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Identification of Ships in Satellite Images

Peder Heiselberg *“, Hasse B. Pedersen

Abstract—Satellite imagery has become a fundamental part for
maritime monitoring and safety. Correctly estimating a ship’s iden-
tity is a vital tool. We present a method based on facial recognition
for identifying ships in satellite images. A large ship dataset is
constructed from Sentinel-2 multispectral images and annotated
by matching to the automatic identification system. Our dataset
contains 7000 unique ships, for which a total of 16000 images
are acquired.The method uses a convolutional neural network to
extract a feature vector from the ship images and embed it on a
hypersphere. Distances between ships can then be calculated via
the embedding vectors. The network is trained using a triplet loss
function, such that minimum distances are achieved for identical
ships and maximum distances to different ships. Comparing a ship
image to a reference set of ship images yields a set of distances.
Ranking the distances provides a list of the most similar ships. The
method correctly identifies a ship on average 60% of the time as
the first in the list. Larger ships are easier to identify than small
ships, where the image resolution is a limitation.

Index Terms—Automatic identification system (AIS), convolutio-
nal neural network (CNN), dark ships, multispectral images,
satellite images, ship identification, triplet.

1. INTRODUCTION

ARGER ships are by law required to identify themselves

by transmitting automatic identification system (AIS) mes-
sages. AIS contains a timestamp, position, class, size, and iden-
tity in the form of a unique maritime mobile service identity
(MMSI) number. However, the AIS transponder can be disabled
and signals lost, or accidentally turned OFF. Without continuous
transmission, the vessel goes “dark.” Dark ships can be in
distress or engaged in illicit activities, such as illegal fishing,
smuggling, oil spills, trespassing, or piracy. Spoofing by mod-
ifying the transmitted MMSI or position as misinformation is
also an increasing problem.

Dark ships are visible in satellite images. Satellite imagery
has therefore become a valuable asset for increasing maritime
domain awareness. Synthetic aperture radar (SAR) sensors are
often preferred since they can operate both day and night and
penetrate cloud covers. Multispectral images offer both visible
and near-infrared images often with higher resolution, which
provide clearer differentiation between vessels based on their
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shapes, colors, and structural characteristics. A multispectral
image of a ship may be seen as a fingerprint of the ship [1].

In the literature, detection, classification, identification, and
recognition are often used in a wide sense. For the purpose of
this study, the following definitions are used: Detection aims at
localizing a ship and discriminating it from other objects, such as
offshore structures. Classification provides the detected vessel’s
type, e.g., container, tanker, fishing, or military. Identification
establishes the unique identity of the ship, such as its MMSI
number. In this study, we propose a methodology that can
identify a ship from its Sentinel-2 multispectral satellite image.

Detection and classification in optical satellite images has
been studied in numerous works [2], [3]. The AIS ship type
is entered manually into the transmitter. This gives rise to a
large within-class variation, which make classification more
complicated and challenging [4]. Moreover, each defined class
may have several subtypes and different sizes. Heiselberg and
Heiselberg [5] used a principal component analysis to reduce the
dimensions of ships, icebergs, wakes, etc. Each class formed a
cluster, which allowed classification by distance in the reduced
space dimension.

In recent years, deep neural networks have been used to
extract such a reduced dimension feature vector embedding
from images. The similarity between two images then directly
corresponds to the distance between embedding vectors. There is
extensive literature on contrastive learning, face recognition, and
person reidentification [6], [7], [8]. We suggest applying these
methods to ships by comparing an input ship image against a
reference set of ship images (Fig. 1 contains examples of ship
images). In this sense, the objective is to rank the input image
to the reference set by similarity. The highest similarity is then
ideally obtained between identical ships.

Ship identification has, to the best of the authors’ knowledge,
not been attempted before. It was proposed in [1] to build a
spectral library of Sentinel-2 multispectral ship signatures for
this purpose. This was met with skepticism [2] due to the large
number of ships worldwide. Yet, a similar argument could be
made against face recognition. In this article, we present the
first study on ship identification in satellite images.

II. DATA

The two Sentinel-2 satellites record multispectral optical
imagery in the visible, near infrared, and short-wave infrared
spectra. Moreover, the large catalog spanning back to 2015 is
freely available. The analysis focused on the Level-1 C (L1C)
scenes in all 13 spectral bands, that have resolution varying from
10 to 60 m.
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unique ships. Each ship was on average found a couple of times,
yielding 16 000 AIS annotated ship images.! For a more detailed
description of the detection and annotation process, we refer
to [10] and [11]. Six examples of annotated ship images are
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Fig. 1. Three different ships with two Sentinel-2 satellite images, each from a different time and place.
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Fig. 2. Illustration of the annotation process.

Three areas were chosen with high maritime traffic: The
seas around Denmark, the English Channel, and the Strait of
Gibraltar. In total, 25 000 scenes were acquired from the period
of 2015 to 2022. However, most scenes were discarded due to
cloudy conditions or few ships.

An automated process of ship detection and AIS correlation
was employed (see Fig. 2). AIS signals were acquired in a
two-hour window for each scene. The AIS signals were then
aggregated based on the MMSI number and interpolated to the
recording time of the scene. A cell averaged constant false alarm
rate [9] detection algorithm was applied to the high resolution
near-infrared band to find ships in the Sentinel-2 scenes. The
interpolated AIS tracks were then assigned to a detected ship
if possible. Through this algorithm, a list of AIS annotated
ships were acquired. A 64 x 64 pixel image in 13 multispectral
bands were cropped and saved around each ship. Repeating
this process for all Sentinel-2 scenes yielded a total of 7000

presented in Fig. 1.

III. METHODOLOGY

To correctly identify a ship based on an image, features that
distinguish the ship from others must be extracted. The ship type,
length, and width could be considered such features. However,
the same ship can use different types and different ships can use
the same type. Many ships are also of the same size or built to the
same specifications. It is, thus, necessary to use more features.
Extracting features was traditionally done using handcrafted
local image descriptors, e.g., [12]. Modern methods exclusively
leverage deep learning for feature extraction, capitalizing on the
advantages offered [13].

The method employed in this work follows recent techniques
developed for face recognition. In [6], a unified embedding was
constructed from face images and used to train a convolutional
neural network (CNN) for face verification, recognition, and
clustering. Analogously, we use a CNN to extract an embed-
ding vector representation of the ship to calculate similarities

IData is available online at https://doi.org/10.5281/zenodo.10473184
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Fig. 3. Illustration of the embedding process for a single ship image.

between ships. Fig. 3 shows the embedding processes for a ship
image.

A. Ship Embeddings

The function f(x) — R? embeds the multispectral ship im-
age x into a d-dimensional feature vector. L, normalization was
subsequently applied to the feature vector, constraining it to
a d-dimensional hypersphere, || f(z)||2 = 1. The similarity be-
tween two images was then computed as the Euclidean distance
between the Lo normalized embedding vectors

Dy = [[f(x) = f(W)ll2- (D

The function f was learned by a CNN using a triplet loss. A
distance matrix between ship images is presented in Fig. 4.

B. Triplet Loss

A triplet contains an anchor (a), a positive (p) and a negative
(n) ship image, i.e., two images of the same ship (a, p), and one
image of another ship (n). In Fig. 1, positives can be seen on
the horizontal axis, and negatives on the vertical axis. This
gives the similarities [, ;, and (dissimilarity) D, ,. Both range
between [0, 2]. The loss for a triplet was chosen as in [7]; a sum
over triplet similarities

L3 = Z[m + .Da,;,p1 - Daq‘,,m]Jr @)

€T

where [z]; = max(z,0) is the hinge loss and m the margin
parameter. 7' was a carefully chosen set of triplets, as will be
discussed in Section III-C. L3 is minimal when positive ship
images are projected closer to the anchor image than the margin,
m and vice versa for the negative ship images. If optimized over
the entire data set for a sufficient duration, all positive pairs will
eventually be pulled together and negative pairs pushed away,
referred to as pull-push. The loss rewards forming separate ship
clusters with radius m, separated by distances exceeding m on
the hypersphere. Each cluster should contain ships with the same
identity.

C. Triplet Mining

The number of possible triplets grows rapidly with the size
of the dataset. It is, thus, advantageous to mine difficult triplets.
Triplet mining can be done offline or online during training. Of-
fline mining is done in sequence to training. After a pass through
the dataset, similarities can be calculated and subsequently used
to sample the hard images. Online mining is performed during
training within the sampled batch of images. The former is
associated with a significant increase in training time, thus, we
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opted for online mining. Even within a batch of P unique ships
with K images of each ship, the number of possible triplets is
large. Learning to separate, e.g., a large red from a small white
ship is trivial, rendering many triplet combinations unnecessary.
Considering all possible triplets within a batch can, thus, be
considered “easy” asitincludes many easily separated examples.

D. Selecting Hard Triplets

A batch of P unique ships were randomly sampled. For each
ship, K images of the same ship were then randomly sampled.
In cases where there are fewer than K images of the same ship,
we sampled with replacement, e.g., we used augmentation to
replicate images. The CNN then computed an embedding for
each image, and the similarity was calculated between all ship
embeddings. Thus, each ship image has (K — 1) positive and
(P —1) - K negative pairs. However, these contain numerous
easy triplets. The hardest triplets were then selected within the
batch by taking the positive pair with the lowest similarity and
negative pair with the highest similarity. This resulted in a subset
of hard triplets for which the loss [see (2)] was calculated. We
consider the ships in Fig. 4 to make up semihard triplets. They
are all similar size and, thus, require additional information to
discriminate. In Fig. 5, we present hard examples. These ships
are both the same size and color.

E. Training

The dataset was divided into two parts, for training and for
testing, with an 80% split. The division was made randomly
based on the identity, such that a ship occurring in the training
set did not appear in the test set. This meant that the CNN had
not seen any of the ships in the test dataset.

As baseline, we used the ResNetl8 [14] CNN. It has a
well-known architecture and allowed for relatively fast training
due to its size. Any neural network is capable of embedding
multispectral images. A few other CNNs were also tested in
Section III-G. Our default settings were m = 0.2, K = 2, and
d = 128. d was the number of outputs from the CNN. In Sec-
tion III-G different settings are experimented with. We used the
AdamW optimizer with default parameters [15] and a batch size
of P = 64 ships. During training and testing, we augmented the
images by random 90° rotations and flipping. In total, 20% of
the training dataset was further set aside for validation. After
each epoch (pass through the training dataset), the loss was
calculated for the validation dataset. The model corresponding to
the minimum validation loss was saved and used for evaluation.
We allowed 50 epochs without improvement of the validation
loss before terminating the training. Training a single model
usually took about 200 epochs, corresponding to 24 h, using
an Intel Core i7-10710 U CPU with base frequency of 1.10
231 GHz. The training flow was implemented using the python
autograd library PyTorch [16].

F. Evaluation

We calculated the embeddings for all ship images in the
test dataset. The embeddings were averaged over five random
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Fig. 4. Distances between images of different ships with similar size.
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Fig. 5. Distances between images of different ships that are very similar (hard examples). The bottom most is also the bottom most of Fig. 4.



HEISELBERG et al.: IDENTIFICATION OF SHIPS IN SATELLITE IMAGES

TABLE I
ACCURACIES FOR DIFFERENT MINING STRATEGIES AND LOSS FUNCTIONS
Hard | Easy | NT-Xent
mAP 38.0 | 329 38.5
Rank1 | 51.1 | 444 50.5

Metrics presented in percentages. Bold face
numbers refer to the baseline model.

TABLE II
ACCURACIES FOR DIFFERENT CNN MODELS (SEE TABLE I FOR TABLE
EXPLANATION)
Model ResNetl18 | ResNet50 | ResNetlO1
mAP 38.0 40.4 34.3
Rank1 51.1 52.5 47.3

Bold face numbers refer to the baseline model.

augmentations of the image. A trick that also improved the test
accuracies of [7]. For a given ship image, we computed the
similarity to all other ship images in the test dataset (without
replacement). This yielded a query sorted by similarity, which
could contain many instances of the same ship (positives) and
many negatives.

The Rankl metric is the proportion of queries where the
highest similarity is obtained for an image of the same ship,
e.g., the first item in the sorted query was positive. Likewise,
Rank N is the proportion of queries where a positive is within
the top IV most similar ships, etc. By definition, Rank N increase
with N.

The Rank N metric does not account for queries where two
or more images of the same ships are found in the ranked
list. We, therefore, also calculated the mean average precision
(mAP) [17], which has become a standard measure in recent
years. The average precision (AP) is defined as the area under
the precision versus recall curve for a query. For a sorted query,
it is

1 &k
AP=—) —.
K;Nk 3)

Here K was the number of positives in the query, which are
ranked as numbers Ny, k = 1, .., K in the ranked list. For ex-
ample, a query with K = 3 positives found in the ranking list at
positions 2, 4, and 6, would resultinan AP = 1/3(1/2 +2/4 +
3/6) = 0.5. Likewise, AP = 0.5 if they are ranked as 1, 4, and
at infinity. Finally, mAP is the mean of AP over all queries. In
most cases mAP < Rank1 [17] as also found in Section III-G.

G. Experiments

Several experiments were performed. We divided these into
ablation and comparative. In the ablation experiments, we inves-
tigated, the use of a different batching strategy, loss function,
CNN architecture, and altering the input. This is followed by
comparative experiments varying the parameters d, m, and K.
The baseline (bold face numbers in Tables I, II, IV-VI) used
the settings described in Section III-E and the triplet loss with
hard batching. We varied only one setting upon the baseline per
experiment, e.g., changing the embedding size d as in Table V.
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TABLE III
EFFECT OF DATA REDUCTION ON ACCURACIES (SEE TABLE I FOR TABLE
EXPLANATION)
Reduction | None | Uint8 | RGB | RBGN
mAP 38.0 32.3 30.2 36.1
Rank 1 51.1 454 44.6 50.1

Bold face numbers refer to the baseline model.

TABLE IV
ACCURACIES FOR DIFFERENT CHOICES OF POSITIVE SHIPS K (SEE TABLE I
FOR TABLE EXPLANATION)

K 2 4 8
mAp 38.0 | 38.8 | 369
Rank1 51.1 | 51.7 | 49.6

Bold face numbers refer to the baseline
model.
TABLE V

ACCURACIES FOR DIFFERENT CHOICES OF FEATURE VECTOR HYPERSPHERE
DIMENSION, d (SEE TABLE I FOR TABLE EXPLANATION)

d 2 16 32 64 128 | 256 | 512
mAP 1.5 | 387 | 369 | 383 | 38.0 | 37.2 | 37.1
Rank 1 29 | 50.0 | 49.0 | 51.5 | 51.1 | 49.8 | 49.8

Bold face numbers refer to the baseline model.

TABLE VI
ACCURACIES FOR DIFFERENT CHOICES OF CLUSTER MARGIN, m (SEE TABLE [
FOR TABLE EXPLANATION)

m 0.01 | 0.05 | 0.1 0.2 0.3 0.4 0.5 0.6
mAP 383 | 375 | 37.6 | 38.0 | 354 | 36.1 | 345 | 36.7
Rank1 49.6 | 50.0 | 50.0 | 51.1 | 48.7 | 489 | 47.8 | 499

Bold face numbers refer to the baseline model.

1) Ablation: There are different approaches and loss function
for learning suitable embeddings besides the hard batch strategy
described above. Instead of only the hardest triplets, computing
the loss over all possible triplets in the batch was mentioned in
Section III-C. This included easy triplets, hence, we reference
it as “Easy.” When K = 2, the normalized temperature-scaled
cross entropy (NT-Xent) can be calculated as [8]

exp(simg,,/7)
SE Y exp(simy i/7)

where sim,, , = 1 — D2 _ /2, was the cosine similarity between
embeddings and the telﬁperature scale was chosen as 7 = 0.1.
This loss is similar to applying the softmax function and com-
puting negative log likelihood for classification neural networks.
The results are shown in Table I and compared with the hard
batching. The two strategies performed approximately equally
well, but better than easy batching. A similar case was observed
in Table IT when using larger CNN’s.

The Sentinel-2 satellite images have 13 bands in 16-bit un-
signed integer format, which is a large amount of data to store
and process. We, therefore, investigated the effectiveness of the
methodology on reduced data. Three types of data reductions
were implemented and tested during training and evaluation,
and the results are listed in Table III. Uint8 converts the images

“

LNT-Xent = —log
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Fig. 6.  mAP and rank metrics by ship length. Bins are given by vertical lines.

from 16 to 8-bit. RGB use only the red, green, and blue channels
(spectral bands 2, 3, and 4). RGBN also includes near-infrared
channel (band 8), which are the four high resolution bands
with a pixel size of 10 m. The first two led to a significant
reduction in both mAP and Rankl, whereas RGBN did not.
This indicates that the four high resolution images are most
important and necessary. The lower resolution images do not
improve ship identification significantly. Furthermore, the 16-bit
dynamic range contains import information on the ship reflection
intensities.

2) Comparative: Varying the number of positive images K
was done by selecting multiples of K such that P - K =128
remained unchanged within a batch. Increasing the number of
positive images from 2 to 4 increased the performance slightly
(see Table IV). Yet, further increasing did not lead to an increase
in performance.

We also investigated the number of embeddings d and the
choice of margin m. The proposed methodology was robust in
regard to both parameters. When d were chosen sufficiently large
and m adequately small (see Tables V and VI) no significant
improvement or loss was achieved.

IV. RESULTS

In this section, we evaluate the baseline approach described
in Section III-G in depth. We break down the evaluation by
ship sizes and show examples of distances (1) between ships.
Furthermore, an analysis of the spectral bands was carried
out.

A. Size Dependence

The most significant factor in identification was the ship size.
Ships are easily separated by size. Consequently, large ships
were easily identified among smaller ships and vice versa. The
ship dimensions were, thus, encoded in the embeddings. Fig. 6
shows the mAP and Rank metrics by ship length. The entire
test dataset was still used as reference set. Small ships were
expectedly more difficult to identify. With an average ship aspect
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ratio of 7, a 140 m long ship is only two pixels wide in the 10 m
resolution images. Despite this, the proposed method queries
the correct ship about 60% of the time, or on average within the
2-3 most similar images. For larger ships, the mAP and Rank1
approach 70% and 80% respectively, and higher rankings even
better.

B. Ship Similarities

In Figs. 4, 5, and 7 we show the distance matrices between
ships. The distance was calculated as in (1) between the ship
embeddings. On the diagonal, the respective ship is shown. The
relative distance from one ship to another is a measure of the
similarity between the ships. Fig. 4 shows the distance matrix for
nine different ships with similar size. The respective ship for the
row/column was placed on the diagonal. Not surprisingly, ships
that looked similar to the human eye also had higher similarity.
The examples of Fig. 4 can be considered of “medium” difficulty.
For the bottom most ship of Fig. 4 we also provide a comparison
to “hard” and identical ships. Fig. 5 shows the distances between
eight very similar ships with the same size. Fig. 7 shows the
distances between six images of the same ship. The bottom most
ship of Fig. 4 was placed on the bottom row of Fig. 5 and used
as reference in Fig. 7. Despite the hard examples of Fig. 5, the
algorithm can still differentiate the ships. The distances for the
ships with the same identity (Fig. 7) are smaller than the hard
ships (Fig. 5).

C. Ship Types

The AIS provided ship type is often manually input. Our
dataset contained about 100 different types. This results in
a large span of ship classes. The classes often have within
class overlap, e.g., tanker, chemical tanker, and bitumen tanker.
Identical classes, fishing ship, fishing vessel, and fishing boat
may be referenced differently, and spelling mistakes are com-
mon. It is, therefore, difficult to classify ships using the AIS
type. Therefore, classes are often selected beforehand and the
different types assigned. The embeddings, calculated by this
method, can provide an insight into the underlying ship classes,
as shown in Fig. 8. It can be seen that ships are naturally
clustered, not only by size and color. Fig. 9 shows three in-
put ships annotated with green ground truth AIS type and the
two most similar ships of the reference set. The embeddings,
by comparison, allow rare types such as refrigerated cargo
ship to be expressed. Despite the middle example retrieving
a different type, it is still a meaningful one. This introduces
the use of the embeddings for ship classification in future
work.

V. DISCUSSION

The size of a ship plays an important role in identification
(see Fig. 6). This is a natural consequence of the satellite image
resolution. The Sentinel-2 images used in this study have at most
10 m pixel resolution. Consequently, the identification measures
are, on average, mAP = 40% and Rank1 = 60%. For large ships
longer than 200 m it is higher, but lower for small ships shorter
than 50 m. Smaller ships, the size of only a few pixels, were
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Fig. 7. Distances between different images of the same ship. The ship is the bottom most ship of Figs. 4 and 5.

Fig. 8. Small section of the Barnes-Hut t-SNE [18] of the learned embeddings. The images were cropped proportional to ship length.
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expectedly harder to identify. This indicates that satellite images
with higher spatial resolution will improve identification. Higher
order rankings also yielded significant better identification, e.g.,
Rankb ~ 80%. It can in part be due to the size of the dataset. The
method has a harder time differentiating between very similar
ships (see Fig. 5). For some ships, there may only be a few very
similar ships in the dataset. All are, therefore, easily included in
the top rankings.

Newly constructed ships of the same model are often identical
(twin ships). These are likely impossible to tell apart. In Fig. 5,
we showed the possibility of identification even for very similar
ships. Yet, extending the gallery will lead to a reduction in
precision, as also found in [7].

In Section III-G we evaluated different hyperparameter con-
figurations and CNNs. Some settings led to small improvements
only. However, the effect of all parameters, including the size of
the CNN, also depends on the dataset. Different configurations
may be more or less optimal with a larger dataset. Our pro-
posed methodology is robust to selection of hyperparameters.
Tables V and VI show little change as long as m is chosen small
and d large. In contrast, we noticed a sharp drop in accuracy
of the NT-Xent algorithm for 7 = 1 during initial experiments.
However, NT-Xent has a familiar formulation known from
classification. Moreover, the methodology may also benefit from
larger batch sizes and more aggressive augmentation [8].

Refrigerated Cargo Ship

Example of classification using similarities for three ships. The first column contains the input ship and ground truth AIS type. The following two images
are the most similar ships in the reference set.

Cement Carrier

The four high resolution Sentinel-2 MSI bands with 10 m
pixel resolution are the most important for identification (see
Table III). Disregarding the lower resolution bands did not result
in a significant decline in accuracy. The near-infrared band in
particular is important to include alongside the red, green, blue
bands. It is also commonly used for ship detection [1].

One of the main obstacles in conducting this study was
creating a balanced dataset. Multiple images of the same ship
are easily acquired for smaller fishing vessels and ferries, which
go back and forth between local harbors. On the other hand,
tankers, dry-bulk, and container ships are rarely imaged twice.
These ships can sail globally, whereas our study focused on
predetermined regions. Moreover, varying cloud cover further
limits the probability of observation. Consequently, we had to
include thousands of Sentinel-2 scenes to get a big and diverse
enough dataset. Automation was necessary to ensure enough
training data for fast scalability and transferability, limited only
by storage. AIS was used to automatically label the detected
ships. However, AIS can be erroneous and, while false alarms
were kept to a minimum by the annotation procedure, few may
exist in the dataset. A poorly imaged ship may be ranked low in
the query, leading to a skew of the mAP.

The dataset was split based on ship identity. Thus, no ship in
the test dataset had the same identity as a ship in the training
dataset. In an operational scenario, this would not be the case.
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We expect the precision of the methodology would be higher in
this scenario. However, this dataset split allowed for an unbiased
benchmark. If the ship images were split random, the accuracy
for a ship would then be dependent on the number of training
images of that ship. There would then be an optimal split for
each ship. The precision for a ship would then be dependent on
how its images were split.

VI. CONCLUSION

Monitoring the oceans with satellites is an important part of
increasing maritime safety and reducing negative environmental
impacts. Dark ships that do not transmit an AIS signal can be in
distress or engage in illicit activities. Detection of dark ships is
an area of active research. Yet, due to the size of the oceans and
limited naval patrolling, detection is not always enough. Correct
identification of dark ships provides the next level of monitoring.
It also allows detection of spoofing, e.g., ships transmitting the
wrong MMSI.

In this study, we proposed a methodology for identifying ships
in satellite imagery. The ships are correctly identified, about 60%
of the time and up to 80% for large ships. The very high probabil-
ity of on average ~ 80% for Rank5 and higher demonstrates that
our proposed ship identification method is promising. Correct
identification of ships is an important measure to counteract
illegal activities.

This is the first study of ship identification from satellite
images. We have identified several ways of further improving
ship identification. Fig. 8 shows that the embeddings can be
separated by the ship size. During training, it would therefore
be beneficial to introduce a batching strategy based on the ship
size. It can be implemented by first sampling a single random
ship instead of P. Then, sampling the remaining P — 1 with a
probability based on the size of the initial ship. The entire batch
would thus be composed of harder examples.

Reducing the number of possible candidates is key to improve
identification. This can be achieved by limiting the reference set
to smaller regions, e.g., the North Sea, Baltic Sea, Arctic, Black
Sea, etc. as also suggested in [2]. It will also counteract the
reduction in precision when the gallery is extended [7].

Correctly identifying a ship may also be improved using infor-
mation about its prior whereabouts. It introduces a velocity and
spatial component, e.g., the ship’s range. The spatio-temporal
information and memory could be encoded into a model to
accomplish this.

Identification is not limited to optical satellite images. SAR
satellites have traditionally been used for maritime monitoring.
The methodology is not specific to optical images. It could
also be applied for ships in SAR satellite images, utilizing the
extensive SAR knowledge available.

Maritime monitoring using satellites is a growing field in
the scientific community. Numerous satellites are launched and
ship datasets published. AIS data is also increasingly made
available. For instance, the European Space Agency is set to
launch the third satellite in the Sentinel-1 constellation, with an
AIS receiver.

6053

We hope this article spurs further interest in the field of ship
identification from satellites.
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