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LR Aerial Imagery Categorization by Transferring
Cross-Resolution Perceptual Experiences

Yue Yu and Yi Li

Abstract—Hundreds of satellites orbiting at various altitudes
capture an extensive array of aerial photographs daily. High-
altitude satellites typically acquire low-resolution (LR) images that
cover vast areas, whereas their low-altitude counterparts obtain
high-resolution (HR) images detailing much smaller regions. The
accurate interpretation of LR aerial imagery is crucial in the field of
computer vision, yet it presents significant challenges, including the
complexity of emulating human hierarchical visual perception and
the daunting task of annotating enough data for effective training.
To address these challenges, we introduce a cross-resolution per-
ceptual knowledge propagation (CPKP) framework, which aims
to leverage the visual perceptual insights gained from HR aerial
imagery to enhance the categorization of LR images. This approach
involves a novel low-rank model that segments each LR aerial
photo into distinct visually and semantically significant foreground
regions, alongside less pertinent background areas. This model
is capable of generating a gaze shifting path (GSP) that reflects
human gaze patterns and formulating a deep feature for each
GSP. Subsequently, a kernel-induced feature selection algorithm is
deployed to extract a concise yet powerful set of deep GSP features
that are effective across both LR and HR aerial images. Utilizing
these features, a linear classifier is collaboratively trained using
labels from both LR and HR images, facilitating the categorization
of LR images. Notably, the CPKP framework enhances the effi-
ciency of training the linear classifier, given that HR photo labels
are more readily available. Our comprehensive visualizations and
comparative analysis underscore the effectiveness and superiority
of this innovative approach.

Index Terms—Aerial photo, cross resolution, gaze shifting,
human perception, knowledge propagation.

I. INTRODUCTION

S INCE the launch of the first earth observation satellite in
October 1957, there has been significant advancement in

carrier rocket technology, remote sensing, and satellite commu-
nication, resulting in the deployment of hundreds of satellites
into orbit. Based on their orbital altitudes, these satellites can
be classified into high-altitude (over 2000 km) and low-altitude
(200–2000 km) categories. High-altitude satellites, in contrast
to their low-altitude counterparts, span broader areas and have
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longer orbital periods, resulting in the captured aerial photos
having lower resolutions than those taken from lower altitudes.
The ability to interpret the semantics of these low-resolution
(LR) aerial images plays a critical role in various computer
vision applications. For instance, periodic analysis of LR aerial
images can monitor the spatial distribution of wildlife, forests,
and wetlands, offering valuable insights into biodiversity and
aiding in the conservation of endangered species by managing
their habitats effectively. Moreover, in the realm of autonomous
logistics, understanding the semantic categories within each LR
aerial image is crucial for optimizing the routing of long-haul
driverless trucks by enabling the rapid and dynamic calculation
of the most efficient paths between locations. In addition, seman-
tic parsing of LR aerial images yields an understanding of the
functional zones and topological layouts of urban areas, signifi-
cantly benefiting urban planning tasks, such as 3-D architectural
modeling and land-use strategy development.

In the field of computer vision, a considerable number of
shallow and deep learning models for visual categorization and
annotation have been developed to process aerial imagery with
medium-to-high spatial resolutions (spatial resolution ≤ 10 m).
Noteworthy contributions in this area include: 1) object local-
ization in aerial photos employing multiple instance learning
and convolutional neural networks (CNNs) with weakly labeled
data [55], [56]; 2) the use of graphical models for semantic
information propagation to parse aerial images [6], [8]; and 3) the
development of sophisticated deep learning architectures specif-
ically tailored for the semantic annotation of aerial imagery [9],
[10], [11]. These methodologies have been validated through
rigorous experimentation and have found practical application
in commercial systems, demonstrating their effectiveness, user-
friendliness, and scalability. Nevertheless, it has been observed
that existing models face challenges in accurately representing
LR aerial photographs, attributable to three primary limitations.

1) Typically, there are tens of foreground objects within
each LR aerial photo, as shown on the top of Fig. 1.
To calculate the semantics of an LR aerial photo, we
expect a bionic model that simulates the process of hu-
man perceiving the foreground salient regions. Actually,
building a deep model that can simultaneously extract
the visually/semantically salient regions and engineer the
deep features for these extracted regions is nontrivial.
Potential challenges include: a) determining the sequence
of humans observing the extracted salient regions (e.g.,
the path displayed in Fig. 1); b) refining the contaminated
labels of the training LR aerial photos; and c) transferring
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Fig. 1. Top: the visually/semantically salient regions sequentially observed
by humans in an LR aerial photo (marked by path A → B → C → D → E →
F → G) and the blurred playground (marked by red dashed box). Bottom: three
HR aerial photos capture subregions of the LR aerial photo (the middle one
details the blurred playground inside the LR aerial photo).

image-level semantic labels into multiple regions inside
an LR aerial photo.

2) Compared with HR aerial photos, LR ones are practically
with an inferior image quality, as they are more sensitive
to a variety of uncontrollable factors, e.g., the varying
weather/lighting conditions and possibly communication
interference. This makes the number of labeled LR aerial
photos noticeably smaller than that of labeled HR ones.
Thus, training an image model solely based on LR images
is prone to overfitting. In practice, the HR and LR aerial
photos are captured asynchronistically, based on which
they characterize each area complementarily. As exempli-
fied in Fig. 1, a playground is blurred in an LR aerial photo
but clear in the HR one. To leverage HR aerial photos for
image model upgradation, we have to discover the joint
discriminative features shared between HR and LR aerial
photos. However, designing a discriminative model that
flexibly propagates human perceptual knowledge across
multiple resolutions remains unsolved.

3) Toward an efficient and interpretable image model for
semantic understanding, we want a set of highly discrim-
inative and low redundant features shared between HR
and LR aerial photos. However, instead of the original
feature space, the shared discriminative features may be
distributed in the high-order feature space, which may be
unexpectedly high dimensional. This makes the conven-
tional feature selection (FS) toward the high-order feature
space computationally intractable. Besides, visualizing
high-dimensional features on the high-order feature space
remains unsolved due to the implicit feature mapping from
the original feature space to the high-order one. Moreover,
discriminative FS and feature classification are generally
conducted separately. In theory, there is no guarantee
that the selected features can maximize the classification
performance. Ideally, we want a unified framework that
jointly optimizes FS and feature classification.

To address the challenges highlighted, we introduce a
cross-resolution perceptual knowledge propagation (CPKP)

Fig. 2. Pipeline of our LR aerial photo understanding framework based on
CPKP.

framework that leverages perceptual insights derived from
high-resolution (HR) aerial imagery to improve the categoriza-
tion of LR ones. An illustrative summary of our approach to
understanding LR aerial photos is presented in Fig. 2. Starting
with a substantial collection of HR and LR aerial images, in-
cluding some that are unlabeled, we initially map the internal
regions of these images onto a feature space that synergisti-
cally utilizes visual and semantic information. Following this,
a deep low-rank model is employed to segment each LR aerial
photo into sequences of visually and semantically significant
foreground regions, or gaze shifting paths (GSPs), alongside less
significant background areas, while concurrently computing the
deep features for each GSP. Our goal is to identify a streamlined
set of features that are discriminative across both HR and LR
aerial imagery. To this end, we project the deep GSP features into
a higher order kernel-induced feature space. In order to transfer
the perceptual knowledge gleaned from HR aerial images to LR
ones, we develop an FS algorithm that aims to: 1) minimize
the distribution discrepancies between LR and HR aerial pho-
tos, both marginally and conditionally, and 2) optimize linear
classification accuracy. The selected features are then used to
train a classifier using both labeled HR and LR images, thereby
addressing potential issues of sample inadequacy and preventing
overfitting in LR aerial photo categorization. Our method is
rigorously compared with 17 contemporary models in generic
and aerial image categorization, showcasing its superiority. In
addition, visualizations of the discriminative features common
to both HR and LR aerial images offer further insights, facili-
tating discussions on the efficacy and innovation of our CPKP
framework.

This article presents several significant advancements in the
field of aerial photo categorization, highlighted by the following
contributions: 1) the development of a deep low-rank model
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capable of identifying GSPs within LR aerial imagery and
simultaneously deriving deep GSP features; 2) the introduction
of a CPKP framework that efficiently identifies and selects
highly discriminative yet minimally redundant features common
to both HR and LR aerial photos. This approach effectively
addresses and mitigates the issue of model overfitting; and
3) the implementation of a kernel-induced feature space map-
ping technique. This method projects the extracted deep GSP
features into a higher order feature space, facilitating the simulta-
neous execution of FS and classifier training, thereby enhancing
the categorization process.

II. RELATED WORK

A. Semantic Analysis of Aerial Imagery

A variety of semantic models have been designed to interpret
aerial imagery, offering insights into both image- and region-
level characteristics. A detailed review of these deep learning
approaches to aerial photo understanding is presented in [61].

1) Image-Level Semantic Modeling: Notable efforts in this
domain include the work by Zhang et al. [57], who introduced
a topological feature capturing inter-region connections within
aerial images, utilizing a kernel-induced vector for image cate-
gorization. Xia et al. [59] explored a weakly supervised approach
for semantically labeling HR aerial images. Akar [60] merged
rotation forest techniques with object-level feature extraction for
multicategory classification of aerial photos. Sameen et al. [62]
constructed a hierarchical CNN to identify multiple labels of
HR aerial images, particularly those depicting urban areas.
Cheng et al. [58] applied a pretrained deep CNN, fine-tuned
with a domain-specific dataset, for classifying HR aerial im-
agery. A cross-modality learning framework by Hong et al. [43]
collaboratively utilized five deep models, integrating pixel- and
spatial-level features for aerial image categorization. Cai and
Wei [12] introduced a cross-attention mechanism for feature
weight learning, while Bazi et al. [64] employed a vision trans-
former for capturing long-term contextual relationships among
image regions.

2) Region-Level Semantic Modeling: Wang et al. [4] devel-
oped an end-to-end network for identifying multiscale salient
objects within aerial photos. A focal-loss-based model by
Yang et al. [1] efficiently locates vehicles, and Costea and
Leordeanu [63] devised a geolocalization approach through
the extraction of urban features like intersections and streets.
Yu et al. [19] combined feature enhancement with soft label
assignments for anchor-independent object detection in aerial
images. Wang et al. [20] proposed a rotation-invariant detector
for estimating object angles, and Chalavadi et al. [54] introduced
mSODANet, a parallel deep model learning contextual features
from objects across multiple scales and fields of view.

Distinctively, our approach draws inspiration from biotic
mechanisms, closely replicating human gaze behavior for en-
hanced semantic interpretation of aerial photos. Additional inno-
vative methodologies include a self-guided separating network
for remote sensing imagery analysis by Wang et al. [35], ad-
dressing feature representation inconsistencies and background–
target imbalance. A large kernel sparse deep model by Wang

et al. [36] focuses on capturing extensive receptive fields, and
a spatial–logical aggregation network by Zhang et al. [37] aims
to reveal fine-grained morphological structures in hyperspectral
images.

B. Supervised FS Techniques

Supervised FS methods evaluate the importance of features
based on their correlation with target labels. Nie et al. [16]
developed a robust FS algorithm leveraging l1,2-norm regular-
ization to optimize FS criteria. An innovative and scalable FS
framework suited for high-dimensional data was introduced by
Gui et al. [17]. They crafted an attention-driven algorithm for
scoring features under supervision, employing a smooth hinge
loss to encourage sparsity and select discriminative features.
The l1,3-norm combined with an exclusive lasso approach for
FS was explored in [18], effectively filtering out redundant and
irrelevant features. An approach prioritizing the maximization
of between-class variance to within-class variance, termed the
worst case, was introduced as a criterion for discerning key
features. Ahadzadeh et al. [15] presented a two-phase FS strat-
egy using particle swarm optimization for high-dimensional
datasets, initially removing low-quality features globally before
finely identifying the most discriminative ones locally. These
conventional FS methods operate in the original feature space,
which may not adequately represent samples distributed in a
higher order kernel space. Addressing this, Song et al. [30] pro-
posed a kernel-based FS method utilizing the Hilbert–Schmidt
independence criterion (HSIC) to enhance feature-label cor-
relation. Masaeli et al. [31] developed an HSIC-based im-
plicit FS technique using an l1/l∞-norm regularizer for feature
transformation. The HSIC-LASSO by Yamada et al. [32] em-
ploys the dual augmented Lagrangian for global optimization.
Chen et al. [33] introduced a kernel-induced feature selector
focusing on identifying the most discriminative subset of fea-
tures. Chen et al. [33] advanced multikernel FS by attributing
an indefinite base kernel to each feature and deriving sparse
kernel combination coefficients through an l1-norm. Unlike
these approaches, our CPKP-based feature selector uniquely
enables: 1) the explicit and discriminative selection of deep GSP
features within the kernel space; 2) the identification of features
that distinctly categorize LR/HR aerial images across various
classes; and 3) the utilization of cross-resolution perceptual
insights to refine the FS process.

III. OUR PROPOSED METHOD

A. Deep Low-Rank Algorithm for GSP Learning

Within each LR aerial photograph, a myriad of fine-grained
objects can be identified. Biological research [2] suggests that
human vision tends to focus on a limited subset of objects
that are visually or semantically salient during the perception
process. Specifically, when viewing an LR aerial photo, the
human gaze is initially drawn to prominent ground features,
while less conspicuous background areas remain largely unex-
amined. This pattern of human visual attention provides valuable
insights for classifying LR aerial imagery. Consequently, we
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introduce a deep low-rank model designed to iteratively identify
and select salient image patches, thereby forming GSPs, while
concurrently deriving their deep features.

Human visual perception theory further highlights a signif-
icant self-representativeness or correlation among nonsalient
background patches within each scene, in stark contrast to
the salient foreground patches that exhibit minimal correlation.
Inspired by this distinction, our approach involves segmenting
the feature matrix X ∈ RT×N of each LR aerial photo into
components representing salient and nonsalient regions. This
methodology enables a more nuanced analysis of aerial imagery,
leveraging the inherent contrast between foreground interest
points and the background to enhance photo categorization

X = Y +E (1)

where N counts the image patches within each LR aerial photo
and T its feature dimensionality. Y ∈ RT×N preserves feature
columns corresponding to the nonsalient background image
patches (the other columns are all zeros). E ∈ RT×N represents
feature columns corresponding to the salient image patches (the
other columns are all zeros).

Aiming at a unique solution indicating the salient image
patches, some criteria are proposed to constrain Y and E. In our
work, two observations are made. First, only a small fraction
of image patches within each LR aerial photo are salient and
will be processed by the human vision system in detail. This
mathematically reflects that E is a sparse matrix. Second, the
high correlation of the nonsalient background image patches
indicates that Y is a low-rank matrix. Based on these, we select
the salient image patches by seamlessly integrating a sparsity
and low-rankness constraint into (1)

min
Y,Ω

||Y||∗ + αl1(E) + βl2(Y, f(Υ,X)) + γΩ(Υ) (2)

where || · ||∗ is the matrix nuclear norm representing a convex ap-
proximation to matrix rank function, l1(E)quantizes the sparsity
of E, f(Υ,X)) selects nonsalient background image patches
from each LR aerial photo, and l2(Y, f(Υ,X)) penalizes the
loss of nonsalient background image patch selection. Ω(Υ)
serves as a regularizer. α, β, and γ are nonnegative parameters
balancing the tradeoff among the corresponding terms. More
concretely, to ensure a highly sparse E, l1(·) is defined as

l1(E) = ||E||1. (3)

Practically, each entity of Y is nonnegative. Herein, we set
l2(a, b) = (a− b)2/2 to calculate the image patch selection
error. Thereby, objective function (2) can be upgraded into

min
Y,Ω

||Y||∗ + α||E||1 + β||Y − f(Υ,X)||2F

+ γΩ(Υ), Y ≥ 0. (4)

To precisely select the nonsalient background image patches
inside each LR aerial photo, we propose to learn a deep semantic
model f(Υ,X). It includesL layers of linear/nonlinear transfor-
mations. The deep representation from the top layer is denoted
by h(Xi) and Xi is the T -dimensional column feature vector
from the ith image patch. Meanwhile, the current layer’s output

is utilized as the input of the next layer. Mathematically, this can
be represented as

h(Xi) = gL(Xi) (5)

gl(Xi) = φ(Zlhl−1(Xi + ξl), l = 1, . . . , L (6)

where φ(·) denotes the activation function and gl(·) the lth
layer’s output. Zl and ξl represent the transformation matrix
and the bias corresponding to the lth layer, respectively. The
first layer’s input is Xi, based on which the first layer’s output
is calculated as

g1(Xi) = φ(Z1Xi + ξ1), l = 1, . . . , L. (7)

We want the deeply learned feature h(Xi) sufficiently dis-
criminative for selecting the nonsalient background image
patches. Without loss of generality, we adopt a linear mapping
function to such a selection process

f(Υ,X) = Zh(X) (8)

where parameter set Υ = {Z1, . . . ,ZL,Z, ξ1, . . . , ξL}.
To mitigate the overfitting problem, we design a regularization

term to penalize model complexity. Herein, the regularization
function Ω(Υ) is given as

Ω(Υ) =
1

2

(
||Z||2F +

L∑
i=1

(||Zl||2F + ||ξ||22)
)
. (9)

By leveraging the definitions in (3), (8), and (9), objective
function (4) can be upgraded into

min
Y≥0,Zl,Z,ξl

||Y||∗ + α||E||1 + β||Y − Zh(X)||2F

+
γ

2

(
||Z||2F +

L∑
i=1

(||Zl||2F + ||ξ||22
))

. (10)

We observe that (10) is a nonconvex optimization over the
entire variables. In our implementation, we follow the iterative
algorithm in [3] to solve it. Thereafter, denoting Y∗ as the
optimal solution of (10), the saliency score of the ith image
patch in an LR aerial photo is calculated by

s(Xi) = ||E∗(:, i)||2 (11)

where E∗ = X−Y∗, and E∗(:, i) denotes the ith column of
E∗. A larger s(Xi) means that the ith image patch is more
visually/semantically salient. Given an LR aerial photo, we
sequentially link the top K salient image patches to constitute
its GSP. Accordingly, the deep feature of the GSP is obtained by
sequentially concatenating the deep features of its constituent
K image patches.

B. CPKP for FS

The deep GSP features derived from LR aerial imagery typ-
ically reside within a complex high-dimensional space. Given
the limited availability of labeled LR aerial photos, this scenario
poses a challenge known as the “curse of dimensionality,” which
can adversely affect the categorization of LR aerial images. To
address this issue, we introduce a CPKP framework designed
to identify and select a concise yet highly discriminative set of
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features common to both HR and LR aerial images. This process
enables the use of selected features from both HR and LR images
to collaboratively train the categorization model, effectively
bridging the gap between different resolutions. Essentially, the
CPKP approach serves to not only diminish the feature space
dimensionality but also to augment the pool of training samples,
thereby significantly alleviating the challenges posed by high
dimensionality.

1) Feature Mapping by Approximating Polynomial Kernel:
The polynomial kernel can be mathematically represented as

ϕ(u,v) = (τuTv + κ)Q (12)

whereQdenotes the degree. Such kernel is comprised of features
whose monomial’s degree is smaller thanQ. This can be further
represented as

ϕq,e(u) =
√
Cq

Q · κQ−q
∏q

j=1
uej , i = 0, . . . , Q (13)

where e ∈ {1, . . . , TK}q enumerates the entire selections of
q-dimensional coordinates in u, and TK is the dimensionality
of deep GSP feature. By leveraging the multinomial theorem,
(13) can be reorganized into

ϕ(u) = ∪Q
q=1{ϕq,e∈{1,...,TK}q (u)}. (14)

This reflects that for degree Q, there are a total of S = CQ
TK+Q

candidate features for FS, where operator Cj
i counts the combi-

nations of selecting j features from i features. Noticeably, our
FS also supports other kernels like linear kernel and radial basis
function (RBF).

2) Objective Function of FS: By leveraging the above ex-
plicit feature map, deep GSP features engineered from HR and
LR aerial photos are represented by {(ϕ(ui) ∈ RS), rHi }MH

i=1

and {(ϕ(ui) ∈ RS), rLi }M
L

i=1 , respectively, where MH and ML

count the HR and LR aerial photos, respectively. rHi and rLi
denote the category labels of the HR and LR aerial photos,
respectively. It is worth emphasizing that, for some LR aerial
photos, these labels might be absent. As shown in (14), the
number of explicit features increases exponentially with Q and
TK. Herein, a novel FS algorithm is proposed to select features
discriminative to both HR and LR aerial photos.

Without loss of generality, we assume that all the HR aerial
photos are labeled, while the LR ones are unlabeled. We denote
the HR aerial photos as {uH

i , r
H
i ⊆ {1, . . . , B}}MH

i=1 , where uH
i

denotes the TK-dimensional deep GSP feature and rHi the
corresponding category labels. We denote UH = {ui}MH

i=1 as
deep GSP features from the entire HR aerial photos. Similarly,
we denote the unlabeled target data as UL = {uL

i }M
L

i=1 , where
UL are deep GSP features from the LR aerial photos. Let
pH(UH) and pH(UH) be the marginal distributions of UH and
UL, respectively, and qH(UH) and qH(UH) be the conditional
distributions of UH and UL, respectively. The objective of our
FS is to select an optimal feature set that predicts labels {rLi }M

L

i=1

using the input LR aerial photos {uL
i }M

L

i=1 under assumptions
pH(uH) 
= pH(uH) and qH(rH |uH) 
= qH(rL|uL).

It is reasonable to assume that there exists a binary indica-
tor s ∈ {0, 1}S , such that p(ϕ(uH)� s) ≈ p(ϕ(uL)� s) and

p(rH |ϕ(uH)� s) ≈ p(ϕ(rL|uL)� s). Our target is to learn
the indicator s. Since we practically have insufficient LR aerial
photos, s cannot be effectively learned due to the overfitting
problem. In this way, we propose to learn binary indicator s
and a linear classifier H jointly, in order to satisfy the fol-
lowing three criteria: 1) the distance between the marginal
distributions p(ϕ(uH)� s) and p(ϕ(uL)� s) is sufficiently
small; 2) ϕ(uH)� s and ϕ(uL)� s preserve the discrimina-
tive features of deep GSP features ϕ(UH) and ϕ(UL), based
on which p(rH |ϕ(uH)� s) ≈ p(ϕ(rL|uL)� s); and 3) the
learned classifier C(uL) = (ϕ(uL)� s)H can optimally cat-
egorize the training LR aerial photos ϕ(uL). These criteria can
be mathematically represented in the following subsections.

a) Marginal distribution discrepancy minimization:
Given the polynomial-kernel-based feature mapping ϕ(u)
induced by (14), we aim to minimize the marginal distribution
discrepancy by FS. This can be formulated as

min
s∈S

η1(s)

=

∣∣∣∣∣
∣∣∣∣∣ 1

MH

∑
uH∈UH

ϕ(uH)� s− 1

ML

∑
uL∈UL

ϕ(uL)� s

∣∣∣∣∣
∣∣∣∣∣
2

F

(15)

where || · ||2F denotes the squared Frobenius norm, the binary in-
dicator’s domain is represented by S = {s|s ∈ {0, 1}S , ||s||0 ≤
A}, and A is the maximum number of selected features. Ap-
parently, only minimizing the marginal distribution discrepancy
cannot maximally reduce the conditional distribution discrep-
ancy. Herein, the conditional distribution discrepancy minimiza-
tion is formulated as follows.

b) Conditional distribution discrepancy minimization:
We notice that qL(rL|uL) of the LR aerial photos is unknown.
Thus, it is infeasible to directly compare the conditional distri-
butions. Researchers proposed to compare pairwise conditional
distributions by predicting their kernel densities. Nevertheless,
this method requires the prespecified labels of the LR aerial
photos, which are usually unavailable in practice.

Motivated by Pan et al. [5], a linear classifier C(u) = (ϕ(u)�
s)H is learned from the labeled HR aerial photos to calculate the
category labels of the LR aerial photos. Practically, the posterior
probabilities qH(rH |uH) and qH(rL|uL) have complicated
forms. Instead, we utilize the class-conditional distributions
qH(uH |rH = b) and qL(uL|rL = b). More specifically, we first
calculate the conditional distribution distance between HR and
LR aerial photos labeled by b ⊆ {1, . . . , B}. Thereafter, we
attempt to minimize the conditional distribution discrepancy,
i.e.,

min
s∈S

η2(s)

=

∣∣∣∣∣∣
∣∣∣∣∣∣

1

MH
b

∑
uH∈UH

b

ϕ(uH)� s− 1

ML
b

∑
uL∈UL

b

ϕ(uL)� s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(16)
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where UH
b denotes the HR aerial photos with category label

b and MH
b counts their number. UL

b represents the LR aerial
photos with pseudo label b and ML

b denotes their number.
c) Empirical error minimization: As we mentioned, we

expect that the selected features not only minimize the distribu-
tion difference but also are sufficiently discriminative for visual
categorization. Toward a succinct set of discriminative features,
the third criterion is to minimize the empirical error. In our
implementation, One-vs-All coding of error-correcting output
codes (ECOCs) [5] is employed. Mathematically, if rHi = b, then
the ECOC is a vector, where the bth entry is one while others are
zero. Since we hypothesize that LR aerial photos are unlabeled,
the empirical error of the HR ones will be minimized, i.e.,

min
s∈S

min
H

η3(s,H) =
∑

ui∈UH

1

2
||εi||2F +

ψ

2
||H||2F

s.t. εi = (ϕ(ui)� s)H− ri, i = 1, . . . ,MH .
(17)

In our work, the pseudolabels of LR aerial photos are calculated
by

rL∗ = arg max
b∈{1,...,B}

Cb(uL) (18)

where Cb denotes the bth entity of CL
b (u) = (ϕ(uL)� s)H.

Practically, although many pseudolabels may be mistaken, it
is suitable to compare the conditional distributions. This is
because, different from density estimation, the conditional dis-
tributions are compared by exploiting sample statistics. In this
way, the classifier C can be updated progressively along with the
designed iterative optimization.

By combining the above criteria, the final objective function
is given as

min
s∈S

min
H

η(s,H) = η1(s) + η2(s) + η3(s,H)

s.t. εi = (ϕ(ui)� s)H− ri, i = 1, . . . ,MH .
(19)

This objective function is NP-hard due to the combinatorial in-
tegral constraints on s. Herein, an efficient solution is elaborated
online.1

IV. EXPERIMENTAL EVALUATION AND INSIGHTS

Our study assesses the performance of LR aerial photo cat-
egorization through a series of four detailed experiments. Ini-
tially, we introduce a meticulously curated dataset comprising
over 3.7 million LR and HR aerial images sourced from the
top 100 metropolitan areas across various continents. Utilizing
this extensive image set, we benchmark our proposed method
against 17 leading deep categorization models, examining as-
pects such as accuracy, stability, and computational efficiency.
This comparative analysis sheds light on the superior perfor-
mance and competitive edge of our approach. Subsequently,

1https://docs.google.com/document/d/1JtCVkH3vXc8KgRf1JID8-mG60-
91jj7O/edit?usp=sharing&ouid=101578137679720572579&rtpof=true&sd=
true

Fig. 3. Number of HR/LR aerial photos crawled from the 100 metropolitan
cities selected by us.

we fine-tune our model by systematically adjusting its intrinsic
parameters, aiming to identify the optimal configuration for
enhanced categorization performance. Furthermore, an ablation
study is conducted to dissect and evaluate the contribution of
each critical component within our CPKP-based categorization
framework. In parallel, we present visualizations of the visu-
ally and semantically significant regions identified through our
CPKP-based FS, offering additional insights into the model’s
operational dynamics.

All experiments were executed on a high-performance com-
puting cluster equipped with 16 Intel i9-12900K CPUs, 512 GB
of RAM, and four Nvidia GeForce RTX 3090Ti graphics cards.
The baseline models for comparison were implemented using
C++ and Python, ensuring a rigorous and fair evaluation of our
categorization methodology.

A. Dataset Description

To rigorously assess our aerial photo categorization model,
we embarked on creating a comprehensive dataset, recognizing
the absence of a suitable large-scale collection of LR and HR
aerial images across diverse categories in existing research.
This endeavor required substantial effort, culminating in the
assembly of a dataset exceeding 3.6 million LR and HR aerial
images. These images were sourced from Google, Apple, and
Bing Maps, with a dedicated crawler software developed for this
purpose, which operated for a total of 4310 h to search for and
download the necessary imagery. Specifically, we utilized the
names of the 100 most renowned metropolitan areas worldwide
as search keywords on these mapping services, as illustrated in
Fig. 3. The dataset encompasses 46 cities from North America,
38 from Europe, ten from Asia, four from Oceania, and two
from South America. The LR and HR aerial images extracted
from the cached maps vary significantly in resolution, with HR
images ranging between 5K × 5K and 22K × 22K pixels. To

https://docs.google.com/document/d/1JtCVkH3vXc8KgRf1JID8-mG60-91jj7O/edit{?}usp=sharing&ouid=101578137679720572579&rtpof=true&sd=true
https://docs.google.com/document/d/1JtCVkH3vXc8KgRf1JID8-mG60-91jj7O/edit{?}usp=sharing&ouid=101578137679720572579&rtpof=true&sd=true
https://docs.google.com/document/d/1JtCVkH3vXc8KgRf1JID8-mG60-91jj7O/edit{?}usp=sharing&ouid=101578137679720572579&rtpof=true&sd=true
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Fig. 4. Foggy (left) and blurred sensitive military (right) regions.

maintain consistency, we capped the resolution of HR aerial
photos at a maximum of 22K × 22K pixels. Conversely, the
LR images feature resolutions from 0.35K × 0.35K to 2K × 2K
pixels. This specific range of resolutions was chosen based on
several criteria: 1) to ensure that each HR aerial photo could be
broadly associated with up to four distinct categories; 2) to limit
the overlap between any two LR/HR aerial photos to a maximum
of 5%; and 3) to avoid the issue where too few pixels in an
LR aerial image would render it virtually indecipherable. This
meticulous dataset compilation allows us to conduct a thorough
and nuanced evaluation of our categorization model, bridging a
significant gap in the field of aerial imagery analysis.

In the process of assembling our dataset, we encountered in-
stances where some LR and HR aerial images appeared blurred,
primarily due to adverse weather conditions or the photography
of sensitive military zones, as illustrated in Fig. 4. Our approach
is geared toward identifying object patches across varying scales
to extract deep perceptual features for visual categorization.
However, poor visibility in LR/HR aerial photos caused by in-
clement weather can compromise the integrity of categorization
accuracy comparisons. To address this, we opted to exclude
LR/HR aerial images if more than 20% of their pixels were
deemed unclear, applying a blur estimation technique introduced
by Tong et al. [47] to assess image clarity.

To demonstrate the impact of this refinement process quan-
titatively, we employed an image quality assessment algorithm
developed by Zhang et al. [48] to evaluate the quality of the
LR and HR aerial images within our dataset. According to the
results, depicted in Fig. 5, more than 74% of the images that
underwent this filtering process achieved quality scores above
0.7, underscoring the effectiveness of our method in enhancing
the dataset’s overall clarity and reliability for subsequent cate-
gorization tasks.

After assembling our extensive collection of LR and HR aerial
images, the crucial task of annotating them for category labels
commenced. A team of 106 volunteers—graduate students from
our computer science department with ages ranging from 24 to
31 and equipped with experience in image processing and pattern
recognition (comprising 57 males and 49 females)—initially
manually annotated 23.8% of the HR aerial images across each
metropolitan area, employing a total of 47 distinct category
labels. Subsequently, we developed a multilabel support vec-
tor machine (SVM) classifier to extend these annotations to
the remaining unlabeled LR and HR aerial images. Following
the automated labeling process, the same team of volunteers
reviewed and corrected the SVM-generated labels to ensure
accuracy. Notably, we identified that several category labels

Fig. 5. Statistics of LR and HR aerial photos with different quality scores in
our complied LR and HR aerial photo set.

TABLE I
SELECTED 18 CATEGORIES AND THE CORRESPONDING LR AND HR AERIAL

PHOTO NUMBERS

were associated with a negligible number of images, rendering
the development of a robust categorization model for these
labels unfeasible. Consequently, we excluded any category label
represented by fewer than 200 000 images, ultimately narrowing
down to 18 distinct categories, as listed in Table I. Analysis
revealed that 99.983% of the LR and HR aerial images were
tagged with no more than four category labels. A minuscule
fraction had a higher number of labels (ranging from 5 to 15),
typically indicating images with numerous small regions (less
than 200× 200 pixels) that could potentially introduce noise.
These images were thus excluded from the dataset. Finally, we
organized the entire collection of LR and HR aerial images
alphabetically by file name. All HR images were used for model
training, with the first half of LR images in each category
forming the training set and the remaining half designated for
testing. This structured approach facilitated a comprehensive
and systematic evaluation of our categorization model.

B. Comparative Study

1) Accuracy Comparison: In this experiment, we evaluate
our LR aerial photo categorization by comparing its effec-
tiveness and efficiency with a bunch of counterparts. We first
compare our method with deep architectures tailored for aerial
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TABLE II
ACCURACIES WITH STANDARD ERRORS OF THE 18 CATEGORIZATION MODELS

photo categorization. Moreover, we compare our method with
state-of-the-art deep generic object/scene recognition models.

In the first place, we compare our method with seven deep
categorization models [23], [24], [25], [26], [27], [28], [29] that
intrinsically encode some prior knowledge of different aerial
photo categories. We notice that the source codes of [23], [24],
[27], and [28] are publicly available. Thereby, we conduct com-
parative study wherein the parameter settings are set as default.
For [25], [26], and [29], the source codes are unavailable to our
knowledge. In this way, we reimplement them using Python by
ourselves. We have tried our best to make the reimplemented
models perform similarly to the results reported in their publi-
cations.

Nowadays, many deep generic recognition models perform
impressively on categorizing aerial photos. In this experi-
ment, we first compare our method with ten deep generic
object categorization models: the spatial pyramid pooling
CNN (SPP-CNN) [52], CleanNet [13], discriminative filter
bank (DFB) [14], multilayer CNN-RNN (ML-CRNN) [21],
multilabel graph convolutional network (ML-GCN) [45],
semantic-specific graph (SSG) [46], and multilabel transformer
(MLT) [49]. Furthermore, since LR aerial photo categorization
can be deemed as a subtopic of scenery classification, we ad-
ditionally compare our method with three well-known scenery
classification models [22], [42], [44]. For these models, only
the source codes of [22] are unavailable. Thus, we reimplement
them using C++.

For the categorization models implemented by ourselves, the
experimental setups are briefed as follows. In [25], we utilize

the ResNet-152 [34] as the backbone, which is subsequently
upgraded into a multilabel variant. Except for the last fully
connected layer (unit number is fixed at 13), the other layers
are initialized by the ResNet-152 trained from ImageNet [53].
For [26], the weights in the 1536-D long short-term memory
layer are initialized by a random number between −0.2 and 0.2.
Meanwhile, the Nesterov Adam is deployed as the optimizer,
wherein the learning rate is set to 1e-6. For [29], the domain
adaptation is implemented from the RSSCN7 [28] to our com-
piled LR and HR aerial photo set. The ResNet101V2 [34] is
employed as the backbone, and the stochastic gradient descent
optimizes the entire network. The learning ratio and weight
decay are set to 1e-4 and 0.03, respectively. The network loss
is calculated by the mean squared error. For [22], we retrain the
object bank [51] based on our refined 18 LR and HR aerial photo
categories, wherein the average pooling strategy is applied. We
employ the liblinear as the SVM solver, wherein the sevenfold
cross validation is utilized.

For the above 18 compared object/scene categorization mod-
els, we repeatedly test each model ten times, and the average
accuracies are displayed in Table II. To quantify the stability
of these categorization models, we report their standard errors
simultaneously. We observe that the per-category standard errors
produced by our method are significantly and consistently lower
than its competitors. This demonstrated that our method is the
most stable. In summary, the following conclusions can be made.

1) Our method outperforms the other aerial photo categoriza-
tion models remarkably due to three reasons. First, to facil-
itate deep model training, our competitors typically resize
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TABLE III
TRAINING/TESTING TIME OF THE 18 CATEGORIZATION MODELS

each original aerial photo to a fixed and much smaller size
(e.g., 128× 128) for the subsequent hierarchical feature
engineering. This hurts the learning of an LR aerial photo
categorization model since many tiny but discriminative
visual details will be lost. Second, expect for our method,
none of the seven counterparts can select high-quality
features by leveraging discriminative information from
HR aerial photos. Third, only our method generates GSPs
sequentially capturing the semantics of LR aerial photos
perceived by humans. They are further incorporated into
a CPKP-based FS for calculating category labels. Com-
paratively, the seven counterparts only globally/locally
characterize each LR aerial photo, wherein the perceptual
visual features are neglected.

2) The seven generic object recognition algorithms perform
inferiorly than ours because of three reasons. First, these
generic recognition models generally handle medium-
sized images typically containing tens of salient objects.
They can hardly discover the tiny but discriminative re-
gions inside each LR aerial photo. Second, our method
can flexibly incorporate the prior knowledge of HR aerial
photos. Contrastively, the seven generic object recogni-
tion models cannot encode such information. Third, by
leveraging our CPKP-based FS, our method can dynam-
ically abandon those indiscriminative regions. However,
the seven generic object recognition models do not have
this function.

3) The three scene categorization models perform unsatis-
factorily on LR aerial photos. This is because they deeply
and implicitly learn a descriptive set of scene-aware se-
mantic categories, such as “birds” and “tables,” which
infrequently appear on our LR aerial photo set. Moreover,
the three categorization methods can successfully handle
sceneries captured at horizontal view angles. However, our
collected LR aerial photos are captured at overhead view
angles. Apparently, such view angle gap will decrease the
categorization accuracy.

2) Training/testing Time Comparison: It is generally ac-
knowledged that time consumption is a key criterion reflecting
the performance of a categorization model. Herein, we report
the training and testing time of the aforementioned 18 aerial
photo categorization models. As shown in Table III, during
training, only two baseline models are faster than our pipeline.
This is because the architectures of [45] and [52] are much
simpler than ours. Meanwhile, we observe that the per-category
accuracies of [45] and [52] are noticeably lower than ours. For
the testing time comparison, our method can be conducted at a
significantly faster speed than all the baseline methods. Notably,

distinguished from model training that can be conducted offline,
outstanding testing time is comparably more valuable to many
time-sensitive artificial intelligence systems, such as weather
forecasting and automatic navigation.

Our LR aerial photo categorization pipeline involves three key
modules: 1) GSP learning using the deep low-rank algorithm;
2) CPKP-based FS; and 3) feature classification for category
labels. During training, the time consumed for each module is:
9 h 12 min (module 1), 10 h 11 min (module 2), and 3 h 58 min
(module 3). During testing, the time cost of each module is:
77 ms (module 1), 3 ms (module 2), and 12 ms (module 3). We
observe that most of the training time is spent for module 1, and
practically this can be accelerated by Nvidia GPUs.

C. Parameter Analysis

In our analysis, we identified two distinct groups of ad-
justable parameters that significantly impact performance. The
first group includes the weights (α,β, andγ) that regulate various
aspects of the deep low-rank model, alongside the number of
deep layers, L. The second group comprises the polynomial
kernel degree, Q, and the target dimensionality for the CPKP-
based FS, V . This section details the impact of these parameters
on the accuracy of LR aerial photo categorization. For the initial
parameter set (α, β, γ, and L), we established default values of
0.3, 0.1, 0.15, and 7, respectively, determined through a compre-
hensive tenfold cross-validation process involving a validation
set of 54 000 samples. This set was composed of selecting 3000
LR aerial photos from each category. Specifically, we varied
α, β, and γ from 0.05 to 1 in increments of 0.05, exhaustively
testing all possible combinations to identify the configuration
yielding the highest categorization accuracy. Following this, we
individually adjusted each of these three parameters from 0.05 to
1 in increments of 0.01, observing their corresponding effects on
categorization accuracy. As illustrated in the top part of Fig. 6,
each parameter showed a consistent increase in performance up
to a peak, followed by a decline, demonstrating a monotonic
relationship that facilitates optimal parameter tuning.

Furthermore, the impact of varying L from 1 to 7 demon-
strated a steady improvement in categorization accuracy, which
then plateaued, as shown in the lower part of Fig. 6. This
observation suggests that while a deeper model provides a more
complex representation capability, it also introduces a higher risk
of overfitting. Consequently, we selected L = 7 as the optimal
setting, balancing model depth with the potential for overfitting.

Next, we evaluate LR aerial photo categorization by changing
the polynomial kernel degreeQ and the target dimensionality for
CPKP-based FSV . We first fixV and tuneQ from one to five and
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Fig. 6. LR aerial photo categorization accuracies by varying α, β, and γ (left)
and L (right).

TABLE IV
CATEGORIZATION ACCURACIES BY TUNING Q

Fig. 7. LR aerial photo categorization accuracies by varying V .

report the LR aerial photo categorization accuracy. As shown in
Table IV, the highest accuracy is achieved when Q = 2. Mean-
while, we observe that the candidate feature number increases to
321 402 081 whenQ = 5. Based on these observations, we prone
to choose a smallQ in practice. Then, we fixQ atQ = 2 tune V
from zero to 100. As reported in Fig. 7, the highest categorization
accuracy is achieved when V = 18. This demonstrates that a
succinct set of high-quality features is sufficiently descriptive
for distinguishing different LR aerial photo categories.

Fig. 8. Visualized selected discriminative regions (red boxes) from ten rep-
resentative LR aerial photo categories. In each aerial photo, we set the number
of extracted BING object patches to nine. Thus, we obtain nine boxes; each
corresponds to a BING object patch. Subsequently, for each aerial photo, we
use our CPKP-based FS to select five discriminative BING object patches from
the nine extracted ones. Each selected discriminative BING object patch is
colored by red, whereas the unselected ones are colored by green. As shown,
the red boxes usually enclose a discriminative and central object. This shows the
effectiveness of our CPKP in selecting high-quality features for LR aerial image
categorization. For example, the first row corresponds to category aircraft; most
of the red boxes localize the aircrafts.

D. Ablation Study

As aforementioned, our method is comprised of three key
modules: 1) GSP learning using the deep low-rank algorithm;
2) our designed CPKP-based FS; and 3) feature classification
for category labels. Herein, we validate their usefulness and
inseparability in our LR aerial photo categorization pipeline. We
replace each module by a functionally degraded one and report
the categorization accuracy decrement/increment. Accordingly,
insights are provided to elaborate the underlying reasons for the
observed results.

In the first place, to evaluate the effectiveness of the deep
low-rank algorithm, three experimental settings are deployed.
We first abandon the sparse constraint term ||E||1 in (11)
(marked by “S11”). Afterward, we degrade the deep feature
engineering term ||Y − Zh(X)||2F to a shallow one, that is, we
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TABLE V
LR AERIAL PHOTO CATEGORIZATION ACCURACY DECREMENTS (“−”) AND

INCREMENTS (“+”) BY REPLACING EACH OF THE THREE KEY MODULES

setL = 1 (marked by “S12”). Third, we abandon the regularizer
||Z||2F +

∑L
i=1(||Zl||2F + ||ξ||22) in (11) (marked by “S13”). We

report the variation of categorization accuracy in Table V, where
the intersection of column “Si” and row “Oj” corresponds to
experimental setup “Sij.” Noticeably, using a shallow feature
engineering module results in a sharp categorization accuracy
drop. Moreover, abandoning the regularizer significantly hurts
the categorization accuracy. This observation shows the neces-
sity to mitigate the overfitting of our adopted low-rank algorithm.

Subsequently, to evaluate the performance of our CPKP-based
FS, six different setups are applied to testify the usefulness of
the criteria in (19). We first replace the polynomial kernel by
sigmoid kernel (marked by “S21”), linear kernel (marked by
“S22”), and RBF (marked by “S23”). Afterward, we sequentially
abandon the first two terms in (19). We mark them by “S24”
(remove η1) and “S25” (remove η2), respectively. As shown
in the third column of Table V, minimizing only one of the
two distribution discrepancies significantly hurts the LR aerial
photo categorization. This observation quantitatively reflects the
importance of distribution consistences in perceptual knowledge
propagation.

Next, to evaluate the performance of the linear classifier
formulated in (17), we first replace it by kernel SVM (with
Gaussian (marked by “S31”) and linear kernels (marked by
“S32”)). Afterward, we replace it by a softmax layer that outputs
the category labels (marked by “S32”). As displayed in the last
column of Table V, training SVM classifiers separately sub-
stantially degrades LR aerial photo categorization. This clearly
demonstrates the superiority of jointly optimizing FS and clas-
sifier training.

Last but not least, we visualize the selected discriminative
features (regions) from ten representative categories in our
complied aerial photo set. To explicitly show the discriminative
regions, our CPKP-based FS is conducted on the original feature
space. As shown in Fig. 8, for each LR aerial photo, we display
the selected five discriminative regions from the entire nine can-
didate ones. Obviously, most of the selected regions optimally
enclose a discriminative and central object. This observation is
highly consistent with human visual perception.

V. CONCLUSION

The task of aerial image recognition has become a critical
application within the realm of deep neural networks [38],
[39], [40], [41]. In this context, we have introduced an in-
novative pipeline for the categorization of LR aerial photos,
enhanced through cross-resolution techniques that leverage

the deep perceptual insights derived from HR aerial images.
Our approach is structured around three principal components:
1) a deep low-rank model designed to extract GSP features
from both LR and HR aerial imagery; 2) a CPKP-based FS
mechanism that identifies and selects premium quality features
within a high-order feature space; and 3) a linear classifier that
is synergistically trained in conjunction with the CPKP-based
FS process. The breadth of our experimental analysis confirms
the effectiveness and competitive edge of our methodology in
aerial photo categorization.
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