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Abstract—Multispectral point cloud, with spatial and multiple-
band spectral information, provides the data basis for finer land
cover 3-D classification. However, spectral information is not well
utilized by traditional methods of point cloud classification. Bene-
fiting from the excellent performance of graph neural networks on
non-Euclidean data, it is well suited to the joint use of spatial and
spectral information from multispectral point clouds to achieve
better classification performance. However, existing graph-based
methods for point cloud classification rely on manual experience to
construct input graph and cannot adapt to the complexity of remote
sensing scenes. In this article, we propose a novel multikernel graph
structure learning (MKGSL) framework for multispectral point
cloud classification. Specifically, we explore the high-dimensional
feature distribution properties of multispectral point clouds in
Hilbert space through the use of kernel method. An innovative
multiple-kernel learning mechanism is embedded into our network,
which allows to obtain better mappings adaptively. Simultane-
ously, a series of prior constraints designed based on land cover
distribution characteristics are imposed on the network training
process, which leads the learned graph of the multispectral point
cloud to facilitate better classification. Our method is dedicated to
adaptively constructing task-oriented graph structures to improve
the performance of multispectral point cloud classification. Ex-
perimental comparisons demonstrate that the proposed MKGSL
performs better than several state-of-the-art methods on two real
multispectral point cloud datasets.

Index Terms—Graph structure learning, multiple kernel
learning, multispectral LiDAR data, point cloud classification,
prior constraint.

1. INTRODUCTION

AND cover classification has long been a fundamental
I 4 and challenging topic in the field of remote sensing. The
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advent of airborne multispectral LiDAR systems has provided
new opportunities for this field by enabling the acquisition of
both spatial coordinates and spectral information of sampled
points on the terrain surface in the survey area. This simultaneous
collection of spatial and spectral data results in the formation of
multispectral point clouds, which serve as a direct representation
of the three-dimensional (3-D) land covers. The availability of
multispectral point cloud data provides the necessary foundation
and information for achieving finer 3-D classification of land
cover [1]. By leveraging the rich spatial and spectral information
embedded in these data, a more comprehensive understanding
of the land cover distribution can be obtained, enabling more
accurate and detailed classification of land cover.

However, multispectral point clouds exhibit an irregular dis-
tribution property, rendering them unsuitable for direct process-
ing using traditional matrix-based methods that are typically
employed for regular Euclidean data. Consequently, specialized
modeling and characterization techniques are required to ef-
fectively integrate the 3-D spatial-spectral information present
in multispectral point clouds. In order to enhance land cover
classification performance using multispectral point clouds, it is
imperative to develop advanced techniques that can effectively
model and analyze these data. This involves addressing the chal-
lenges posed by their irregular distribution and developing novel
methodologies that can exploit the joint spatial and spectral
information for improved classification accuracy and detail.

Existing research works on multispectral point cloud classifi-
cation can be summarized into two technological routes: pixel-
oriented image processing and point-oriented point cloud pro-
cessing techniques [2]. Pixel-oriented image processing meth-
ods convert point clouds into 2-D images for processing, which
inevitably leads to a loss of 3-D spatial information. Traditional
point-oriented methods cannot make good use of spectral infor-
mation of multispectral point clouds. Therefore, it is necessary
to propose new methods for the integration of 3-D spatial and
spectral information of multispectral point cloud.

With the development of graph theory in the field of deep
learning, the utilization of graph methods to point cloud related
applications is gradually emerging. Graphs have the natural
advantage of being a representation of the complex relation-
ships and interdependencies between objects [3]. According to
the Tobler’s first law of geography, the relationship between
features of land covers is an important basis for classification,
making the graph method naturally suitable for classifying point
clouds. However, most of the existing research works only use
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the 3-D spatial nearest-neighbor relationship of multispectral
point clouds to construct graph models, without making full
use of the spatial-spectral information for scene adaptive graph
construction.

To address the above-mentioned issues, we propose a kernel-
based method to construct a scene adaptive graph structure
by using multiple Gaussian kernels that jointly exploit the
spatial-spectral information of multispectral point clouds. A
series of prior constraints are imposed to guide the optimization
of the multikernel graph structure based on Tobler’s first law of
geography simultaneously. This leads to a better classification
performance for multispectral point cloud. More specifically, the
main contributions can be summarized as follows.

1) A multikernel graph structure learning (MKGSL) frame-
work is proposed for the classification of multispec-
tral point clouds. First, adaptive multiscale relationships
within the multispectral point cloud are acquired through
the learning of graph combinations. Then, the graphs
are further refined by incorporating a series of a priori
constraints to better conform to the inherent properties
of the multispectral point cloud. Throughout the network
training process, the graph undergoes dynamic modifica-
tions.

2) A multikernel learning mechanism is incorporated into
the framework of graph neural networks (GNNs), with
the aim of enhancing the capacity of the model in repre-
senting nonlinear information. By autonomously learning
the weights for the linear combination of multiple kernels,
the model becomes adaptive to different scenes, thereby
increasing its effectiveness in capturing complex relation-
ships.

3) The low-rank, sparse, and feature smooth prior constraints
are designed based on manual experience to guide the
optimization of the graph structure, aiming to better fit
the classification task and reflect the higher order essential
properties of multispectral point clouds.

The rest of this article is organized as follows. Section II
briefly describes existing point cloud classification methods and
the applications of graph theory in point cloud classification.
Section III details the methodological principles and implemen-
tation process of MKGSL. Section IV verifies the advantages
of MKGSL by comparing the performance of different graph
construction methods. Finally, Section V concludes this article
with some remarks and presents the perspective of future work.

II. RELATED WORKS

As multispectral LIDAR moves from laboratory research to
practical application, it realizes the 3-D spatial-spectral inte-
grated information acquisition of observation scenes. It provides
data support for the spatial 3-D classification of remote sensing
land covers. In this section, we describe the works in terms
of existing methods to the exploitation of multispectral point
clouds, as well as graph-based classification methods.
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A. Existing Methods of Point Cloud Classification

Existing works on point cloud classification can be broadly
divided into two categories, i.e., pixel-oriented classification
methods, and point-oriented classification methods.

Pixel-oriented image processing technique typically converts
a point cloud to feature images. Discriminatory information on
land covers is then extracted from the feature images using
traditional methods, such as Mahalanobis distance classifiers [4],
maximum likelihood classifiers [5], support vector machines [2],
[6], [7], [8], decision tree [9], random forest analysis [10], deep
Boltzmann machine [11], and deep learning [12], [13]. And it has
been shown that deep learning-based methods can achieve better
classification performance [12]. Some scholars have targeted
convolutional neural network (CNN) model optimization for
multispectral LiDAR feature images and further proposed a
hybrid capsule network based on the coding—decoding structure
as well as a self-attention capsule module [14].

Point-oriented processing technique treats the multispectral
point cloud as an extension of the traditional point cloud. The
methods directly perform pointwise classification without data
conversion [15]. Analyzing the spectral information of multi-
spectral point cloud, it was found that multispectral point clouds
are suitable for 3-D fine classification of land covers in remote
sensing scenes. From using spatial and spectral information
separately to joint use for point cloud classification [16], [17],
some scholars have further proposed multispectral point cloud
classification methods based on multiscale spatial and spectral
feature selection [17]. For example, transformer was introduced
in the multispectral point cloud classification task [18], [19].
Wang et al. [15] proposed a 3-D land cover classification method
based on the tensor representation. Currently, some scholars are
beginning to focus on designing deep neural networks for multi-
spectral point clouds, and implementing optimization based on
PointNet [20], [21], [22].

B. Applications of Graph Theory for Multispectral Point
Cloud Classification

CNNss have achieved notable success in areas, such as image
recognition, but CNN can only handle regular Euclidean data
and cannot directly handle non-Euclidean data, such as graphs.
Moreover, graph is a generalized data structure that grid and
sequence can be viewed as a special case of. As typical non-
Euclidean data, multispectral point clouds are difficult to be
processed directly by networks based on Euclidean data, such
as CNN. As a result, scholars have modeled multispectral point
clouds with graph theory [3], [23], [24], [25], [26], [27], [28], and
started to design GNNSs for feature extraction and classification
of multispectral point clouds.

Similar to CNNs, graph convolutional network (GCN) [29],
[30], a typical GNN, also has a powerful learning capability
through graph convolutional operation. And some scholars have
used the attention mechanism to propose graph attention net-
works (GATs) to solve the problem that GCN cannot assign
weights to nodes [31]. For the oversmoothing problem of GCN,
some scholars introduced initial residual and identity mapping
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to propose GCNII [32]. Recently GCN has been successfully
applied to the field of remote sensing. Li et al. [33] proposed
a GCN-based method for extracting power lines and pylons.
Chen et al. designed auto-GCN to dynamically learn graph
structure characterization of hyperspectral images to achieve
better classification. Inspired by this, as multispectral point
clouds are typically non-Euclidean data, similar work could be
carried out. Wang et al. [24] modeled the multispectral points as a
graph and proposed a multiattribute smooth graph convolutional
network (MaSGCN) for multispectral point cloud classification.
Landrieu et al. argued that superpoint graphs can effectively
capture the organization of 3-D point clouds and proposed a deep
learning-based method for large-scale point cloud classification.
Zhang et al. [34] proposed to introduce a multikernel integrated
attention mechanism in GNNs to measure feature similarity
in Hilbert space. The above-mentioned graph-based methods
inspire us to design a method for point cloud classification using
kernel methods for the adaptive construction of multispectral
point cloud graph, the details of which are described in the
following.

III. METHODOLOGY

In this section, we describe the proposed MKGSL frame-
work for multispectral point cloud classification in detail. The

multikernel learning is embedded in a graph-based network,
which is used to fit a mapping of multispectral point clouds
to a high-dimensional feature space by learning a combination
of different base kernels. Meanwhile, the evolution of the graph
structure is guided by a series of a priori constraints derived
from the Tobler’s first law of geography. The entire process
from constructing the graph to implementing the point cloud
classification is shown in Fig. 1.

A. Multikernel Graph Construction

Given a multispectral point cloud X ={x;,Xa, --,Xy}
where x € R3*+L) represents a single point with 3-D spatial
coordinates and L bands of spectral intensity, and N represents
the number of points contained in the point cloud. We use
kernel function to measure the similarity of any two points in
a multispectral point cloud. Further, a multiple kernel metric
of intersample similarity is employed to overcome the limita-
tions of a single kernel for the insufficient nonlinear measure-
ment. To make the multikernel combinatorial function easy to
train, we introduce a set of trainable kernel weights Wyeme =
{m1,m2,...nr}. The general form is as follows:

M M
k(xi%) = > Nk (%0, %) s8> =1 (1)
m=1 m=1
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where k., is the base kernel, and 7,, is the weight of the base
kernel. The base kernel is a Gaussian kernel, which is defined
as follows:

2
X; — X
ko (x4,%,) = exp —% 2)

where o, is the kernel width, which is a hyperparameter that
controls the smoothness of the kernel function, and ||||2 is the
Euclidean distance.

Mathematically, the variety of high-dimensional mappings
fitted by the kernel function can be substantially extended by
a linear combination of different base kernels, which allows to
search adaptively in Hilbert space for the most suitable mapping
for the task.
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(c) (@

Visualization and ground truth of multispectral point cloud of two scenes. (a) Harbor of Tobermory (HT). (b) Ground truth of HT. (c) University of

We use the softmax function to normalize each row of the
constructed adjacency matrix so that the sum of the weights of
each point connected to the target point is 1

N
a;’; = exp (kn, (Xi,Xj))/Z exp (km (x:,%5)). (3
i=1

Since the spatial and spectral features of the multispectral point
cloud contain different information and there are large quantita-
tive differences in the value, we measure the similarity separately
and form two different adjacency matrices, and combine them
in the implementation

A, = normalized (Agpectral + Aspatial) = {aZ"]} @

The normalized adjacency matrix A, = {a]’;} represents the
mth original graph structure of the graph structure learning
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(2)

Fig. 5.
(g) GCBnet. (h) MaSGCN. (i) MKGSL.

network and A = Zf\le Nm A, represents the original multi-
spectral point cloud graph. The ith row of the original adjacency
matrix of the multispectral point cloud represents the similarity
of the ith point to all other points.

After obtaining the original graph structure, we feed it into a
GCN for loop iterative training, the overall process is shown
in Fig. 2. As the GCN iterates, the weights of base ker-
nels Wiemer = {11, 72, ...7} are optimized simultaneously.
Eventually, the most reasonable set of base kernels combination
weights will be learned, so that we obtain the optimal multispec-
tral point cloud multikernel graph.

(h) (i)

Visualization of the classification results on HT dataset. (a) GCN-spatial+spectral. (b) GCN-spatial. (c) GCN-spectral. (d) MLP. (e) GCNILI. (f) GAT.

B. Optimization of Graph Structure With Priori Constraints

The above-mentioned multikernel graph construction focuses
on the optimization of global similarity metrics. Given the
complexity of the remote sensing scenes and the variability
of the nodes, we tend to introduce manual experience. So, we
design a series of priori constraints to guide the evolution of
the multikernel graph learning. Expect to further optimize the
multispectral point cloud graph for the classification task from
the perspective of matrix properties and physical implications.
The process for optimizing the structure of the multikernel graph
with some prior constraints is shown in Fig. 3.



5642

33«2%\,\ Ca‘ 0(455\,0«9 a° 5\'\\9 1(22 \Naxe‘

A0S !
00 G Cas 6‘“”5?0‘“2 e o e W

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

W09
w‘ee\x\ ca‘ o vo“e‘w“ P g8 o

garren [RJ0.01/0.01/0.05/0.00/0.16/0.01/0.00/0.00 s garren [I10.01/0.01/0.17]0.00/0:30]0.01/0.00/0.02 ¥ Barren 0.02/0.00/0.28(0.01/0.00/0.00 [l *
Building 10.05 0.10/0.03(0.030.02/0.02/0.02/0.01 Building-0.01 [i#40.01 0.0210.08/0.00/0. m'o.u{o.oo Building-0.09)| 0.05/0.03/0.01[0.12/0.07 0_01'0_04:
car0,31/0.03(0.33/0.03(0.01 ;ﬁ[o.m 0.02/0.02 y car0.2500. 0.000.230.04/0.010.01 Car-0.18(0. 0.02/0.030.29/0.08/0.030.10 i
Grass0.10(0.00/0.00[0.00/0.01/0.01/0.000.00 Grass 0.18/0.00(0.00 [0.00/0.12/0.00/0.00/0.00, * Grass-0.08)0.00 0.01/0.00/0.00/0.00
owerline-0.00/0.00/0.01/0.00(}840.00/0.00/0:32/0.00| sowerline-0.00/0.04/0.00/0. 0.00 0,09@0 00 >owerline-0.00/0.01/0.00 £10.00/0.05(0.14/0.05,
Road 0.12(0.00/0.02/0.02/0.00[F40.02(0.00/0.00 | " Road10.14]0.00]0.00j0.11 0.000.00/0.00 o Road-0.07(0.06/0.01/0.01 10.000.00 |
Ship-0.05/0.04(0.22/0.03(0.00/0.05 [¥40.01, o.ozi Ship-0.00/0.02/0.11/0.01 WZ10.03 0.0 Ship-0.09/0.200.10/0.04/0.01
Tree 0.00|0.04/0.01/0.01/0.10/0.00/0.00HJ0.01| . Tree0.000.07,0.00/0. 0018000 Tree-0.00/0.01/0.03(0.02/0.02
Waterar rTnnoTnooo Water-0.01 nnir;\n nnr 0/0.02/0.00 [sKe¥4 Water-0.01 nmnnrn nygno

(@)

ey
R & o vo"e 202 g qee ot

(b)

33“2@\\6 ga‘ c,ra"svo*‘e Q\oa‘\ r,\\\" (ree \Na‘e

(©)

P N‘" @ o ©on® :«036 5@ e ‘“‘et

nn?‘n 01/0.03/0.00; 0.00/0.000.00/ 08 Barren {1480.01/0.01 nmln 00/0.21/0.03/0.00 0.00 o8 0.040. nnnm[n 02/0.00/0.01 08
Building-0.01 {¢RE30.01/0.00(0.01/0.00/0.02] 0.01.0.00 Building -0.03 (Vg1 0.05 0.0110,00 i o 0.07/0.02/0.01 0.01{0.00/0 n?‘0.04 0.02/0.02
Car/0.15/0.03 0.00 0.03 o,o1‘o,oz & Car0.250. 0.02/0.02 0.05/0.01/0.01 - Car 0. m‘n 05, 0.04/0.00/0. mln 080.02/0.03 !
Grass-0.07/0.00 0. nﬂ[n 02/0.00/0.000.00 Grass-0.09 0.01/0.000.00; Grass-0.09/0.00 0.01/0.00
’owerlinerﬁ:’! r:n 074’!1 0.03 0.17‘0.00‘ %werline—EB.OO‘OTOI \ X n—ISOE) owerline-0.00/0.04; (;01
Road-0.04/0.00/0.01/0.01/0. 0.00/0.00 o Road-0.07/0.00/0.02/0.01/0.00[8 M Road-0.16/0.01/0.00 3%
Ship-0.03/0.07/0.08/0.00/0.00 [*¥40.01 0.02 Ship-0.07 0.02?0.05 0.01]0,00 K ShiPAO.OG"O,OB 0.07/0.
Tree-0.00/0.05/0.00/0.05|0.02! i Tree-0.00/0.02|0.00|0. ” Tree-0.00/0.03/0.01 be
Water-0.00/0.00/0.05/0.03/0.00 Water-0.01 o nn‘};’a 0slo n1ro_o1 Watepo_ol.;’ 00[0.05 0. nr;'0.01 0.02 [l

9 BN
% u\“"ca‘ 6390002 P e gt
il 05 i

6

PR \,\\6“(‘,( 6P gon® waﬂ & e \Na&"-‘

Barren {SRpA 0.01 0.01 0.00/0.00| ¥ Barren {U1] 0.02;0.01 0. :lf\ﬂ 000;704‘00 0.6010,61 @ Barren Om‘f\ 000. n7nnnn7n[n 00/0.000.00
Building -0.03 [eRe]¥ n’nn TM 0.000.02 fﬁ nﬁ Building-0.01 [1X:380.01/0.00 {E\ nﬁﬁﬁmﬁoo 70 01 }1 00/0.00/0.01/0.10 07{5 i

Car-0.17,0.01 0.00/0.31/0.01/0.010.04 i Car-0.24/0. 0.00/0.26/0.02/0.020.00 0.00/0.27/0.00/0.05/0.01
Grass-0.100.00/0. 0.01/0.00! Grass-EU.Ooio.UO 0 0. ﬂnmﬂ ﬂn»U.OO:OAOO M Grass-0.13/0.00/0. 0.00/0.02/0.00 3

owerline-0.00/0.01! 0,00;“ 10, owerline-0.00/0.04/0.01 0.00/0.04[¢08540.00 owerline-0.00/0.00!
Road-0.05/0.00|0. = Road-0.19/0.000.00 0.00/0.00/0.00 4 Road-0.06/0.00/0.00 04
Ship-?.OSj0.0S 0.1 0.02[0r10.03 oL Ship-;O,E0.0IE 0.68 0.01’0,03 Ship-ﬂﬂ 01 E, 0.06]

Tree-0.00/0.04 0.00/0.01[s8=}40.00 o2 Tree-0.00/0.03/0.00|0. b, Tree-0.00/0.01/0.00| 0.00 0.00[eReLE10.00 3

Water-0.01/0.00/0. Water-0.04 l).OCOiO.rm Water-0.02/0.00/0.00 0.00/0.00 0.00 [oRek:]

(g

Fig. 6.
(e) GCNII. (f) GAT. (g) GCBnet. (h) MaSGCN. (i) MKGSL.

To enable iterative optimization of the graph structure in the
model, we design a free graph structure S and replicate the
multikernel graph structure obtained from the previous learning
onto S. For the optimized graph to retain as much information
as possible from the original graph, we impose graph structure
original characteristic constraint. The difference between the
original multikernel graph structure and the replicated new

(h)

Visualization of the confusion matrix for classification results on HT dataset. (a) GCN-spatial+spectral. (b) GCN-spatial. (c) GCN-spectral. (d) MLP.

(i)

learnable graph structure is measured by calculating the F'-norm.
Minimizing the F-norm as an optimization constraint can con-
trol the graph from deviating too much from the original graph
structure during the iteration. In addition, we set a hyperparame-
ter 7y to control the contribution of the constraint, preventing the
problem of overconstraining, which would make it impossible
to optimize.
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g) ”

o 0

Fig. 7. Visualization of the classification results on UH dataset. (a) GCN-spatial+spectral. (b) GCN-spatial. (c) GCN-spectral. (d) MLP. (e) GCNII. (f) GAT.

() GCBnet. (h) MaSGCN. (i) MKGSL.

According to the Tobler’s first law of geography, the key
features for classification can be extracted from the spatial distri-
bution of geographical objects and their attributes. Meanwhile, it
is a subset of the point cloud that contributes to the classification
of the target points. So the graph structure should be of low rank
and sparse.

In order to make the graph structure low-rank and sparse, we
impose the ¢1 norm and the nuclear norm constraints on the
adjacency matrix during the optimization process. In order to
make the graph structure low-rank and sparse, we impose the
norm and the nuclear norm constraints on the adjacency matrix
during the optimization process.
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Fig. 8. Visualization of the confusion matrix for classification results on UH dataset. (a) GCN-spatial+spectral. (b) GCN-spatial. (c) GCN-spectral. (d) MLP.

(e) GCNIL. (f) GAT. (g) GCBnet. (h) MaSGCN. (i) MKGSL.

The learned adaptive graph is used to describe the similarity
of the multispectral point cloud, so the features of nodes in the
graph should be smooth

N
1
— QZSM Ix; — x5 = tr (XTLX) (5)

2
where S;; denotes the connection weights of fixed point ¢ and j
in the graph, L = D — S is the graph Laplace matrix, and D is

the degree matrlx of S. We use the normalized Laplacian matrix
L=D:LD = to replace L and obtain the feature smoothing
constraint term.

As mentioned at the beginning of this section, a uniform
similarity metric is difficult to adapt well to the characteristics
of all the different nodes in a complex remote sensing scene.
The graphs learned with these prior constraints can aptly over-
come this problem, resulting in a better representation of the
graph structure for multispectral point cloud classification. The



WANG et al.: MULTIKERNEL GRAPH STRUCTURE LEARNING FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION

A0S A0S
G TR 8Pp0nhon® i (oo (ot

Barren (lfEB10.01/0.00/0.02 0.00 0.03/0.00/0.00(0.00
| )

Building-0.02 [i]8140.00/0.00/0.00/0.00/0.000. ozio.nn
0.02/0.00/0.09/0.00/0. 0210.00

Grass-0.08(0.00/0.00 [JEH40.00/0.01(0.00/0.00/0.00

i ]
R “oweriine-0.00/0.00/0.01/0.00%40.000.00/0.23 0.00

Road-0.05/0.00(0.00/0.01 0.00 [(¥¥40.00 0. oo‘o.uu

T
0.00/0.03

Ship-0.05/0.00|0.00/0.000.00 0.00 (UM

Tree-0,00/0.01{0.00/0.00/0.00/0.00/0.00 (ReEJ0.00

Water-0.01/0,00/0.00/0.00/0.000.00/0.00 0.00 [R5}

(b)

Y Qe
T 3000t i qee o'

Barren (il&10.01|0.00/0.02 0.00 0.28/0.00 0.00(0.00

1 -5
Building-0.05 i}E0.01/0.01/0.000.00/0.01 0.10‘0 00

Car-0.26/0.01(0:380.02 0.000.27/0.00/0.050.01.

Grass-0.13 0.00/0.00 0.

{ oweriine-0.000.00
Road-0.06/0.00|
Ship 0.22/0.01

Tree 0.00/0.01,

Water-0.02(0,00/0.00/0.00/0.000.00 0.00 0.00 5]

)

Fig.9.

5645

o @
OO Q08 et
e oG g% g0t e %ee

Barren 0.00(0.00 ovaovoz 0.00{0.00 0.01

0.00{0.00 0.01

mmercial - 0.00 0.00{0.00 0.01

Grass-0.13/0.00 0. 0.00{0.00 0.00

Road-0.080.00 0. 0.00{0.00 0.00

2owerline-0.020.00|0.00/0.01|0.02

asidential-0.00 0.00|0.00 u.uu‘u 00/0.00 iRy 0.05

Tree0.01/0.00 |0.00 ouo‘oou

(d)

A Y
Sig e, i

o e AN ot
et o™ G qop® g0 e ee

I
Barren (REJ 0.01|0.00/0.11/0.12|0.00|0.00 0.01

T
car (g 0.210.00|0.020.09/0.00|0.00 0.01

mmercial-0.01 | 0.01 (&3 0.06(0.11 0.06

Grass-0.090.00 0. 0.00{0.00 0.00

Road-0.210.00 ¥ 0.00|0.00 0.00

asidential-0.00 0.00|0.06 u.uu‘uun 0.00 Y 0.

Sowerline-0.02|0.00(0.00 0.01/0.02

Tree0.01{0.00|0.01 o.aulovou ooslo 02 UE

© (h)
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on UH.

optimization problem with prior constraints can be expressed as
follows:

2

M

argmin £ = «||S||, + B||S||« + v
SeQ m=1 F

+ )\;CS + »Coss (6)

where |[|||2 is the F-norm, ||||; is the 1 norm and |||, is the
nuclear norm. «, 3, v, and A are hyperparameters that control
the contribution of the constraints. L is the loss function of
the classification, which is a cross-entropy loss function.

C. Adaptive Multikernel Graph-Based Multispectral Point
Cloud Classification

We select the GCN network as the base network for multi-
spectral LIDAR point cloud classification. Through the strategy
of learning the graph structure and co-optimizing the network
model, higher classification accuracy and better adaptive ca-
pability of graph model construction can be achieved. In the
data preprocessing stage, we map the multispectral point cloud
into several adjacency matrices according to different Gaussian
kernels with different parameters. In addition to the model
weight matrix, a learnable kernel weights vector Wiyepme =
{n1,m2,...mam} is set up to learn the combinatorial patterns
of the multikernel graph structure. To keep the weights of each
adjacency matrix nonnegative and the sum of the weights one in

each iteration, we flatten the kernel weight vectors to nonnega-
tive values and normalize them before each combination of the
multikernel adjacency matrices, and finally assign the processed
values back to the trainable parameters.

It is known that the single-layer GCN can be represented as
the following form:

fo(X, A) = softmax o (AXW) (7)

where W € O is the trainable weight of the model. With the
addition of multikernel learning, the output of the model can be
expressed in the following form:

M
fo(X, A, Wiemel) = softmax o Z N A XW )

m=1

where A = {A1, As, ..., A} represents the set of adjacency
matrices composed of different Gaussian kernels. In the final
setup of the network, we use three layers of graph convolution
and two layers of MLP [35], which makes the output of our final
model the following form:

M
feen =0 Z nmAmU

m=1

M M
XA D Ao [ Y i ARXW | Wy | Wy
m=1 m=1

©)
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fo(X, A, Wiemer) = softmaxc (Wso (W4 foen + b1) + ba)
(10)

where © = {W;, Wy, W3, Wy, W5,by,bo} is the set of
trainable parameters in the model. As the model iterates to
convergence, we obtain a combination of multikernel adjacency
matrices and learn the optimal multikernel graph structure. Fur-
ther optimization is then achieved by adding the prior constraints
to the learned optimal multikernel graph structure. We have thus
obtained the optimal multikernel adaptive graph structure. The
model eventually outputs the classification results of multispec-
tral point cloud based on the learned adaptive graph.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the per-
formance of the proposed MKGSL for multispectral point cloud
classification.

A. Data Description

We evaluated the proposed MKGSL on real multispectral
point clouds collected by multispectral LIDAR, named Titan [4].
The dataset contains spectral information at three wavelengths,
namely 532, 1064, and 1550 nm. In the original data, the point
clouds of the three wavelengths are independent to each other. As
described in the previous study, the point cloud of each channel
in turn is used as reference data, and the nearest neighbor search
algorithm is used to find adjacent points in the point clouds of the
other two channels, and the intensity of the other two channels is
obtained by the inverse-distance-weighted interpolation method
to achieve the fusion of the point clouds [23], [36]. We obtained
two multispectral point cloud datasets with three wavelength
intensity values [x,y, 2, A1550, 21064, A532]. The first dataset
corresponds to the Harbor of Tobermory (HT), which encom-
passes a port area measuring 600 m x 600 m. This dataset was
acquired through an online application. The second dataset we
utilized is publicly accessible from the 2018 IEEE GRSS Data
Fusion Contest and represents the University of Houston (UH)
campus, spanning an area of 595 m x 600 m.

To meet the experimental requirements, we manually seg-
mented the above-mentioned two datasets into 9606 (HT) and
9350 (UH) superpoints based on the point cloud segmentation
method [37]. The method specifically combines spatial and
spectral similarity metrics to perform point cloud segmentation.
By exchanging points between superpoints, it achieves improved
segmentation results. To simplify the description, we subse-
quently refer to the two datasets as HT and UH, respectively.
The multispectral point clouds of the two scenes are shown in
Fig. 4.

And further labeling was achieved by manually adding labels
to the land cover boundaries for the two datasets based on our
previous research work [24].

The first dataset is the HT, which covers a port located
in Tobermory with dimensions of 600m x 600m. This area
contains 7 181982 points, with an average of 19.9 points per
square meter. The second dataset is the UH. We chose data from
an area of 595m x 600 m to carry out the experiments, and this
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TABLE I
OVERALL EVALUATION METRICS (%) FOR THE FULL SCENE ON THE
HT DATASET
Method OA MP MR MF MIoU
GCN-spatial+spectral [29]  81.36 7230 61.32 6636 51.84
GCN-spatial [29] 75.82  68.67 5855 63.21 46.63
GCN-spectral [29] 76.06 6430 52.13 57.58 42.03
MLP [35] 79.95 78.08 61.60 68.87 51.92
GAT [31] 84.77 7171 62.04 66.53  53.08
GCNII [32] 8483 7917 64.68 71.19 5596
GCBnet [28] 84.70 77.84 66.58 7177 57.36
MaSGCN [24] 8281 69.55 6771 68.62 54.94
MKGSL(ours) 88.68 71.72 78.03 74.74 62.08

The bold values indicate the highest value in the corresponding evaluation metric.

area consists of 4436470 points, with an average of 12.4 points
per square meter.

B. Experimental Settings

To evaluate our proposed MKGSL, several representative
comparison methods were selected and validated on the two
datasets. We calculated the spatial and spectral Euclidean dis-
tance matrices for the multispectral point cloud and averaged
them after normalization as the adjacency matrix. Afterward,
they were input into MLP, GCN, GCNII, GAT, and GCB-
net [38] for classification, respectively. To analyze the effect
of spatial and spectral information on the classification, two
sets of comparisons were setup to validate on GCN using the
spectral and spatial Euclidean distance matrices separately as
adjacency matrices. Finally, we chose as a comparison with
MaSGCN [24], which also uses multiple kernels and is oriented
toward multispectral point clouds.

All networks in this article were implemented on the Pytorch
platform. The equipment used in the following experiments con-
sists of an Intel (R) Core (TM) CPU i5-12600KF @3.70 GHz and
one NVIDIA GeForce RTX 3060 GPU with 12 GB of memory.
We calculated the overall-accuracy (OA), macroprecision (MP),
macrorecall (MR), macro-F1-score (MF), and MIoU of the
classification results to measure the classification performance.
And we also calculated precision, recall, F1-score, and IoU for
each class.

In our MKGSL method, we utilized ten Gaussian kernels
with o, values ranging from 0.1 to 1. These kernels were
instrumental in capturing various levels of detail. In addition,
the hyperparameters in the overall loss function were carefully
set. Specifically, v was assigned a value of 5 x 1074, 3 was set to
0.5,7t00.1,and L to 1 X 10~*. To ensure optimal performance,
all methods underwent training for 2000 epochs.

Limited by the memory capacity of the experimental platform,
we can only segment the multispectral point cloud into super-
points which must not exceed 10000. All evaluation metrics
were calculated after mapping the classification results back
to the original points. To overcome the problem of uneven
samples, we counted the number of samples in each class in
our experiments, selected 10% of them as training samples, and
set different loss weights for each class, i.e., the cube root of the
inverse of the proportion of the number of samples in each class
to the number of total samples. In the end, we calculated separate
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TABLE II
EVALUATION METRICS (%) FOR EACH CLASS ON THE HT DATASET

Method Metrics Barren  Building Car Grass  Powerline  Road Ship Tree ~ Water
Precision | 75.50 72.88 3342 87.70 66.37 8238 5734 83.85 91.24

GCN-spatial-+spectral [29] Recall 82.45 69.97 20.24  81.09 4.89 70.57 3461 99.20 88.85
F1-score 78.82 71.39 2521  84.27 9.11 76.02 43.16 90.88  90.03

ToU 65.04 55.51 1442 72.81 4.77 61.31 2752 8329 81.86

Precision | 47.69 72.14 40.04  69.36 52.55 74770 7833  86.01 97.17

GCN-spatial [29] Recall 72.12 56.42 59.07 53.31 6.63 5290 36.18 97.56  92.80
Fl-score 57.41 63.32 47.73  60.28 11.77 61.94 4949 9142 9493

ToU 40.26 46.32 31.35 43.15 6.25 4486 32.88 8420 90.36

Precision | 66.78 59.39 1432 90.95 73.31 84.09 42.04 80.60 67.23

GCN-spectral [29] Recall 83.61 69.07 6.87  78.29 14.49 5692 21.13 9893 39.82
Fl-score 74.26 63.86 929  84.15 24.20 67.88  28.12 88.83  50.01

ToU 59.05 46.91 487  72.63 13.76 5138 1636 79.90  33.35

Precision | 55.41 94.14 39.68  90.87 78.86 9294 7722 8217 9146

MLP [35] Recall 88.26 68.07 3633 6645 24.50 5521  17.86  99.61 98.07
Fl-score 68.08 79.01 3793 76.77 37.39 69.27 29.01 90.05 94.65

IoU 51.61 65.30 2340  62.29 22.99 5299 1697 81.90 89.85

Precision | 72.37 71.53 29.14  88.46 51.50 7946  70.75  92.60  89.59

GAT [31] Recall 79.67 69.64 18.86  82.95 21.48 67.78 3553 9898  83.46
Fl-score 75.85 70.57 2290  85.62 30.32 73.16 4731 95.68  86.42

IoU 61.09 54.53 1293 74.85 17.87 57.67 3098 91.72  76.08

Precision | 71.42 79.15 3897  88.60 82.17 88.57 82.58 89.35 91.71

GCNII [32] Recall 85.88 77.71 28.40 88.44 9.12 67.80 31.06 9940 94.29
Fl1-score 77.99 78.42 32.86  88.52 16.42 76.80 45.14 9411 9298

IoU 63.92 64.50 19.66  79.41 8.94 62.34 29.15 88.87 86.89

Precision | 62.48 90.04 42.23  88.37 69.87 91.39 75.02 90.54  90.63

GCBnet [38] Recall 85.51 69.97 3296  81.76 41.27 5892 3242 9933  97.02
Fl1-score 72.21 78.75 37.02  84.94 51.89 71.65 4527 9473  93.71

IoU 56.50 64.95 2272 73.82 35.04 55.83  29.26 8999 88.17

Precision | 59.29 81.43 4032 7174 41.06 73.88 67.51 9490 95.82

MaSGCN [24] Recall 71.21 73.56 57.01  67.02 33.76 55.67 56.19 9741  97.60
Fl-score 64.70 77.29 4723 69.30 37.05 63.50 61.33 96.13  96.70

IoU 47.82 62.99 3092 53.02 22.74 46.52 4423 9256 93.62

Precision | 68.30 82.48 3824  84.97 45.70 9274 3747 9777 9779

MKGSL(ours) Recall 81.74 85.78 58.78  90.83 57.14 62.46  68.14 98.03  99.35
‘ Fl-score 74.42 84.10 46.34  87.81 50.78 74.65 4835 9790 98.57

ToU 59.26 72.56 30.16  78.26 34.03 59.55 31.88 95.89 97.17

The bold values indicate the highest value in the corresponding evaluation metric.

TABLE III
OVERALL EVALUATION METRICS(%) FOR THE FULL SCENE ON THE
UH DATASET

Method OA MP MR MF MloU
GCN-spatial+spectral [29]  67.39  67.76 5430 60.29  42.89
GCN-spatial [29] 6496 7044 56770 62.83  43.77
GCN-spectral [29] 60.22 6382 47.88 5471  36.07
MLP [35] 59.66 7248 5478 6240  39.93
GAT [31] 61.31 6631 5087 57.57 3881
GCNII [32] 66.80 7275 5829 6472  46.52
GCBnet [38] 69.47 7526 6237 6821  50.95
MaSGCN [24] 6453 6848 57.86 6272 45.03
MKGSL(ours) 79.74 6894 69.13 69.04 55.78

The bold values indicate the highest value in the corresponding evaluation metric.

evaluation metrics for each class and made a visual presentation
of the classification results.

C. Numerical and Visual Comparison Analysis

The numerical comparison and visual presentation were car-
ried out on the two datasets. The visualization of the experi-
mental results on HT dataset is shown in Fig. 5. The overall
evaluation metrics for the full scene are shown in Table 1. The
proposed MKGSL achieved an OA of 88.68%, an MP of 71.72%,
an MR of 78.03%, an MF of 74.74%, and an MIoU of 62.08%.

In order to intuitively analyze the contribution of spatial and
spectral information for the classification of multispectral point
clouds, we compared GCN-spatial+ spectral, GCN-spatial, and
GCN-spectral. Table I shows that the classification performance
of the graphs constructed jointly using spatial and spectral infor-
mation is significantly higher than either one alone. Comparing
the visualization using spatial or spectral information alone
shown in Fig. 5, it is intuitive to conclude that the graph of
spatial information tends to classify points in the close neigh-
borhood into the same class and have difficulty distinguishing
fine boundaries, while the graph of spectral information is able to
distinguish finer land cover, but the classification results present
severe noise interference.

Based on the above-mentioned findings, comparing MLP,
GCN, GCNII, GAT, GCBnet, MaSGCN with the proposed
MKGSL, MKGSL can significantly improve the classification
performance. Specifically, OA improved by 3.84%, MP dropped
by 7.45%, MR improved by 10.31%, MF improved by 2.97%,
and MIoU improved by 4.72%. And the separate evaluation
metrics for each class are shown in Table II. The proposed
MKGSL outperforms other methods in most classes but does
not perform well in some classes, i.e., car, powerline, and ship.
Comparing the visualization results of the above-mentioned
methods, MKGSL performs significantly better than the other
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TABLE IV
EVALUATION METRICS (%) FOR EACH CLASS ON THE UH DATASET

Method Class Barren Car Commercial Grass Road  Powerline  Residential Tree
Precision 54.13 36.22 70.84 81.62 76.47 70.78 74.60 77.39

GCN-spatial+spectral [29] Recall 80.05 15.41 49.31 7447  51.76 16.41 51.94 95.05
Fl-score 64.59  21.63 58.14 77.88  61.73 26.64 61.24 85.32

IoU 47.70 12.12 40.99 63.77  44.65 15.37 4413 74.39

Precision 49.88 64.44 71.15 79.21  74.44 66.60 85.88 71.95

GCN-spatial [29] Recall 82.80 19.50 72.52 66.03  48.36 23.45 47.65 93.33
Fl-score 62.25 29.94 71.83 72.02 58.63 34.69 61.29 81.26

ToU 45.19 17.60 56.04 56.27  41.47 20.98 44.19 68.43

Precision 35.88 28.26 48.86 8543  77.87 86.61 69.12 78.49

GCN-spectral [29] Recall 83.53 10.09 21.06 76.80 4593 16.81 34.50 94.31
Fl-score 50.20 14.87 29.43 80.88  57.78 28.15 46.03 85.68

ToU 33.51 8.03 17.25 67.90  40.63 16.38 29.89 74.94

Precision 34.14  65.53 79.58 90.63 87.79 83.33 82.70 56.12

MLP [35] Recall 89.19 15.79 61.53 70.50 45.22 12.02 48.93 95.07
Fl-score 49.38 25.44 69.40 79.31  59.69 21.01 61.48 70.58

ToU 32.79 14.58 53.14 65.71 4254 11.74 44.39 54.54

Precision 38.88 55.28 59.79 80.38  77.53 62.68 79.12 76.85

GAT [31] Recall 80.00 12.65 31.70 7445 47.13 20.40 46.77 93.85
Fl-score 52.33 20.59 41.43 77.30  58.62 30.78 58.79 84.50

ToU 35.44 11.48 26.13 63.00 41.47 18.19 41.63 73.16

Precision 4495  45.80 81.14 84.53 85.18 81.93 77.36 81.10

GCNII [32] Recall 83.79 13.00 59.87 73.33  49.13 22.34 68.81 96.07
Fl-score 58.51 20.26 68.90 78.53  62.31 35.10 72.83 87.95

ToU 41.35 11.27 52.56 64.65 45.26 21.29 57.27 78.50

Precision 46.94  60.35 80.20 87.11 8525 72.86 83.07 86.28

GCBNet [38] Recall 85.38 20.16 71.41 78.00 46.53 30.04 71.46 95.97
Fl-score 60.58  30.22 75.55 82.30 60.20 42.54 76.83 90.87

ToU 43.45 17.80 60.71 69.93  43.06 27.02 62.37 83.26

Precision 43.20 39.28 72.71 85.18 78.14 64.96 86.02 78.32

Recall 80.52  20.97 73.93 66.49 4297 33.89 49.76 94.35

MaSGCEN [24] Flscore | 5623 2735 7331 7468 5545  44.54 63.05 8559
TolU 39.11 15.84 57.87 59.59 38.36 28.65 46.04 74.81

Precision 7532 20.85 75.10 88.16  75.57 40.90 82.94 92.70

MKGSL(ours) Recall 83.17  41.80 83.75 7478  67.55 29.04 80.10 92.84
) Fl-score 79.05  27.82 79.19 80.92 71.33 33.96 81.50 92.77

ToU 65.36 16.16 65.55 67.96 55.44 20.46 68.77 86.52

The bold values indicate the highest value in the corresponding evaluation metric.

methods in the classification of land cover boundaries, espe-
cially in the discrimination between barren, grass, and road,
the contour distinguishing of building. The confusion matrices
of the different methods are shown in Fig. 6, from which it
can be concluded that MKGSL presents significant difficulties
in distinguishing among barren, car, with road and between
powerline with tree.

Experiments on UH dataset show similar results, and a visual-
ization of the experimental results is shown in Fig. 7. The overall
evaluation metrics are shown in Table I1I. The proposed MKGSL
achieved an OA of 79.74%, an MP of 68.94%, an MR of 69.13%,
an MF of 69.04%, and an MIoU of 55.78%. According to Fig. 7,
the results of the three groups of GCN-spatial + spectral, GCN-
spatial, and GCN-spectral on UH dataset are consistent with
those on the HT dataset, and the best performance is achieved
by the graph of joint spatial-spectral information. Similarly, the
graphs constructed from spatial information present a region-
alized classification result, while the graphs constructed from
spectral information are more refined but more chaotic.

Comparing with MLP, GCN, GCNII, GAT, GCBnet, MaS-
GCN, our proposed MKGSL can significantly improve the
classification performance. MKGSL outperforms other methods
overall. OA improved by 10.28%, MP dropped by 6.31%, MR in-
creased by 6.76%, MF increased by 0.83%, and MIoU increased

by 4.83%. Table IV further gives the separate evaluation metrics
for each class. MKGSL again performs well in most classes,
outperforming other methods except grass and powerline. From
the visualization results, as shown in Fig. 7, it can be seen that
all methods perform poorly in the car park region in the top
right corner of the scene. Apart from this, MKGSL performs
significantly better than the other methods in distinguishing
the land cover boundaries. The confusion matrices on the UH
dataset are shown in Fig. 8. It can be seen that all the methods
reflect varying degrees of misclassification between barren and
car. This situation is particularly severe on the MKGSL, which
contributes to poor precision. However, the visualization in
Fig. 7 shows that the MKGSL results are more in line with reality.
This indicates a certain contradiction between the evaluation
metrics of the classification and the actual classification results.

D. Discussion

By analyzing the visualization and confusion matrix, the
misclassifications mainly occur at the boundaries of barren,
grass, road, and car, between powerline and tree, and the water
region. The possible reason for the misclassification exhibited
by MKGSL is that the proposed MKGSL is more sensitive to
spectral information. However, the spectral differences among
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the boundaries of barren, grass, and road are not significant.
Misclassification may be caused by the class boundaries them-
selves, furthermore the point cloud superpoint segmentation also
has an effect. The spatial distribution of some of the powerline
overlaps with trees and is spectrally disturbed by trees, and the
body of water will absorb some of the lasers which results in a
multispectral point cloud with high spectral uncertainty on the
water surface. However, for the boundaries of the car, on the
one hand, this is due to the fact that the cars themselves have
complex spectral information and are partly very close to barren.
On the other hand, car is generally small, and experiments on
UH dataset even show contradictions between the evaluation
metrics and the visualization results.

To analyze the reasons for this issue, the superpoint segmenta-
tion needs to be focused on. Before performing the classification,
due to the GPU memory limitation of the experimental platform,
we segmented the multispectral point cloud into superpoints.
The label of a superpoint is derived from a vote of the labels
of all the points that have been grouped into the corresponding
superpoint. So as long as points of different classes are grouped
into the same superpoint, regardless of the label, the upper limit
of classification accuracy will definitely be reduced. To address
this, we mapped the superpoint labels derived from the voting
onto the original point cloud and counted the correctness of the
points by comparing them with ground truth, which is an upper
limit on the accuracy of the final classification of the subsequent
classification methods. And the visualization of the upper limits
of classification accuracy for both datasets and the confusion
matrices are shown in Fig. 9. It demonstrates that the MKGSL
classification results are close to the upper limit of classifica-
tion due to superpoint segmentation. The distributions of the
values in confusion matrices are also highly consistent. Part of
the misclassifications of MKGSL can therefore be attributed
to insufficient superpoint segmentation, which is particularly
evident in the experiments on UH dataset.

V. CONCLUSION

This article proposes a novel multispectral point cloud classifi-
cation method named MKGSL. The proposed MKGSL is based
on graph theory, which has better characterization capabilities
for non-Euclidean data. The proposed MKGSL adaptively maps
multispectral point clouds to Hilbert space by using a linear
combination of multiple base kernels and designs several prior
constraints based on manual experience to guide the evolution
of the graph structure, resulting in an intrinsic characterization
of the multispectral point cloud for classification. MKGSL
makes full use of the spectral information of multispectral point
clouds while exploring the intrinsic relationships of point cloud
in high-dimensional feature space, providing a new idea to
improve the classification performance of multispectral point
cloud. Experimental results on two real multispectral point cloud
datasets confirm that the adaptively learned graph is able to
better characterize the intrinsic properties of land covers and
the proposed MKGSL achieves better classification performance
compared to other state-of-the-art methods. The incorporation
of uncertainty-guided trustworthy fusion into RGBT semantic
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segmentation has yielded promising results [39]. This research
direction holds great significance and contributes to enhancing
the classification trustworthiness of multispectral point clouds.
Moving forward, we plan to conduct further research in this area.
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