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A Physical Method for Optical Characterization of
Pollution in Industrial Wastewater Ponds Using

Imaging Spectroscopy
Louis Zaugg , Rodolphe Marion , Malik Chami , Xavier Briottet , and Laure Roupioz

Abstract—Investigating the application of remote sensing to
water pollution in industrial ponds is of great interest for rapid
and cost-effective pollution monitoring. This article presents a
method to detect pollutants and map their spatial distribution in
industrial ponds using the water inherent optical properties (IOPs),
namely the absorption and backscattering coefficients, derived
from imaging spectroscopy data. The IOPs of industrial water
pollutants remain poorly known. Current remote sensing methods
are site-specific and require in situ measurements to calibrate em-
pirically based models. Here, a generic approach is proposed based
on the semianalytical radiative transfer model adapted to take
into account both the absorption and backscattering coefficients of
pollutant particles. The model is then inverted using an alternating
multipixel method, named industrial wastewater optical character-
ization (IWOC), to map the spatial distribution of the pollutants.
The performances of IWOC are evaluated using noise-free and
noisy simulated datasets for an absorption-dominated water case
and a backscattering-dominated water case. The water reflectance
spectra (Rrs) for noise-free synthetic datasets are satisfactorily
retrieved by the IWOC method. The optical properties of the pollu-
tants are also well retrieved, with maximum root mean square error
(RMSE) values of 2.43 × 10−3 m−1 for the absorption-dominated
case and fairly zero for the backscattering-dominated case. A
sensitivity study shows that the impact of noise is the highest on
the estimates of the spectral slope exponent of the backscattering
coefficient. The performances of the IWOC method are also exam-
ined through hyperspectral airborne images acquired over relevant
study areas. The reflectance Rrs is well retrieved with RMSE values
ranging from 7.5 × 10−5 sr−1 to 5.82 × 10−4 sr−1. The a priori
knowledge of the properties of the study areas is consistent with
the spatial distribution of the effluents within the ponds as derived
from the remote sensing observations. The approach conducted in
this article is a first step toward a generic inversion method for the
optical characterization of pollution sources in water, which could
further lead to an operational method.

Index Terms—Imaging spectroscopy, inversion method, optical
characterization, water pollution.
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I. INTRODUCTION

WATER is a natural resource whose management is sub-
ject to political, environmental, and societal debates.

With an increasing population living close to coastlines and
increasing fresh water needs, water pollution has become a major
issue requiring large-scale and rapid monitoring. Although the
impact of industrial activities has decreased over the last few
decades due to more stringent legislation, they are still one
of the major sources of water pollution worldwide [1]. Water
is often used in industrial processes for chemical, physical,
or mechanical purposes. It may be contaminated with various
undesired by-products. It is therefore necessary to treat the
effluents before releasing them back into natural water streams.
Industrial settling ponds are often used for such treatment [2].
The primary objective of settling ponds is to allow the suspended
solids settling at the bottom. Such a process helps minimizing
impurities, thus resulting in the production of solid waste. This
industrial pollution depends on the type of plant and its effluents
[3], which may contain highly hazardous chemicals, including
heavy metals or acids, as well as organic and inorganic mate-
rials that can harm the ecosystem. The analysis of such water
bodies typically relies on in situ experiments, which are often
time-consuming and limited in spatial coverage. In this context,
remote sensing offers a relevant solution for monitoring water
pollution at a large scale.

Imaging spectroscopy has proven to be an efficient technique
for optically characterizing water environments within the 400–
1000 nm spectral range. Numerous methods have been pro-
posed for analyzing natural waters using spectroscopic data ([4]
and references therein). These methods enable the assessment
of water quality by monitoring natural components, such as
phytoplankton pigments (e.g., chlorophyll-a), colored dissolved
organic matter (CDOM), or suspended particulate matter (SPM)
concentration both spatially and temporally [5], [6], [7], [8]. The
optical properties of open waters dominated by phytoplankton
features (commonly known as case-1 water type) are extensively
documented ([9] and references therein). Coastal and inland
waters, such as rivers or lakes (often referred to as case-2 water
type), typically have higher concentrations of CDOM and/or
SPM compared to open waters. The monitoring of their quality,
which is of primary importance [7], [8], is more challenging
due to increased water turbidity and anthropogenic discharges,
which make these waters optically more complex than those
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found in the open ocean. Typical methods used for analyzing
water reflectance include band ratio algorithms [10], [11], re-
flectance derivatives [12], [13], [14], or quantitative inversion us-
ing physical models [15]. Forward models have been proposed to
simulate the reflectance for various bio-optical and geometrical
configurations using the radiative transfer equation. Examples
of such models include hydrolight [16], ocean successive orders
with atmosphere advanced [17], and watercolor simulator [18].
These models consider a wide range of bio-optical parameters
as inputs, including the inherent optical properties (IOPs), type
and size distribution of the water constituents, and the surface
roughness of the water. They are robust, however, they require
prior knowledge of the absorption, scattering, and backscattering
coefficients of hydrosols, which are often nonexistent in severely
contaminated water bodies. Semianalytical models typically
consist of approximating the radiative transfer equation that
leads to the need of a reduced number of input parameters [19].
Finally, empirical models are frequently used for analyzing a
specific site using calibration data. Recently, machine-learning
methods based on artificial neural network models, both su-
pervised and unsupervised, have been proposed to invert the
water reflectance to derive the bio-optical properties of hydrosols
[20], [21], [22]. All these techniques are the result of extensive
research on natural waters, for which the characterization of
optically active components has been widely documented by in
situ measurements.

The focus here is on industrial pollutants existing under differ-
ent forms depending on their size. They are commonly classified
as dissolved (<0.2 μm) or suspended (>0.2 μm). Dissolved
particles contribute mostly to light absorption, whereas sus-
pended particles contribute mostly to light scattering. Industrial
waters may contain a wide variety of chemical elements and their
optical properties are seldom known. The use of remote sensing
techniques to characterize heavily polluted waters thus remain
poorly documented. Only few studies have been conducted on
plants, urban effluents, mines, or oil spills (e.g., [23], [24], [25],
[26], [27]). Current remote sensing methods used for polluted
environments mainly rely on in situ data points and samples
to perform linear regression for adjusting an empirical model.
Empirical models have been used to detect and map spatial dis-
tribution of urban wastewater in rivers [23], rare Earth element
(REE) oxides in water [24], or heavy metals in sediment streams
[25]. In addition, pollution is often monitored through its impact
on natural constituents, such as phytoplankton or CDOM [28].
Empirical models require calibration data or a priori knowledge
about the pollutant types and their associated IOPs. Furthermore,
semianalytical or analytical models have rarely been adapted for
polluted environments to account for the presence of a particular
pollutant [29]. However, the lack of IOPs databases dedicated
to industrial pollutants makes the use of techniques that are
commonly utilized for natural bodies of water (i.e., unpolluted)
insufficient.

The objective of this article is to investigate the feasibility of
detecting the presence of water pollutants in industrial ponds
using their absorption and backscattering coefficients derived
from imaging spectroscopy data. Another objective is to analyze
their spatial distribution within the ponds. The latter generally

Fig. 1. Airborne hyperspectral images of the study areas with close-up images
of the ponds. (a) Novacarb soda ash plant. (b) Nyrstar zinc plant. The stars locate
the water-free areas where the bottom reflectances were derived from the images.

contain high concentrations of a reduced number of chemical
constituents. On the contrary, natural water bodies may have
lower concentrations of pollutants due to dilution and a higher
number of constituents. The idea is to propose a method that
would be applicable in the future to a wide range of study areas,
without requiring prior knowledge on the type of pollutant. The
proposed approach, named industrial wastewater optical charac-
terization (IWOC), consists of retrieving a pollutant component
and its bio-optical properties (i.e., concentration, absorption,
and backscattering coefficients). For that purpose, the pollutant
component has been introduced in addition to natural water
components into a widely used semianalytical radiative transfer
model, hereafter referred to as the “Lee model” [30]. Such an
approach focuses on pollutants in the water column excluding
nonmiscible materials setting on the water surface (e.g., hydro-
carbons and oils).

The rest of this article is organized as follows. Section II
presents the study areas and the hyperspectral images. Sec-
tion II also provides the theoretical background along with the
IWOC methodology and the synthetic datasets used to evaluate
it. IWOC is then applied to the synthetic datasets and to the
hyperspectral images in Section III. the results are discussed in
Section IV. Finally, Section V concludes this article.

II. MATERIAL AND METHOD

A. Study Areas and Airborne Hyperspectral Images

1) Study Areas: The first study area is the Novacarb soda ash
plant located southward of the city of Nancy (France) [Fig. 1(a)].
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TABLE I
CHEMICAL PROPERTIES OF WASTEWATER FROM NOVACARB SITE PONDS

(CONCENTRATIONS IN G/L)

TABLE II
CHEMICAL PROPERTIES OF WASTEWATER FROM NYRSTAR SITE PONDS

(CONCENTRATIONS IN G/L)

It produces soda ash using brine and limestone, following the
Solvay process [31]. It is characterized by large ponds, a bright
blue water color, and a white bottom. Two of these ponds are
studied here, referred to as B1-NO and B2-NO. The waters are
mainly composed of dissolved salts and suspended matter [32].
Chemical analyses of the ponds were provided by the factory
managers (personal communication) and are reported in Table I.
For B1-NO, the chloride concentration is in the range 105–115
g/L including 40–45 g/L of Ca2+. Suspended matter mainly
consists of coarse particles of sulfates (mainly gypsum) and
calcium carbonates. Its concentration is 18 g/L. Water pH is basic
with a measured value of 11.0–11.5 for B1-NO. Once a large
part of the suspended sulfates has been settled as solids in pond
B1-NO, the residual water is transferred to pond B2-NO, prior to
discharging into the Meurthe river at a controlled rate. The water
in B2-NO is thus mainly composed of dissolved chlorides (the
concentration of suspended matter is then less than 50 mg/L),
indicating the efficiency of the settling pond protocol.

The second study area is the Nyrstar zinc plant near the city of
Douai (North of France) [Fig. 1(b)]. Zinc cathodes are produced
following the roast–leach–electrolysis–smelting process [33]. It
consists of two large ponds, referred to as B1-NY and B2-NY.
These ponds are independent to each other. Public inspection
reports indicate that the ponds contain dissolved metals, in-
cluding zinc, cadmium, or mercury [34]. They also inform on
the use of B1-NY to settle muds that leads to the presence of
suspended matter. Detailed chemical analyses of the ponds were
provided by the factory managers (personal communication) and
are reported in Table II. The water in B1-NY has a brownish color
and it mainly contains zinc (0.61 g/L), magnesium (0.42 g/L),
calcium (0.42 g/L), manganese (0.13 g/L), cadmium (20 mg/L),
and some traces of lead. The suspended matter concentration is
10 mg/L. However, its detailed composition remains unknown.
The measured pH value is 5.4. The water contained in the
pond B2-NY shows a dark greenish color and an ochre area
at the northern edge, presumably where the water is discharged
from the plant. The main metal components are zinc with a
concentration of 10 g/L and cadmium with a concentration of
0.45 g/L. The pH value typically varies between 3 and 4.

2) Airborne Hyperspectral Images: Airborne data were ac-
quired using a Hyspex Mjölnir V-1240 camera within the 400–
1000 nm spectral range. The camera is able to provide measure-
ments for 200 bands at 3-nm spectral resolution. The data were

Fig. 2. Some remote sensing reflectances derived from the airborne hyper-
spectral images. (a) B1-NO and (b) B2-NO, from the Novacarb soda ash plant.
(c) B1-NY and (d) B2-NY, from the Nyrstar zinc plant.

collected for a solar zenith angle of approximately 30° in July
2022. Flight lines were oriented from south to north to minimize
the sunlight effects. The images were atmospherically corrected
using atmospheric and topographic correction (ATCOR) [35]
to derive the water surface reflectance. A mid-latitude summer
atmospheric model with rural aerosols and a visibility value of
100 km was used. The 820-nm absorption band was selected
for water vapor retrieval. The correction was improved using
ground reflectance measurements acquired over a bare soil area
with an ASD FieldSpec3 HiRes spectroradiometer within the
400–2500-nm spectral range. A spectralon was used as a refer-
ence. Then, the measured reflectance was divided by a factor ofπ
to ensure consistency with a remote sensing reflectance quantity
(Rrs, sr−1). Finally, only the spectral bands between 400 and 700
nm were retained for this article due to the low Rrs signal above
700 nm. The native spatial resolution of the airborne images was
degraded down to 5 m by averaging to reduce the noise in the
data. Regions of interest were created for both study areas to
better focus on the ponds (Fig. 1).

Fig. 2(a) and (b) shows some reflectances derived from B1-
NO and B2-NO, respectively. The pixels were selected from the
shoreline to the center to represent a wide range of reflectances.
For clarity, the extraction locations are not indicated on Fig. 1(a)
and (b). A greater amplitude and variability of Rrs values are
observed for B1-NO, which is more turbid than B2-NO. The
water-free area where the bottom reflectance of pond B1-NO has
been derived is noted using a pink star in Fig. 1(a). Unfortunately,
pond B2-NO does not show any water-free area from which
the bottom reflectance could be derived. Since both ponds have
a similar composition, it is assumed that they have a similar
bottom reflectance. The value of the bottom reflectance is fixed
in the proposed algorithm (see Section II-C).

Lower Rrs amplitudes are observed for B1-NY and B2-NY
[Fig. 2(c) and (d)] as a result of the darker features of the
ponds. Rrs shows multiple shoulders for B1-NY at 600, 650,



6032 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

and 700 nm, whereas a single peak is observed at 575 nm
for B2-NY. Note that a slight spectral shift of the maximum
value of Rrs to longer wavelengths is observed for B2-NY with
increasing turbidity. For both cases, the pond bottom is made of
geotextile, a dark surface with a very low reflectance of around
0.05. However, for B1-NY, a brownish mud, which seems to
be the settled matter, covers the geotextile. Likewise, for pond
B2-NY, goethite, which is the ochre solids piled up beside the
pond, covers the geotextile (personal communication). Thus, the
bottom reflectance values were derived from the two water-free
areas located at the orange star for B1-NY and the green star for
B2-NY as shown in Fig. 1(b).

B. Theoretical Background

The forward and inverse Lee models [30] are based on the
model proposed by [36]. The forward model uses the IOPs as in-
puts and provides Rrs as output. The total absorption coefficient
a is the sum of the individual coefficients of each constituent
(1), including pure water aw, phytoplankton aphy, and CDOM
aCDOM. In this article, a pollutant absorption coefficient apol is
introduced to account for their potential absorbing effect as

a (λ) = aw (λ) + aphy (λ) + aCDOM (λ) + apol (λ) . (1)

aw is well-documented [37], [38]. aphy is defined by the
chlorophyll-a absorption signature and is characterized in the
Lee model by a parameter P as the main factor for phytoplankton
(P = aphy(440), [39]). The chlorophyll-a absorption coefficient
exhibits two distinct peaks: a major peak at 430 nm and a sec-
ondary peak at 660 nm. aCDOM shows an exponential decrease
with wavelength [40], [41]. The concentration of CDOM is
controlled using the parameter G, where G = aCDOM(440). The
unit of both P and G is m−1. Finally, apol (λ) = Cpol × aref

pol(λ),
where Cpol is a scaling factor used to control the concentration
of pollutant between pixels in the same pond (dimensionless)
and aref

pol represents the “reference” absorption coefficient of the
pollutant (m−1).

The total backscattering coefficient bb is also the sum of the in-
dividual coefficients of each constituent (2). Since the suspended
matter in the industrial ponds studied here is supposed to be
dominated by pollutant particles, the backscattering coefficient
may be expressed as

bb(λ) = bbw(λ) + bbpol(λ) (2)

where bbw is the backscattering coefficient of pure water. bbw
is determined as half of the value of the pure water scattering
coefficient [42]. Considering that in industrial ponds the par-
ticulate backscattering is mainly due to the pollutant, bbpol is
defined similarly as the backscattering coefficient of suspended
particles in the Lee model

bbpol (λ) = X

(
λ0

λ

)Y

(3)

where X = bbpol (λ0). The reference wavelength λ0 is set here
to 550 nm. Y is the spectral slope exponent of the backscattering
coefficient. Y typically ranges from 0 to 2.5 for natural waters
[10], [43].

The extinction, backscattering, scattering, and absorption
coefficients are computed using Mie theory [44]. Simulations
revealed that the backscattering coefficient may increase with
wavelength within a given spectral range for certain coarse
particle configurations (e.g., for gypsum particles ranging from
0.01 to 15 μm with a modal radius of 5 μm, see Section II-F
and A1). Such a spectral increase is unusual for natural waters.
It has also been observed in simulations when the proportion of
coarse particles increases (e.g., [45]). The Lee model is modified
here to account for the impact of coarse pollutant particles on
the spectral shape of the backscattering coefficient by permitting
negative values for Y.

The bottom reflectance is expressed as ρ(λ) = B ×
ρbottom(λ), where B is a scaling factor and ρbottom is the spectral
shape. Initially, the standard Lee model assumes a bottom that
is composed solely of sand [30]. Here, various types of bottom
composition that can be encountered for industrial ponds are
considered using a ρbottom spectral shape that is directly derived
from the image itself using water-free areas (see Section II-A1).

The Lee model simulates the spectral remote sensing re-
flectance using the parameters P, G, X, Y, B, and the depth
of the water column H. This model also provides an inversion
procedure based on optimization algorithms for deriving these
parameters from a single reflectance spectrum as input. The
introduction into the model of a pollutant with an unknown
absorption coefficient leads to an ill-posed problem when at-
tempting to invert the reflectance since the number of variables
to be determined is higher than the number of observations.
An ill-posed problem implies that several combinations of IOPs
could exist for a given pixel from the inversion of a single
reflectance. The assumptions formulated in Section II-D will
allow to propose a method to minimize this issue.

C. Overview of the Methodology

The proposed IWOC method is based on the modified Lee
model version. It is divided into two main parts as shown in the
flowchart in Fig. 3. The first part consists in retrieving the IOPs of
the hydrosols in the industrial pond by inverting the reflectance.
IWOC takes advantage of the simultaneous inversion of several
pixels within each pond, which is actually a multipixel inversion,
to minimize the ill-posed problem issue. In the second part, the
derived IOPs are used to characterize the spatial distribution of
a pollutant for each pond.

D. Retrieval of the Optical Properties of the Hydrosols

IWOC is based on two assumptions. The first assumption is
that the chemical composition/type of the in-water constituents
of a given pond (including the pollutant) is spatially homoge-
neous. It implies that the pollutant absorption coefficient aref

pol
is the same for all the pixels of the pond. On the contrary,
the concentrations P, G, Cpol, and the water column depth
H may vary spatially from one pixel to another. Because the
backscattering coefficient depends on the distribution of particle
size, X and Y can also vary from one pixel to another.

The second assumption is that the bottom composition re-
mains the same over the entire pond area, thus resulting in a
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Fig. 3. Flowchart of the IWOC algorithm.

single spectral shape of the bottom reflectance ρbottom for all
pixels. The magnitude of the bottom reflectance is controlled by
parameter B which may vary from one pixel to another.

On the basis of these two assumptions, two sets of variables
which need to be estimated are identified. The first set of vari-
ables comprises elements that spatially vary: Φmono = {P, G, X,
Y, B, H, Cpol}. The second set consists of elements that are similar
for all pixels: Φmulti = {aref

pol(λ)}. The simulated reflectances
with Φmono and Φmulti are compared with measurements by
using a local nonlinear least squares fitting approach from a
Python implementation package of the “mpfit” algorithm [46].
At least two pixels by pond are used to estimate Φmono and
Φmulti. The reflectance of the selected pixels needs to vary in
magnitude (see Section IV). The different steps of the optical
properties retrieval process are described below.

1) Monopixel Initialization: In step 1 [Fig. 3], each Rrs spec-
trum undergoes an independent inversion process. This step
provides a first determination of P, G, X, Y, B, and H. During this
step, Cpol is not taken into account since there is no information
about aref

pol at this stage (i.e., apol = 0). Therefore, Φinit
mono= {Pinit,

Ginit, Xinit, Yinit, Binit, Hinit} and, if m pixels by pond are considered
for the inversion process, it becomes

Φinit
mono =

{
P init
1 , . . . , P init

m , Ginit
1 , . . . , Ginit

m , X init
1 , . . . , X init

m ,

Y init
1 , . . . , Y init

m , Binit
1 , . . . , Binit

m , H init
1 , . . . , H init

m

}
.
(4)

The monopixel cost function that is minimized is defined by

Emono (Φmono) =
n∑

i=1

[yi − F Lee
i (Φmono)]

2
(5)

where i is the band number and n is the number of bands, y is the
reflectance measurement, and FLee is the simulated reflectance
from the modified Lee model using the set of parametersΦmono.

To initialize the minimization at this step, only pure water
without any pollutant is considered (Pinit = 0 m−1, Ginit = 0

m−1, Xinit = 0 m−1, Yinit = 0, Binit = 1, and Hinit = 1 m). Without
a priori knowledge on bio-optical properties of the study area,
the variables P, G, X, B, and H are allowed to vary from 0 to
10 (for their respective units). B varies from 0 to the maximum
value of ρbottom(λ), so that the bottom reflectance is between
0 and 1 within the studied wavelength range. Y may vary from
−2.5 to 2.5. The negative boundary limit for Y allows accounting
for the case where coarse particles exhibit a spectral increase of
the backscattering coefficient with wavelength. The upper limit
for Y is taken based on [30]. Note that a priori knowledge can
already be included at this stage if available, via the initial values
and bounds of the parameters.

2) Multipixel Initialization: In step 2 [Fig. 3], the Rrs spectra
of the m pixels are inverted simultaneously to obtain an estimate
of the initial value of aref

pol, noted aref_init
pol , in Φinit

multi

Φinit
multi =

{
aref_init

pol (λ1) , a
ref_init
pol (λ2) , . . . , a

ref_init
pol (λn)

}
. (6)

Here, the previously estimated values inΦmono_init are used as
inputs for each corresponding pixel. The multipixel cost function
is defined by

Emulti (Φmulti) =

m∑
j=1

(
n∑

i=1

[
yij − F Lee

ij (Φmulti)
]2)

(7)

where j is the pixel number. The estimates of the first value aref
pol

of aref_init
pol corresponds to the best fit for the m pixels of the pond

since Cpol is set to 1 at this stage. To initialize the minimization
process, the coefficient aref_init

pol is set to zero for all wavelengths
because of the lack of a priori knowledge about the absorption
coefficient of any potential pollutants. The boundary limits for
aref

pol are set between 0 and 10 m−1.
3) Alternating Inversion: Finally, the monopixel and multip-

ixel cost functions are alternatively minimized [47] (steps 3 and
4 in Fig. 3). At each step, the input parameters are the output
parameters of the previous step. Step 3 retrievesΦmono including
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Cpol (8) using the previously estimated value of aref
pol as a fixed

parameter and Φmono as initial values for the inversion

Φmono = {P1, . . . , Pm, G1, . . . , Gm, X1, . . . , Xm, Y1, . . . ,

Ym, B1, . . . , Bm, H1, . . . , Hm, Cpol1, . . . , Cpolm

}
.

(8)

Here, the range of variation of Cpol is set between 0 and
10. Then, Φmono derived from step 3 is used in step 4 as fixed
parameters and aref

pol is used as the initial value for the inversion.
Typically, five to ten iterations are required to converge and to
derive the optimal set of parameters {P, G, X, Y, B, H, Cpol, aref

pol}.
At the end, if the value of aref

pol is close or equal to zero,
it means that either the water is not polluted or the spectral
signature of the pollutant is not highly pronounced. If the value
of aref

pol significantly differs from zero, it means that the use of
the natural constituents only (pure water, phytoplankton, and
CDOM) is insufficient to correctly retrieve the IOPs of the pond.
Therefore, the presence of an unknown constituent (pollutant) is
required to explain the water reflectance spectral signatures. The
scale factor Cpol is then used to compare the concentration for
each pixel. In addition, the observation of an increasing value
of the backscattering coefficient with wavelength (i.e., negative
Y values) suggests the occurrence of a significant proportion of
coarse particles that are likely to be pollutants.

E. Mapping of the Spatial Distribution of the IOPs

A procedure is proposed to analyze the spatial distribution of
the derived bio-optical properties for each pond. The procedure
is based on the monopixel inversion scheme (step 3 in Fig. 3)
applied to each pixel of the pond with aref

pol set to the value
obtained by the IOPs retrieval procedure. The retained aref

pol value
is that of the pixel which has a Cpol value closest to 1 among
the m pixels used to retrieve the IOPs. By this way, the retrieved
map of the spatial distribution of Cpol is relative to this reference
pixel. The spatial distribution of the other parameters, including
natural constituents P and G, backscattering parameters X and Y,
bottom parameter B, and depth H, could also be provided by the
algorithm. The initialization values at this step are determined by
calculating the average of the monopixel parameters estimated
for the m pixels during the previous alternating inversion. The
use of such average contributes to minimize the differences
between neighboring pixels and to avoid local minima. The
bounds of the parameters are the same as those used for the
IOPs retrieval procedure.

F. Synthetic Datasets

Four synthetic datasets were built using the modified Lee
model (Section II-B) to evaluate the effectiveness of the IWOC
algorithm to retrieve apol and bbpol. These datasets consist of
polluted water cases representing absorption-dominated (dataset
#1 and dataset #3) and backscattering-dominated (dataset #2
and dataset #4) scenarios, respectively (Table III). Each dataset
contains two Rrs, which is the minimum to use IWOC, modeled
using the modified Lee model. Dataset #1 is based on existing
literature regarding REE oxides in water that exhibit absorption

TABLE III
BIO-OPTICAL PARAMETERS USED FOR GENERATING THE SYNTHETIC DATASETS

Fig. 4. Synthetic datasets of the remote sensing reflectances generated using
the modified Lee model. For each dataset, Rrs #1 is the dashed curve and
Rrs #2 is the dotted curve. (a) Dataset #1. (b) Dataset #2. (c) Dataset #3.
(d) Dataset #4.

features located at specific wavelengths [25], [48]. A synthetic
spectrum of aref

pol has been created showing features at 443, 520,
and 574 nm [Fig. 4(a)]. Dataset #1 allows to evaluate the rele-
vance of IWOC to identify specific absorption features. Dataset
#2 [Fig. 4(b)] consists of a nonabsorbing pollutant that shows
an increase of the backscattering coefficient with wavelength. It
can be used to evaluate the relevance of IWOC to identify the
presence of coarse particles.

Dataset #3 and dataset #4 are generated using more realis-
tic IOPs to evaluate the sensitivity of the IWOC method to
model errors. The IOPs are computed using Mie theory for
specific types of particles and size distributions (see Section
A-1). Dataset #3 [Fig. 4(c)] consists of small hematite particles
that are characterized by a size ranging from 0.001 to 0.100
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μm with a modal radius of 0.010 μm. Hematite is selected
here to imitate the optical properties of the suspended matter
in the Nyrstar ponds, such as goethite (see [49] for a discussion
on this point). The absorption coefficient has nonzero values
on all the spectral range (unlike dataset #1 which corresponds
to absorption features located at specific wavelengths). The
backscattering coefficient is well represented by a power law
decreasing with wavelength.

Dataset #4 [Fig. 4(d)] consists of coarse gypsum particles that
are characterized by a size ranging from 0.01 to 15.00 μm with
a modal radius of 5.00 μm. Gypsum is selected here to represent
the suspended matter in the Novacarb ponds. bbpol does not fol-
low exactly a power law and is also characterized by an increase
with wavelength. Spectral refractive indices for hematite and
gypsum were taken from [50] and [51], respectively.

III. RESULTS

In this section, the evaluation of the performances of the
IWOC algorithm on the synthetic datasets is outlined. IWOC
is then applied to the hyperspectral images acquired over the
study areas presented in Section II-A. Note that, due to the
low reflectance signal beyond 700 nm, the performances are
examined in the spectral range 400–700 nm.

A. Application of IWOC on Synthetic Datasets

1) Relevance of IWOC to Retrieve IOPs: The IWOC method
is first applied to dataset #1 (i.e., absorption-dominated sce-
nario). The remote sensing reflectance is satisfactorily fitted
with a root mean square error (RMSE) value of 2.0 × 10−6

sr−1 [Fig. 5(a)].
The absorption coefficient of the pollutant apol is retrieved

with an RMSE value of 6.4× 10−4 m−1 [Fig. 5(b)]. In particular,
the absorption features of REE at 443, 520, and 574 nm are dis-
tinctly observable. Slight overestimations of apol are observed
near 400 nm and from 600 to 700 nm. The magnitude of bbpol
is satisfactorily determined with an RMSE value of 1.6 × 10−3

m−1 [Fig. 5(c)], even in the presence of a small error in the slope
value Y. The errors for the retrieved IOPs may be caused by the
monopixel initialization step, which does not consider aref

pol. As a
result, the absorption and backscattering coefficients of natural
constituents may compensate the lack of pollutant absorption
features. The application of IWOC to dataset #1 illustrates its
relevance to retrieve the IOPs in this absorbing scenario.

The IWOC method is then applied to dataset #2 (i.e.,
backscattering-dominated scenario). The retrieved remote sens-
ing reflectance fits very well with the expected values with an
RMSE close to 0 [Fig. 5(d)]. The absorption coefficient of the
pollutant aref

pol is estimated to be zero with insignificant numerical
oscillations of the order of 1 × 10−16 m−1 [Fig. 5(e)]. The
backscattering coefficient bbpol, which is characterized by an
increase with wavelength (i.e., Y is negative), is retrieved with an
RMSE equal to 0 [Fig. 5(f)]. The application of IWOC to dataset
#2 demonstrates the successful retrieval of IOPs in this purely
scattering scenario. Dataset #2 shows a higher retrieval accuracy
compared to dataset #1 due to the fact that aref

pol is not estimated
during the monopixel initialization. In contrast, dataset #2 takes

Fig. 5. Retrieval of Rrs and IOPs from the IWOC algorithm applied to
synthetic dataset #1 and dataset #2. (a) Spectral reflectance for the absorption-
dominated case. (b) Absorption coefficient for the absorption-dominated case.
(c) Backscattering coefficient for the absorption-dominated case. (d), (e), and
(f) are similar to (a), (b), and (c) but for the backscattering-dominated case.

into account all the IOPs (including the pollutant component
bbpol) during the initialization step, thus leading to their more ac-
curate overall retrieval. The use of synthetic datasets highlights
the excellent retrieval of the reflectance spectra and satisfactory
estimations of the IOPs (with weak RMSE values). The evalua-
tion of the performances of IWOC also reveals potential errors
that might occur when applying the technique to specific cases,
particularly for significant magnitudes of apol with absorption
peaks at specific wavelength, like for dataset #1.

2) Sensitivity of IWOC to Model Errors: Datasets using more
complex spectral shapes are used to examine the sensitivity of
IWOC to model errors, namely dataset #3 (hematite) and dataset
#4 (gypsum). The remote sensing reflectance is accurately re-
trieved for the hematite case with an RMSE value of 1.68 ×
10−4 sr−1 [Fig. 6(a)]. Hematite particles have an absorption
coefficient that has nonzero values for all the studied spectral
range (i.e., no feature at specific wavelength). The spectral shape
of aref

pol is close to that of aCDOM, as shown by the blue curves
in Fig. 6(b). Since aref

pol is not estimated during the monopixel
initialization step, aCDOM somehow compensates for the lack of
aref

pol at this step. Comparison between real and estimated values
of the sum apol + aCDOM confirms that CDOM properties may
compensate for the absence of pollutant as mentioned above
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Fig. 6. Retrieval of Rrs and IOPs from the IWOC algorithm applied to
synthetic dataset #3 and dataset #4. (a) Spectral reflectance for the hematite case.
(b) Absorption coefficient for the hematite case. (c) Backscattering coefficient
for the hematite case. (d), (e), and (f) are similar to (a), (b), and (c) but for the
gypsum case.

(see subsection A-2, Fig. 13). The similarity between apol and
aCDOM spectral shapes leads to an overestimation of G during
the monopixel initialization, and then to an underestimation of
apol during the multipixel initialization. The spectral slope of
aref

pol is not well determined here, but the steeper part near 400 nm
as well as the absorption feature from 460 to 520 nm are correctly
retrieved [Fig. 6(b)]. The fact that G is overestimated during
the monopixel initialization also impacts the retrieval of bbpol,
which is initialized at the same step [Fig. 6(c)].

Rrs is accurately retrieved by IWOC for dataset #4 with an
RMSE value of 3.0 × 10−6 sr−1 [Fig. 6(d)]. The retrieved aref

pol

exhibits values around 1.0×10−4 m−1, which are not significant.
Thus, the method does not produce false positive values for the
absorption. The magnitude of bbpol is correctly retrieved with an
RMSE value of 3.4 × 10−3 m−1 [Fig. 6(f)]. The small observed
differences are due to the fact that the backscattering coefficient
of gypsum does not follow the power law used in the Lee model
(3). However, the power law is sufficient here to characterize the
backscattering (magnitude and presence of coarse particles).

3) Sensitivity of IWOC to Noise in the Measurements: The
sensitivity of the IWOC algorithm to noise in the measurements
is examined by adding to dataset #1 and dataset #2 a zero-mean,
additive Gaussian noise with a wavelength-independent standard
deviation. Three values are selected, namely σnoise1 = 0.001

TABLE IV
SENSITIVITY OF IWOC TO A LOW NOISE (σnoise1)

sr−1, σnoise2 = 0.002 sr−1, and σnoise3 = 0.003 sr−1. These
values are consistent with a range of signal-to-noise ratios of 60,
30, and 20, respectively, considering a mean reflectance signal
of 0.06 sr−1 for dataset #1 and dataset #2.

The mean absolute percentage error (MAPE) is used to quan-
tify the differences between the retrieved and the real scalar
parameters as

MAPE =

∣∣∣∣yreal − yretrieved

yreal

∣∣∣∣ × 100 (9)

with yreal the real value and yretrieved the retrieved value. The
relative RMSE (RRMSE) is used to quantify the differences
between the retrieved and the real vector parameters bbpol and
apol as

RRMSE =

√√√√ 1

n

∑n

i=1

(
yreal
i − yretrieved

i

)2(
yreal
i

)2 × 100. (10)

For each dataset and each noise level, 50 random samples
are generated on which IWOC is applied. The average and
standard deviation of the errors are calculated. The resulting
average errors are reported in Table IV for σnoise1. It should be
highlighted here that the errors on apol are meaningful, whereas
the errors on Cpol are not, since it is a relative scaling factor.
Moreover, the RRMSE values for dataset #2 are equivalent to
the mean of the estimated apol as the yreal values are set to zero.

P shows high MAPE values (>44%), with slightly higher er-
rors for the absorption-dominated scenario (dataset #1). MAPE
is calculated based on a division by the input value, so high
MAPE values may be artificially due to the low input values for
P (see Table III for input values). G shows acceptable MAPE
values ranging from 6% to 8% for dataset #1 and from 12%
to 20% for dataset #2. The highest error is observed for the
estimation of the backscattering coefficient bbpol (parameter X)
especially for the absorption-dominated scenario (dataset #1).
The estimation of Y is much more sensitive to noise than that
of X. Here, X shows an average MAPE value of 30% when Y
MAPE values range from 638% to 835% for dataset #1. The
mean standard deviation of Y is 1.05, which is relatively high
compared to the range of variation of Y. The significantly higher
MAPE for Y that is observed in dataset #1 could be ascribed to the
monopixel initialization step, which does not take into account
the occurrence of apol, as highlighted in Section II-B. Therefore,
the algorithm attempts to compensate the pollutant absorption
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TABLE V
SENSITIVITY OF IWOC TO A HIGHER NOISE (σnoise2 AND σnoise3)

coefficient that is ignored as well as the noise in the dataset
which induces a decrease of the performance of the algorithm. In
addition, it is likely that the minimization process may encounter
a local minima. B MAPE values are higher for dataset #2, which
is consistent because B and the backscattering coefficient bbpol
both affect the overall magnitude of Rrs and therefore may com-
pensate each other. H is satisfactorily retrieved despite the noise
in the datasets for both cases, with an MAPE value of 4% for
dataset #1 and 8% for dataset #2. RRMSE values are higher for
bbpol and apol for dataset #1, which highlight the high sensitivity
to noise of IWOC when working with absorbing pollutants.
Furthermore, RRMSE values are within an acceptable range for
dataset #1 and dataset #2.

Table V presents MAPE and RRMSE values averaged for
Rrs #1 and Rrs #2 for both datasets for σnoise2 and σnoise3.
It is observed that most of the errors increase with noise,
especially MAPE values for parameter Y, which are highly
significant for dataset #1 (>1045%). For dataset #2, MAPE
values do not significantly increase for Y. The retrieval of B
and H remains globally satisfactory considering the high noise
level, except for B for dataset #2. The difference in the MAPE
values for B for dataset #1 and dataset #2 may be attributed to
the similarity of the influence of the backscattering coefficient
and the bottom reflectance on the water surface reflectance, as
discussed previously. RRMSE values increase with noise for
dataset #1. The retrieval of bbpol and apol remains satisfactory for
σnoise2, whereas RRMSE values for σnoise3 are highly degraded
with values above 20%. RRMSE values in dataset #2 for bbpol
increase with noise but still remain below 10%. The same is
observed for apol. Here, apol seems to increase with noise despite
the real value is zero.

B. Novacarb Soda Ash Plant

1) Retrieval of the IOPs From IWOC Algorithm: The ap-
plication of IWOC to retrieve the IOPs requires at least two
pixels. The minimum and maximum Rrs were therefore selected
from each dataset B1-NO and B2-NO (Section II-A2). The
IWOC algorithm leads to a highly satisfactory retrieval of the
reflectance for both ponds with RMSE values of 2.1 × 10−4

sr−1 and 5.1 × 10−5 sr−1 for B1-NO and B2-NO, respectively
[Fig. 7(a) and (b)]. The retrieved pollutant absorption coefficient
aref

pol shows similarities for both ponds [Fig. 7(c) and (d)]. aref
pol

decreases from 400 to 450 nm. Its magnitude is slightly higher
for B2-NO than for B1-NO. The increase of aref

pol from 650 to

Fig. 7. Rrs and IOPs retrieved with IWOC algorithm applied to the airborne
image of the soda ash plant. (a) and (b) Spectral reflectance for B1-NO and B2-
NO, respectively. (c) and (d) Absorption coefficient of the pollutant for B1-NO
and B2-NO, respectively. (e) and (f) Backscattering coefficient of the pollutant
for B1-NO and B2-NO, respectively.

700 nm that is observed for B1-NO is not observed for B2-NO.
The similarities observed for apol between B1-NO and B2-NO
may be attributed to the similarities in the composition of the
dissolved particles. For both cases, the retrieved backscattering
coefficient of the pollutant increases with wavelength [Fig. 7(e)
and (f)]. Such a spectral shape is consistent with the fact that the
suspended matter consists of coarse particles of sulfates. Mie
calculations for this case support a spectral increase of bbpol
for coarse particles, such as hydrosols composed of gypsum
(Section II-B). The magnitude of the retrieved bbpol is consistent
with the occurrence of a higher amount of suspended particles
for B1-NO than for B2-NO. Estimating a two times lower bbpol
for B2-NO highlight the effectiveness of the settling procedure.

2) Spatial Distribution of the Retrieved Parameters: The
spatial distribution of the parameters Cpol, H, X, and Y derived
from the monopixel inversion are shown in Fig. 8. The settling
pond B1-NO, where the water is released, is first examined
for the soda ash plant. The spatial distribution of Cpol is fairly
uniform with lower values at the edges of the pond, as corrob-
orated by a prevalence of bright pixels [Fig. 8(a)]. The mean
value of Cpol is 1.53 with a standard deviation of 0.27. An area
with higher Cpol values is observed at the center of the pond.
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Fig. 8. Spatial distribution of retrieved IOPs parameters for pond B1-NO using
the monopixel inversion. (a) Cpol, (b) H (m), (c) X (m−1), and (d) Y.

The spatial variation of the pond depth H is in agreement with
the observation made on the color images [Fig. 1(a)], where
the northeast part of the pond is the deepest [Fig. 8(b)]. The
mean H value is 2.5 m. The retrieval of H spatial distribution
is consistent with airborne observed features. However, errors
in the estimated depth values may occur due to high turbidity
of the water in the pond (mean X value is 0.21 m−1). X values
are higher close to the shorelines of the pond [Fig. 8(c)]. The
bright areas surrounding the ponds show the areas where the
water is particularly shallow, yielding a high magnitude of Rrs

and consequently high values of bbpol estimates.
X values decrease away from the source of effluent discharge,

which could be also attributed to the settling of the largest
suspended matter in the primary pond that leads to moderately
coarse particles behind. The spatial variation of X shows linear
features from the southern edge of the pond to its center. Such a
spatial variation could highlight the direction of water displace-
ment, moving from brighter spots toward deeper areas. It could
be due as well to residual flowing water channels when the pond
is less full. The spatial variation of the backscattering spectral
slope Y also shows similar features (residual flowing water
channels) as for X with lower values in the same areas [Fig. 8(d)].
The spectral slope of bbpol is lower than that of the deepest part
of the pond. Note that its value remains systematically negative.

The only effluent discharge location in pond B2-NO is pointed
by the blue arrow in Fig. 9(a). Cpol values range from about
1 to 1.4 with higher values noted at the upper left and lower
right edges, with an average value of 1.19 [Fig. 9(a)]. A slight
decrease in Cpol values is observed along the southern edge of
the pond. The depth of the pond is shallower near the water’s
release area (2.5 m) and it increases along the pond to reach 5.5
m [Fig. 9(b)]. The retrieved mean depth of this pond is 3.9 m.
The backscattering coefficient of the pollutant is lower than that

Fig. 9. Spatial distribution of retrieved IOPs parameters for pond B2-NO using
the monopixel inversion. (a) Cpol, (b) H(m), (c) X(m−1), and (d) Y. Blue arrow
is the known discharge location.

of B1-NO. It is possible that the milky aspect of the water leads
to an error in the estimation of the depth values. As shown in
Fig. 9(c), X values are in agreement with expectations, showing
higher values at the northwest part where the water is released,
and reaching up to 0.12 m−1. X subsequently decreases to reach
a minimum value at the southeast corner of the pond (0.09 m−1).
The mean value for X is 0.098 m−1, which is much lower than
that of B1-NO (0.21 m−1). Finally, the spatial variations in Y
are opposed to those observed for Cpol with lowest values at the
western and eastern edges of the pond and the highest values
along its southern border [Fig. 9(d)].

C. Nyrstar Zinc Plant Ponds

1) Retrieval of the IOPs From IWOC Algorithm: The mini-
mum and maximum Rrs were selected from each dataset B1-NY
and B2-NY (Section II-A2). The inversion of the reflectance
from the IWOC algorithm provides satisfactory retrievals of Rrs

with RMSE values of 7.2× 10−5 sr−1 for B1-NY and 6.1× 10−5

sr−1 for B2-NY [Fig. 10(a) and (b)]. Weak differences between
measured and retrieved values of Rrs are observed for B1-NY,
particularly around 600 nm [Fig. 10(a)]. The retrieved absorption
coefficient of the pollutant shows the same features for both
ponds. The main spectral signatures of aref

pol are observed from
450 to 540 nm, 560 to 600 nm, 610 to 660 nm, and just below 700
nm. The retrieved absorption coefficient reaches 0.04 and 0.25
m−1 for B1-NY and B2-NY, respectively. Thus, B2-NY shows
higher absorption values [Fig. 10(c) and (d)]. Such a difference
could suggest higher amounts of pollutants in the second pond,
which is consistent since the latter contains about 10 times
more dissolved metal than that of the first pond (Section II-A).
Retrievals of the backscattering coefficient differ for the two
ponds. B1-NY pond shows an increase of the backscattering
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Fig. 10. Rrs and IOPs retrieved with IWOC algorithm applied to the airborne
image of the zinc plant. (a) and (b) Spectral reflectance for B1-NY and B2-NY,
respectively. (c) and (d) Absorption coefficient of the pollutant for B1-NY and
B2-NY, respectively. (e) and (f) Backscattering coefficient of the pollutant for
B1-NY and B2-NY, respectively.

coefficient bbpol with wavelength with a maximum value of
0.08 m−1 [Fig. 10(e)]. B2-NY pond shows a decrease of bbpol
with wavelength with a maximum value of 0.10 m−1 [Fig. 10(f)].
Note that Mie calculations for this case also suggest that B1-NY
may consist of larger particles than B2-NY (Section II-B). The
a priori knowledge of the study area points out that B1-NY is
used to settle muds [32], which is consistent with the occurrence
of coarser particles (Section II-A).

2) Spatial Distribution of the Parameters: Fig. 11 shows the
spatial variation of the retrieved parameters for B1-NY. The
variations of Cpol are large, ranging from 0.0 to 2.0 [Fig. 11(a)].
Its average and standard deviation values are 0.71 and 0.26,
respectively. The main variations in Cpol are observed in the
center of the pond, where the values are around 1.2 and at the
lower western tip of the pond, where the values are the highest.
Such values may be the result of a discharge from the plant
[green arrow in Fig. 11(a)].

The spatial variation of the depth suggests that the pond is
shallow, with a maximum depth of 1 m [Fig. 11(b)]. The spatial
features that are observed for the bottom morphology of B1-NY
in the color image [Fig. 1(b)] are also observed on the distribution
of H [(Fig. 11(b)].

Fig. 11. Spatial distribution of retrieved IOPs parameters for pond B1-NY
using the monopixel inversion: (a) Cpol, (b) H(m), (c) X(m−1), and (d) Y. Green
arrow is the supposed discharge location.

Pond B1-NY shows a weak mean value of 0.06 m−1 for X. A
maximum value of 0.8 m−1 is observed for a single pixel at the
southwest of the pond [Fig. 11(c)]. Low values of X mean that the
pond contains weak amounts of suspended matter. Higher values
are expectedly observed in the area where the effluent is assumed
to be discharged into the pond [green arrow in Fig. 11(a)]. The
retrieval of the spectral slope Y shows a more complex spatial
distribution across the pond with a wide range of values, ranging
from −2 to 2 [Fig. 11(d)]. The highest values are observed in
the east corner of the pond, whereas the lowest values are in the
western side. Fig. 12(a) shows the homogeneity of the pollutant
across pond B2-NY with values of Cpol ranging from 1 to 1.5.
Its mean value is 1.03 with a standard deviation of 0.08. The low
standard deviation points out a homogeneous distribution with
slightly higher values in the eastern half of the pond. The highest
values of Cpol are observed at the northern tip of the pond and to
a lower extent at the western tip. These high values are likely to
be related with discharge locations [green arrows in Fig. 12(a)].

The estimation of the depth H seems to reach the upper limit
(i.e., 10 m) for some pixels at the southern part of the pond, as a
result of the significant absorption (i.e., dark color of the pond).
Such area shows values as high as 10 m, whereas the mean value
is 3.0 m with a relatively high standard deviation of 1.4 m. Out of
all these pixels, the areas located in the northern and the western
parts of the pond are the shallowest, whereas the southern part is
the deepest area [(Fig. 12(b)]. The spatial distribution of X shows
two areas with high values, which could be caused by releases of
effluent [Fig. 12(c)]. These areas are located at the northern and
western tips of the pond, which are consistent with observations
of the spatial distribution of Cpol. The spatial distribution of
the spectral slope of the backscattering coefficient Y reveals a



6040 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 12. Spatial distribution of retrieved IOPs parameters for pond B2-NY
using the monopixel inversion: (a) Cpol, (b) H(m), (c) X(m−1), and (d) Y. Green
arrows are the supposed discharge locations.

plume [Fig. 1(b)] flowing from the north to the southeast part of
the pond [Fig. 12(d)]. This flowing direction is consistent with
the spatial variation of the depth: the water flows toward deeper
parts of the pond. Note that the two areas where high values
of Cpol and X were observed are also noticeable on the spatial
distribution of Y.

In summary, the spatial variation of the overall retrieved pa-
rameters is informative on the pollutant’s displacement through
the pond. It is also informative on how its concentration could
vary from its release at the upper and western regions of the
pond to the southernmost point.

IV. DISCUSSION

Previous methods to characterize polluted waters required
in situ measurements for calibrating empirical models (e.g.,
[23], [24], [25]). The IWOC algorithm enables the optical
characterization of diverse industrial ponds without specific
calibration measurements. In addition, the IWOC method also
allows analyzing the spatial distribution of the suspended matter
and bottom depth. In [29], a pollutant optical contribution was
introduced into the Lee model. In comparison to the model in
[29], the IWOC method does not require a priori knowledge of
the pollutant absorption coefficient for the initialization of its
retrieval.

The water chemical composition homogeneity is a reliable
assumption in industrial ponds. Assuming the factory follows
the same industrial process, the plant’s discharge remains chemi-
cally stable. In addition, the significant water pollution prevents
the development of organisms [52], thereby reducing hetero-
geneity in the chemical composition. It is essential to note that
this assumption may result in Rrs values showing the same
spectral shapes. Therefore, it is crucial to select at least two
Rrs with different magnitudes to enhance the effectiveness of
the multipixel inversion.

For convenience, the value of the bottom reflectance is deter-
mined based on the image data. Only the parameter B is related to
the bottom reflectance. Such an assumption remains valid when
the entire bottom area of the pond is covered with the same
material. As an example, the bottom of pond B2-NY is made
of geotextile, which is mainly covered with goethite [Fig. 1(b)
and personal communication]. Consequently, for convenience,
it was assumed that the bottom reflectance ρbottom is goethite.
However, goethite may not be present at some locations, which
leads to a geotextile bottom reflectance instead. For the latter
case, a different bottom reflectance value should be considered.
In a case of highly turbid water, the selection of the value of the
bottom reflectance is less crucial.

The evaluation of the performances of the IWOC algorithm
on synthetic datasets, for which the IOPs are computed using
Mie theory, points out potential tradeoffs between the absorp-
tion coefficient of natural constituents and the absorption and
backscattering coefficients of a given pollutant. These trade-
offs are particularly pronounced when the additional pollutant
absorption relates to the natural absorption signatures, such as
the case of the IOPs of hematite outlined in Section III-A. For
this latter case, it is worth noting that the spectral shape of the
absorption coefficient of the pollutant apol shows similarities
to that of the natural constituents (i.e., not polluted materials),
particularly aCDOM. Parameter G was therefore overestimated
during the monopixel initialization step, leading to an underes-
timation of apol at the next step [Fig. 13]. Tradeoffs may also
arise between apol and bbpol given their combined contribution.
Various approaches could be used to mitigate this issue, such as a
multiobjective minimization technique, which may enhance the
performance of the retrieval toward a more realistic absorption
coefficient.

The IWOC approach uses a local minimization algorithm.
The primary issue is that it may cause ambiguity in the retrievals
because of the likely occurrence of local minima. A large variety
of random values have been tested for the initialization process.
In this article, the IWOC algorithm is stable and seems to be
independent of the initialization step. As a result, the algorithm
is initialized by assuming a pure water component. For this
initialization step, the initial values of P, G, X, and Y are set
to zero, whereas B and H are assigned a value of 1.

The use of ATCOR may also cause uncertainties in Rrs

data derived from airborne measurements over water bodies.
ATCOR has been primarily designed to correct for atmospheric
effects over land. Here, the atmospheric correction applied to the
signal over water was interpolated using the surrounding land
pixels.

The IWOC algorithm successfully retrieves Rrs from the
airborne images. The derived IOPs values are in agreement
with a priori knowledge of the study areas. The spatial vari-
ation of the retrieved parameters (Rrs and IOPs) showed some
interesting features. The discharge locations for each pond could
be identified using the spatial distribution of Cpol or X, which
are informative as well on the flowing direction/displacement
of the water. In addition, differences in the concentration
of particulate matter between the various ponds could be
monitored.
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V. CONCLUSION

In this article, an original algorithm named IWOC has been
developed to determine the IOPs of industrial wastewater ponds
using imaging spectroscopy data. The main originalities of
IWOC are the retrieval of the pollutant absorption coefficient
apol, backscattering coefficient bbpol, and its associated spectral
slope Y without a priori information, for the first time to our
knowledge. It was observed that Y could vary over positive and
negative values, thus meaning that bbpol may spectrally increase
or decrease with wavelength as an indicator of the presence of
coarse particles.

The IWOC algorithm is based on the semianalytical Lee
model [30], which has been modified to take into account
the absorption and backscattering coefficients of a pollutant
(in addition to the natural water constituents). IWOC uses a
multipixel alternating inversion technique to specifically re-
trieve the absorption properties (P and G), the backscattering
parameters (X and Y), the bottom parameters (B and H), and
the IOPs of the pollutant (Cpol and aref

pol). The retrieval of the
remote sensing reflectance Rrs is satisfactory with values of
RMSE ranging from close to zero for the synthetic datasets
to a maximum value of 5.82 × 10−4 sr−1 for the airborne
datasets. The retrieval of the IOPs of a given pollutant are also
satisfactory for the synthetic datasets. The absorption signatures
of the pollutant are retrieved with an RMSE value of 2.46 ×
10−3 m−1 for dataset #1 (absorption-dominated scenario) and
the backscattering coefficient with an RMSE close to zero for
dataset #2 (backscattering-dominated scenario, Section III-A1).
Dataset #3 and dataset #4 are allowed to evaluate IWOC on cases
with more complex and realistic IOPs. This evaluation of the
performances highlighted potential tradeoffs as well as model
errors due to the defined spectral shape of the backscattering
coefficient. A sensitivity analysis showed that noise in the data
particularly affects the retrieval of the backscattering coefficient
of the pollutant (Section III-A2). For the highest amount of noise,
the errors (MAPE) values of Y range between 85% and 100%
for dataset #2 and about 10 times more for dataset #1 (835% to
1083%).

This article demonstrates the feasibility of a generic inversion
method for detecting polluted waters and retrieving the IOPs
of the pollutants without the need of calibration data as for
empirical and site-specific methods. Although a wide range of
tests and evaluations of IWOC are carried out in this article
(and some are still in progress), further investigations are needed
to better evaluate its capabilities. As an example, a chemically
oriented study should be carried out and a deeper analysis of the
composition and optical properties of the dissolved/suspended
matter should be continued with the goal of building a dedicated
database to characterize industrial pollutants. Such a database
would be relevant for the rapid, large-scale, and low-cost de-
tection of pollution events in aquatic systems. Also, such inves-
tigations may provide insights to define the range of pollutant
concentrations that the method could accurately measure.

The availability of a database could also be relevant for
the development of supervised deep-learning algorithms for
pollutant detection and identification. Reflectance databases of

polluted waters could be helpful in the development of unsu-
pervised deep-learning algorithms. The latter could be used in
methods for feature extraction and classification of pollutant
information from hyperspectral data of polluted waters. IWOC
method could be integrated in such deep-learning process in
direct or inverse mode. Furthermore, multimodal data fusion
could provide more information on the pollutant, enhancing the
accuracy and reliability of pollutant detection and identification.
Real-time monitoring of pollutant levels and trends is crucial in
the industrial wastewater treatment process to promptly imple-
ment corresponding control measures. Therefore, researchers
are dedicated to developing real-time monitoring systems based
on hyperspectral technology and integrating them with automa-
tion control techniques to achieve real-time regulation of the
industrial wastewater treatment process. The approach con-
ducted here is a first step toward a generic inversion method
for the optical characterization of pollution sources in water in
industrial ponds. Further article could lead to an operational
method applicable to a wider range of water bodies.

APPENDIX

A. Mie Calculations

Mie theory can be used to calculate the IOPs for various ranges
of particle types and size distributions. The Mie calculations
code used here originates from [53] and has been ported to
Python by Cornelius Dullemond from the Fortran77 code by
Bruce Draine. The optical efficiency factors can be computed for
a defined range of wavelengths, here 400–750 nm, and radius of
different type of particles. These efficiency factors are then in-
tegrated throughout a defined particle size distribution (PSD) to
calculate the IOPs, namely the absorption, scattering, backscat-
tering, and extinction coefficients. The PSD used here consists
of a combination of lognormal (nlog(r)) and Junge power law
(nPL(r)) distributions [54]. The total number of particles could
then be expressed asntotal(r) = nPL(r)× PPL + nlog(r)× Plog,
where PPL and Plog are the proportions of each type of size
distribution, respectively. The use of such a mixture is supported
by the fact that hydrosols in water, which usually follows a
Junge power law distribution as a background [18], could show
an additional mode of monodispersed particle size in industrial
ponds as a result of discharges of a specific pollutant from the
plant. The Junge power law distribution [54] is defined as

nPL (r) = const ×
(

r

r0

)−ν

(A1)

where r is the radius, r0 is a reference radius, and ν is the Junge
exponent of the power law. The value of ν is typically 4 in
natural waters [54] but it can vary from 2.5 to 6 [55], [56], [57].
Since the total number of particles, N (m−3), is dependent on the
concentration, the Junge distribution is normalized as follows:

const =
1− ν

rν0
(
r1−ν

max − r1−ν
min

) (A2)

where rmin and rmax are the minimum and maximum radius of
the size distribution, respectively.
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Fig. 13. Comparison between real (blue) and retrieved (red) values of apol +
aCDOM for dataset #3 (Section III-A).

The lognormal distribution allows parameterizing the range
of sizes of the dominant hydrosol, such as those that are released
by the plant. The lognormal law is defined as

nlog (r) =
1

ln (σ) r
√
2xπ

× e−0.5( ln(r)−ln(rm)
ln(σ) )

2

(A3)

where rm is the modal radius of the center of the lognormal
distribution. To take the concentration of particles (g/m3) into
account, the total number of log-normally distributed particles
N(r) is expressed as N (r) = ntotal (r)×N, where N is defined
based on the concentration such as follows:

N =
3Cv

4π
∫ rmax

rmin
r3n (r) dr

(A4)

where Cv is the volume concentration (dimensionless).

B. Illustration of a Compensation Effect Between the Retrieved
IOPs When Ignoring the Occurrence of a Given Pollutant

Tradeoffs between the retrieved natural and pollutant IOPs
were observed during the evaluation of IWOC performances
on synthetic datasets using the IOPs from Mie calculations. An
example of these tradeoffs has been shown for the hematite case
(dataset #3) in Section III-A2. The spectral shape of the absorp-
tion coefficient of hematite decreases with wavelength, such as
what is typically observed for the spectral shape of aCDOM.
Therefore, aCDOM is overestimated during the monopixel ini-
tialization to compensate for the lack of consideration of any
pollutant absorption coefficient apol at this step. The overesti-
mation of parameter G causes an underestimation of apol. The
comparison between real and retrieved values of apol + aCDOM

highlights the effect of the tradeoffs [Fig. 13]. Here, the RMSE
value is 0.14 m−1.
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