 bands), Unet+GF-2+Sentinel-2 (RGB), and Unet+GF-
2-+Sentinel-2 (16 bands), respectively. For the methods that only
used one type of sensor data, the test set only has one type of
data. For the methods that used two types of sensor data, the
16-band method merged each GF-2 and Sentinel-2 image into
a 16-band image. The RGB-band method used the true color
composite images of GF-2 and Sentinel-2 images and mixed the
images of two types of sensors in the test set. The results are
shown in Table II.

Obviously, the limited spatial resolution of Sentinel-2 makes
it difficult to accurately identify PV panels. The results in the
table show that the model trained with the Sentinel-2 image
dataset has lower evaluation metrics than the model trained with
the GF-2 image dataset. This indicates that the spatial resolution
of the image is very important for the accurate identification of
PV power station pixels. Even if the Sentinel-2 image has richer
spectral information, due to its limited spatial resolution, the
segmentation effect using only Sentinel-2 image is not as good
as the GF-2 image. However, simply mixing GF-2 and Sentinel-2
images (the dataset contains both GF-2 and Sentinel-2 images)
does not improve the identification accuracy, but may lead to a
decrease in accuracy.

Since the GF-2 and Sentinel-2 images have different numbers
of channels, we converted both images to RGB three-channel
images here, and the number of images in the dataset is twice that
of a single type of image (i.e., GF-2 and Sentinel-2 images each
account for half). On this mixed dataset, the Accuracy is 87.56%,



ZHAO et al.: EXTRACTING PHOTOVOLTAIC PANELS FROM HETEROGENEOUS REMOTE SENSING IMAGES WITH SPATIAL

5559

w

a

o
L

bn.mean
3 Sentinel-2

conv.weight
= Sentinel-2 6

w

o

o
L

N
U
o
L
o

Frequency
N
o
o
Frequency
Y

= =
o v
IS] o
L L
w

v
o
L

Fig. 6. Weight distribution of different convolutional layers.

the Precision is 92.69%, the Recall is 87.05%, the F1 score
is 89.78%, and the IoU is 81.46%, which are 8.02%, 6.59%,
6.73%, 6.67%, and 12.67% lower than using only GF-2 images,
respectively. Compared with using only Sentinel-2 images, they
also have some decline.

This may be due to the large difference between the images,
which makes it difficult for the model to learn the appropriate
parameters. Remarkably, concatenating the two images into a
16-channel image yields the most favorable outcomes among the
four datasets. This achieves 96.65% accuracy, 98.97% precision,
95.63% recall, 97.27% F1 score, and 94.69% loU, respectively.
These results underscore the positive impact of incorporating
Sentinel-2 images on segmentation effectiveness. Nevertheless,
it is crucial to acknowledge that this approach does not address
the issue of image dissimilarity. The model may struggle to attain
the most suitable parameters, particularly when confronted with
significant differences in image resolution.

B. Accuracy Assessments

Fig. 7 shows the segmentation result of a PV power station.
We compare it with some of the most advanced semantic seg-
mentation models. These include Unet [31], DeepLabV3+ [36],
SegNet [21], SegFormerB5 [37], PIDNet-M [38], and DDRNet-
23 [39]. Itis worth noting that, for the sake of fair comparison, all
models were trained with identical hyperparameters. Unet and
PV-Unet have better edge segmentation. SegNet misclassified
some background pixels as PV pixels, DeepLabV3+ had unclear
edge segmentation, and they both did not distinguish the nar-
row roads clearly. PIDNet failed to distinguish smaller patches
and was not good at extracting the straight boundaries of PV
panels. The prediction results of SegFormerB5 and DDRNet-23
were similar to those of DeepLabV3+, but they had less false
recognition of tiny patches outside the power station range. The
segmentation result of PV-Unet is similar to Unet, and can better
maintain the regularity of the PV panel boundary. Unet identified
more narrow roads inside the power station, whereas PV-Unet
had fewer misidentifications.

In addition, we selected some representative segmentation
results for visualization, and the results are shown in Fig. 8. The
results showed that DeepLabV3+-, SegFormerB5, PIDNet-M,
and DDRNet-23 had poor road distinction effects between PV

bn.var
[ Sentinel-2
/3 GF-2
3 Fusion

Frequency

30

DeepLabV3+

PV-Unet

SegFormerB5

PIDNet-M

DDRNet-23

Fig. 7.

Identification results of photovoltaic power plants.

panels. PIDNet-M and DDRNet-23 extracted the edges of PV
panels with blur, which did not match their straight characteris-
tics. In the second row of images, Unet and SegNet both have
omissions.

We compared the PV-Unet model with some of the latest
segmentation methods. The evaluation metrics for the trained
model on the test set are summarized in Table III. The best
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Fig. 8.  Segmentation results of different models.
TABLE III TABLE IV
PERFORMANCE OF THE MODEL ON THE TEST SET EVALUATION RESULTS OF THE ATTENTION MODULE
Model Accuracy Precision Recall F1 score ToU Model Accuracy Precision Recall F1 score ToU
SegNet 96.52% 98.54% 95.78% 97.14% 94.44% PV-Unet 96.47% 97.29% 96.88% 97.09% 94.34%
(without AM)
DeepLabV3+  96.77% 98.77% 95.98% 97.35% 94.84% PV-Unet (SA)  96.73% 97.44% 97.14% 97.29% 94.73%
Unet 05.58% 99.28% 03.78% 06.45% 93.14% PV-Unet (CA)  95.59% 97.48% 95.32% 96.39% 93.03%
SegFormerBS  96.73% 97.66% 95.84% 97.32% 94.78% PV-Unet 97.61% 98.98% 9712% 98.04% 96.15%
The bold values indicate the best metrics.
PIDNet-M 97.29% 98.75% 96.80% 97.76% 95.63%
DDRNet-23  96.74% 99.12% 95.60% 97.33% 94.80% a pivotal role in enhancing the model’s accuracy in target iden-
PV-Unet 97.61% 98.98% 97.12% 08.04% 96.15% tification. Specifically, the spatial attention module contributes

The bold values indicate the best metrics.

metrics in Table III are shown in bold, and the underline indi-
cates the second-highest metrics. The results show that PV-Unet
performs better on most metrics, Unet has the highest Precision,
but the lowest Recall, which also leads to a lower F1 score
for Unet. PIDNet-M achieves the second-highest results on
most metrics. Compared with the other semantic segmentation
models, PV-Unet has the best overall effect.

IV. DiscussIiON

A. Effectiveness of the Attention Module

To further investigate the effectiveness of the PV-Unet
method, we conducted an ablation experiment on the attention
modules. These modules are instrumental in enhancing the
feature extraction capabilities of each branch. Given that the
GF-2 image carries richer spatial information, and the Sentinel-2
image encompasses more spectral information, the attention
modules are designed to guide the model’s focus on spatial
features from the GF-2 image and spectral information from the
Sentinel-2 image. For the ablation experiments, we considered
four configurations: one without any attention modules, one
with only spatial attention modules, another with only channel
attention modules, and finally, a setup incorporating both spatial
and channel attention modules.

Fig. 9 illustrates the visualization results of the experiment. A
clear observation from Fig. 9 is that the attention modules play

to the smoothness and continuity of the segmentation results,
thereby reducing instances of omission. On the other hand, the
channel attention module effectively mitigates false positives,
although it may compromise segmentation integrity. Notably,
the simultaneous use of both attention modules manages to
circumvent certain misidentifications while preserving overall
segmentation quality. For instance, in the first row, the PV-Unet
without attention modules exhibits a blurred identification of
the PV panel’s edge. The model employing only the channel
attention module improves edge segmentation but introduces
some holes. Combining both attention modules reduces the
holes induced by channel attention while maintaining superior
edge segmentation. In the second and third rows, the attention
modules are observed to suppress erroneously identified pixels.

Table IV presents the results of the evaluation metrics, where
PV-Unet (without AM) indicates the absence of attention mod-
ules, PV-Unet (SA) signifies the inclusion of only the spatial
attention module, and PV-Unet (CA) represents the configu-
ration with only the channel attention module. The outcomes
show that the spatial attention module primarily enhances recall,
whereas the channel attention module predominantly improves
precision. Combining both spatial attention and channel at-
tention concurrently results in improvements in Accuracy, F1
score, and IoU, showcasing increments of 1.14%, 0.95%, and
1.81%, respectively, compared to scenarios without attention
modules. In summary, the incorporation of both spatial and
channel attention modules yields the most favorable outcomes.
Both qualitative and quantitative results affirm the efficacy of
the attention modules.
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Compare the results with or without the addition of attention modules. (a) Is the original remote sensing image. Columns (b)—(e), respectively, include

not adding attention modules, only adding spatial attention modules, only adding channel attention modules, and adding both types of attention modules together.

(a) Image. (b) Without AM. (c) SA. (d) CA. (e) PV-Unet.

TABLE V
EVALUATION RESULTS OF THE FEATURE FUSION MODULE

Model Accuracy Precision  Recall F1 score ToU

PV-Unet o o N o o
(without FEM) 95.77%  99.09%  94.20%  96.59%  93.40%
PV-Unet (With g7 61os  9898%  97.12%  98.04%  96.15%

FEM)

The bold values indicate the best metrics.

B. Effectiveness of the Feature Fusion Module

The role of the FFM is to iteratively optimize the feature fusion
effect of high-resolution images and multispectral images. To
analyze the effectiveness of the FFM, we designed an ablation
experiment without the FFM. In the experiment without the
FFM, the feature maps from different branches were directly
stacked and then fed into the corresponding upsampling module.
Fig. 10 shows the visualization results with and without the FFM.
It can be seen from the examples that the FFM segments the
target and background areas more completely.

The quantitative analysis presented in Table V reveals that
although omitting the FFM results in higher precision, it comes
at the expense of lower recall. Incorporating the FFM leads
to improvements in Accuracy, Recall, F1 score, and IoU to
varying degrees, with increases of 1.84%, 2.92%, 1.45%, and
2.75%, respectively. Both qualitative and quantitative analyses
underscore that, when dealing with images from diverse sensors,
direct concatenation of features falls short of achieving optimal
results due to substantial image differences. The introduction
of the FFM allows the model to derive more suitable fusion
outcomes, and passing the optimized feature maps through the
decoder subsequently leads to superior segmentation results.

With FFM

Image Without FFM

Fig. 10. Results with or without FFM.

C. Number of Parameters and Time Cost

We tested and compared the parameters and inference speed
of all models. For a fair performance comparison, all reported
FPS results were obtained at an input resolution of 512 x 512.
The inference speed of all models was tested on a single NVIDIA
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TABLE VI
COMPARISON OF THE NUMBER OF MODEL PARAMETERS AND INFERENCE
SPEED
Model Resolution  #Params FPS

Unet 512x512  29.6060M 378.104

DeepLabV3+  512x512  56.5932M  73.756
SegNet 512x512  28.0801M 238.340

SegFormerB5  512x512  80.6782M  21.808

PIDNet-M 512x512  35.5774M  70.679
DDRNet-23 512x512  29.4176M 144.124
PV-Unet 512x512  56.5897M 184.074

RTX4070. All models are implemented using PyTorch. The
experimental results are shown in Table VI. Where #Params
is the number of parameters and FPS is the number of images
processed per second. Compared with the Unet model, PV-Unet
has increased computational cost but achieves better accuracy.
Compared with SegFormerB5, the proposed model has a faster
inference speed. Overall, PV-Unet balances accuracy and com-
putational cost, and is an effective method for extracting PV
panels.

V. CONCLUSION

This article proposes a semantic segmentation method for
PV panels, fusing high spatial resolution remote sensing data
and multispectral data. By extracting features from GF-2 and
Sentinel-2 images through dedicated branches, this approach
effectively captures the distinctive texture and spectral features
of PV panels. The fusion of high spatial resolution and mul-
tispectral image features is accomplished through the strategic
use of skip connections and FFMs. Spatial attention modules
and channel attention modules are seamlessly incorporated into
the two types of images, facilitating the extraction of texture
and spectral features. This inclusion enhances the overall ex-
traction effectiveness of the corresponding features. The main
contributions of this article are as follows:

1) The proposed method successfully mitigates the impact of
diverse spatial and spectral resolutions inherent to differ-
ent sensors, resulting in the accurate identification of PV
panels.

2) Compared to other segmentation models, the method suc-
cessfully mitigated the effects of different spatial and
spectral resolutions inherent in different sensors, resulting
in the accurate identification of PV panels. The obtained
results showcase the superior segmentation performance
of the proposed method compared to other tested models,
achieving 98.04% F1 score and 96.15% IoU on the test
data.

3) A comprehensive ablation experiment analysis highlights
the role of attention modules in balancing the extraction
of texture and spectral features, ensuring segmentation
result integrity, and effectively distinguishing background
pixels. Additionally, FFMs play a crucial role in alleviating
the influence of image differences stemming from various
sensors, optimizing the feature fusion effect, and achieving

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

improvements of 1.45% in F1 score and 2.75% in IoU on
the test data.

4) The proposed method achieves a trade-off between com-
putational cost and accuracy. On the test device, PV-Unet
achieved 184.074 FPS and 56.5897M parameters while
achieving the best accuracy.

This study provides an effective method for accurate segmen-
tation of PV panels using remote sensing images, which can fully
utilize the advantages of satellite remote sensing technology,
such as fast imaging speed, rich spectral channels, and long-
term observation. It is expected to provide convenience for the
identification of large-scale PV panels.
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