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An Occlusion-Aware Tracker With Local-Global
Features Modeling in UAV Videos

Qiuyu Jin, Yuqi Han , Wenzheng Wang , Linbo Tang, Jianan Li , and Chenwei Deng

Abstract—Recently, tracking with unmanned aerial vehicle
(UAVs) platforms has played significant roles in Earth observation
tasks. However, target occlusion remains a challenging factor dur-
ing the continuous tracking procedure. In particular, incomplete
local appearance features can mislead the tracking network to
produce inaccurate size and position estimations when the target
is occluded. Furthermore, the tracking network lacks sufficient
occlusion supervision information, which may lead to template
degradation during template updating. To address these challenges,
in this article, we design an occlusion-aware tracker with local-
global features modeling, which contains two key components,
namely the feature intrinsic association module (FIAM) and the
feature verification module (FVM). Specifically, the FIAM divides
the local features into blocks and utilizes the transformer network
to explore the relative relationships among each subblock, which
supplements the damaged local target features and assists the mod-
eling for global target features. In addition, the FVM establishes
a correlation measurement network between the target and the
template. To precisely evaluate the occlusion status, masked sam-
ples with occlusion exceeding 50% are selected as negative samples
for independent training, which ensures the purity of the target
template. Qualitative and quantitative experiments are conducted
on publicly available datasets, including UAV20 L, UAV123, and La-
SOT. Qualitative and quantitative experiments have demonstrated
the effectiveness of the proposed tracking algorithm over the other
state-of-the-art trackers in occlusion scenarios.

Index Terms—Local-global feature modeling, object tracking,
occlusion awareness, UAV.

I. INTRODUCTION

THE rapid advancement of Earth Observation technology
has progressively posed a challenge in effectively track-

ing objects of interest within observation images. Visual target
tracking is extensively utilized in aerial imagery [1], including
military reconnaissance [2], [3], [4] and aerial photography [5],
[6], [7], [8] to ensure the continuous maintenance of the tar-
get at the center of the field of view. The objective of object
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tracking is to accurately predict the position of subsequent
video sequences for a specified region by considering the initial
frame’s object as the designated target. Visual target tracking
algorithms can be broadly categorized into correlation filtering-
based algorithms [9], [10], [11], [12], [13], [14], [15], [16] and
Siamese network-based algorithms [17], [18], [19], each belong-
ing to different schools of algorithm design. In the correlation
filtering method, a filter template is manually constructed using
handcrafted features and employed to perform correlation oper-
ations with candidate regions. The target position is determined
based on the maximum output response. However, due to the
utilization of complex optimization strategies and reliance on
handcrafted features, trackers based on correlation filtering face
challenges in improving robustness in dynamic and complex en-
vironments. On the other hand, Siamese network trackers based
on contrastive learning achieve a favorable balance between
accuracy and efficiency, attracting attention from researchers as
they lead an emerging trend in the field of visual tracking [20].

While the majority of target tracking networks primarily focus
on short-term tracking, it is imperative to address the challenges
associated with long-term target tracking to accurately detect
and locate targets. Long-term target tracking encounters greater
variations in targets and more frequent occlusions compared to
short-term tracking [21]. Existing methods effectively tackle the
issue of target changes by incorporating spatio-temporal context
information [22], [23]; however, they face challenges such as
tracking drift or losing the target when dealing with frequent
occlusions. Siamese network trackers utilize contrastive learning
to establish the correlation between the target and template.
Robust feature modeling and precise matching information are
crucial for accurate tracking. We have observed that occlu-
sion significantly affects both feature modeling and template
updating in the network. In feature modeling, when partial
occlusion occurs, the network exclusively models nonoccluded
local appearance information, potentially leading to tracking
drift toward a specific subpart of the target. In template up-
dating, deciding whether to update the template usually relies
on assessing the correlation between current target features and
historical templates. When a large area of occlusion affects the
target, discriminative local features and template responses may
still exist; however, updating using such incomplete samples
containing substantial background can introduce noise-induced
degradation in templates.

This article proposes a long-term tracking network with anti-
occlusion to address the challenges of feature loss and template
degradation in scenarios where targets are occluded. In feature
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modeling stage, it is crucial for the tracking network to care-
fully consider potential associations among appearance features,
which act as valuable clues for filling in missing parts using un-
occluded features. To accomplish this goal, we divide the convo-
lutional neural network-based appearance features into multiple
subblocks and use a transformer network to capture inherent
associations within each subblock. Positive masked samples are
used for training purposes to enhance the network’s ability to
learn and complete these features. In addition, by leveraging the
transformer’s ability to capture long-range dependencies, we es-
tablish feature associations across different templates over an ex-
tended temporal scale, enabling the network to comprehensively
grasp the temporal dynamics of target appearance changes. In
template updating stage, the discriminator needs to consider
not only the correlation between the target and the template
but also whether the current state of the target is sufficiently
complete compared to the template. To address this, we intro-
duce an additional feature verification module (FVM), which is
a network designed to calculate both target features and template
features’ inner product. The training objective of this module dif-
fers from that of the tracking network; it utilizes highly masked
samples as negative examples to encourage accurate judgment
regarding occlusion extent based on feature loss. The learning
objectives of both tracker and verification are complementary,
aiming to comprehensively evaluate tracking confidence and
occlusion degree while discarding potential noise pollution in
participating in template updating. The experimental results
on the UAV20 L, UAV123, and LaSOT datasets demonstrate
superior overall tracking performance. Furthermore, the pro-
posed method has a total computational complexity of less than
6G Flops, which satisfies real-time requirements with limited
computing resources.

The main contributions of this article are as follows.
1) An intrinsic association module is advocated, which uti-

lizes the attention mechanism to extract relationships be-
tween deep feature subblocks, ensuring to supplement the
occluded global information.

2) An FVM is proposed to assess the occlusion status by eval-
uating the similarity between the potential target feature
and the historical template feature.

3) The experimental results on the UAV123 [48],
UAV20L [48], and LaSOT [51] datasets demonstrate
that the proposed modules significantly improve tracking
performance in occlusion scenarios.

The rest of this article is organized as follows. Section II
gives a brief review of the related works. The implementation
details for the proposed tracker are illustrated in Section III.
Subsequently, experimental validation, including the qualita-
tive and quantitative ones, is shown in Section IV. Finally,
Section V concludes this article.

II. RELATED WORKS

A. Aerial Video Object Tracking

Target tracking algorithms have been extensively employed
in aerial video in RS imagery, including generative tracking
algorithms such as Camshift and optical flow methods, as well

as discriminative tracking algorithms. Discriminative tracking
algorithms compare the difference between background infor-
mation and target models to extract target information. Notably,
representative methods include correlation filtering-based target
tracking and deep learning-based target tracking.

For example, Ye et al. [24] utilized multiple regularized
correlation filters to effectively mitigate response variations and
achieve adaptive channel weight distribution, thereby enhancing
the adaptability of target appearance changes over extended time
scales. SAT [12] learns the features of both the target and its
surrounding patches simultaneously, guiding the filter toward
more reliable regions suitable for tracking. Subsequently, some
of the researchers [13], [25] introduced several spatio-temporal
context-aware tracking algorithms based on discriminative cor-
relation filter (DCF) that enable accurate discrimination between
objects and backgrounds in long-term aerial videos by learning
spatio-temporal context weights. Furthermore, Yu et al. [26]
proposed a Siamese network that employs conditional generative
adversarial networks (GAN) to estimate global motion informa-
tion in UAV videos and generate accurate motion predictions.
The fast DCF tracker and the precise deep learning method
are integrated to mitigate cumulative drift during tracking [16],
enabling a reliable update of the target template with high con-
fidence. Fu et al. [27] combining diverse semantic information,
enhanced the flow of information and significantly contributed
to robust aerial tracking.

In addition, Cui et al. [28] utilized spatio-temporal back-
ground, object appearance models, and motion vectors to pro-
vide occlusion information for driving reinforcement learning
actions under complete occlusion, thereby improving tracking
accuracy while maintaining speed. Moreover, Feng et al. [29]
proposed an improved siamRPN++ method based on clustering
and frame difference techniques that refined the response map
by reducing background noise and preserving vehicle motion
information, thus enhancing fuzzy vehicle tracking performance
in optical remote sensing videos (ORSV) scenarios. Despite
achieving high performance levels as demonstrated by the afore-
mentioned discriminative trackers, there still exist significant
challenges related to feature modeling and template updating
when dealing with more frequent occlusion scenes encountered
during long-term remote sensing video object tracking tasks.

B. Feature Modeling

Feature modeling plays a pivotal role in the Siamese net-
work tracker as it determines the robustness of both template
and target features. The early Siamese network trackers [30]
predominantly rely on convolutional neural networks based on
AlexNet [31]. Subsequent advancements, such as siamRPN++
[32] and SiamDW [33], explore deeper and wider backbone
network structures for feature extraction, incorporating ResNet,
Mobilenet, and other networks [34], [35], [36], [37] to extract
more comprehensive target appearance features. Inspired by
NAS research ideas, Lighttrack [38] encodes the search space of
backbone networks into a network set and selects paths within
this set guided by an evolutionary controller to discover high-
efficiency networks that represent the desired features. On the
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other hand, SiamGAT [39] employs a complete bipartite graph
to establish part-part correspondence between targets and search
areas while utilizing graph attention mechanisms to propagate
target information from template features to search features.
This approach enhances local feature perception. However, these
tracking networks primarily emphasize local feature information
while neglecting global information during the feature modeling
stage.

Furthermore, certain tracking algorithms [40], [41] attempt
to leverage the inherent structure of pure Transformer net-
works [42], [43] for capturing global information. However,
these approaches suffer from inherent limitations. First, these
trackers adopt the ViT framework [44], [45], which prepro-
cesses input images into a series of flat slices, resulting in
nonoverlapping segments that undermine local neighborhood
relationships and potentially discard discriminative information
through segmentation. Next, while ViT-based features possess
extensive global context due to their long modeling capability,
they cannot effectively capture fine-grained details necessary for
tracking small targets from aerial perspectives.

Therefore, we initially employed a manually designed CNN
backbone network with a large receptive field to depict the
appearance characteristics of the target. Building upon this, we
further partition the local appearance into multiple subblocks
and leverage the transformer network to explore potential in-
ternal correlations among each feature block. During training,
we utilize numerous masked positive samples to facilitate the
transformer network in acquiring the ability to infer missing
information about the target, thereby effectively enhancing the
robustness of target features in occlusion scenarios.

C. Template Updating

Template updating is a crucial approach in tracking networks
to address the challenge of continuous target and environmental
changes during long-term tracking. However, template updating
can be a double-edged sword in complex tracking tasks. While
offline tracking networks without template updating struggle
to adapt to significant target variations, they also avoid in-
troducing noise information from occlusions into the initial
template. Some tracking networks employ template updating
that considers interframe correlation information during the
tracking process and utilizes dynamic templates to capture the
diversity and temporal evolution of the target state, which proves
advantageous for long-term tracking. Nevertheless, when occlu-
sion occurs, damaged dynamic templates may lead to reduced
matching success rates within the tracking network.

To address the issue of timing decisions for template updating,
methods such as RTMDNet [46] utilize classification confidence
to determine the optimal timing for template updating, while
ATOM [47] employs response graphs of targets and templates
to decide whether or not to reject updates. LTMU [22] assesses
target states by synthesizing geometry, appearance, and other
relevant information. However, these approaches may face chal-
lenges when dealing with occluded targets since response scores
based on tracker output do not necessarily decrease immediately
under extensive occlusion. This is because the training objective

of the tracker aims to enhance the robustness of features, ensur-
ing a high response even in the presence of damaged features.
However, this training goal may pose a potential risk of template
contamination when occlusion occurs.

To assess the extent of template feature damage in cases of
occlusion, we have independently developed an FVM external
to the tracking network. The role of this verifier is to minimize
the correlation between the target and template when occlusion
occurs, enabling us to determine whether there is significant
occlusion affecting the target area. This approach helps prevent
additional background information from being incorporated into
the template during occlusion, thereby enhancing the reliability
of our template.

III. PROPOSED METHOD

We propose an occlusion-aware tracking network that incor-
porates local and global features modeling. The overall architec-
ture of the tracker is illustrated in Fig. 1. The network follows the
Siamese network paradigm for tracking and introduces a feature
intrinsic association module (FIAM) after the convolutional
neural network. In addition, an FVM is incorporated into the
state estimation header.

The network employs a three-head input network configura-
tion, in which a lightweight CNN is utilized to extract depth
features of a search region SRegion, an initial template Tinit, and
a dynamic template Tdynamic. FIAM initially conducts vector-
ization on the deep features, then models the spatial correlation
of each local feature vector using cross-attention (CAttn) and
self-attention (SAttn). During the training phase, a significant
number of masked samples are used to facilitate learning about
cosine correlation between local feature vectors in the attention
module of the transformer network and assigning weights to
individual feature vectors. This allows for the effective en-
hancement of global appearance features in occluded scenarios
by leveraging unoccluded appearance features, thus improving
overall robustness. FVM introduces a verifier to address the
normalized cosine correlation between the current and historical
template features during state estimation of the tracking network.
Specifically, this verifier is trained separately using masked
samples with occlusion greater than 50% as negative examples,
enabling it to assess whether the target feature is complete based
on template features that possess complete information. This
approach ensures a robust and consistent historical template pool
mitigating noise pollution caused by severely damaged target
features.

Moreover, we avoid using the encoder–decoder Transformer
network architecture in the design process of FIAM and FVM
to alleviate the excessive computational burden on the tracker.
The tracking network maintains a computational complexity of
5.3G FLOPs throughout, with a parameter size of 15 M, thereby
meeting the deployment requirements for limited computing
power.

A. Feature Intrinsic Association Module

We observe that the convolutional neural network effectively
captures the local appearance information of the target through
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Fig. 1. Main framework of our tracking network. The CNN represents a lightweight feature extraction module. FIAM denotes a feature intrinsic association
module, which is utilized to compensate for damaged appearance features and restore global features. The FVM is an additional module used to assess the extent
of feature corruption and update the template when the score exceeds a predefined threshold.

a sliding window but fails to exploit the intrinsic association
between deep feature subblocks represented by each local obser-
vation window. Consequently, during subsequent feature match-
ing, the tracking network tends to prioritize local features with
high weights rather than global features. While classification
and regression can generally recover complete position and size
information of the target in tracking processes, occlusion may
cause drift in tracking results toward a specific subpart of the
target.

To address this issue, we propose the construction of a FIAM,
which aims to capture the inherent association relationship
among deep feature subblocks. First, we employ vectorization
techniques to represent the deep features and utilize an attention
mechanism to model their mutual relationships and weights in
space. To better simulate target occlusion scenarios, we intro-
duce a large number of positive sample pairs randomly covered
with masks during the training phase of our tracking network.
The training methodology serves two primary objectives: 1) it
effectively mitigates overfitting by avoiding excessive focus on
specific features; 2) it actively promotes the network to exploit
internal associations between feature subblocks to compensate
for missing feature information and enhance the robustness of
global features.

The structure and process of FIAM are illustrated in Fig. 2.
The multiscale deep features extracted by the CNN network
are converted into a sequence of feature vectors, known as
feature tokens. To preserve their positional integrity within
the image, we utilize sinusoidal position embedding (SPE) to
encode each vector. The size of the search region feature token is
(Hs/S,Ws/S,C), while the size of the template feature token is

Fig. 2. Structure diagram of FIAM. After applying layer normalization (LN)
and sinusoidal position encoding (SPE), the corresponding Q, K, and V matrices
of the feature token are obtained through embedding. These matrices are utilized
to represent the adaptive relationships between features in the core operation
module-attention network. Furthermore, the attention network consists of a self-
attention (SAttn) module and a cross-attention (CAttn) module. The final result
of relation mapping is outputted by a multilayer perceptron (MLP).

(Ht/S,Wt/S,C). Here, S represents the downsampling scale
of the backbone to the original image, and C represents the
number of channels in the feature map. The FIAM incorporates
position encoding information into both search region feature
tokens and template tokens in a high-dimensional space. As a
result, it obtains query matrices, key matrices, and value matrices
for each Token, including Qti, Kti, Vti, Qtd, Ktd, Vtd, Qs, Ks,
Vs. The self-attention module based on search region features
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is referred to as SAs; similarly, SAt denotes the self-attention
module based on template features. In addition, theCA signifies
the cross-attention module that operates on both search region
feature tokens and template feature tokens. We concatenate Qti

and Qtd, Kti and Ktd, Vti and Vtd along the channel direction
to obtain Qt, Kt, and Vt respectively. The QKV matrices with
subscript t represent the subfeature map matrices of the template.

SAs = Softmax

(
[Qs][Ks]

T

√
dk

)
· [Vs]

SAt = Softmax

(
[Qti ;Qtd ][Kti ;Ktd ]

T

√
dk

)
· [Vti ;Vtd ]

CA = Softmax

(
[Qs][Kt]

T

√
dk

)
· [Vt]. (1)

The matrices Q, K, and V in the aforementioned expression
correspond to the query matrix, key matrix, and value matrix.
The symbol dk represents the dimensions of the query matrix,
key matrix, and value matrix, which are the same constant values.
The ti and td indicate that the matrix belongs to the initial
template and dynamic template, while the s denote that the
matrix belongs to the search region.

Let P denote the outcome of the operation performed on the
query matrix and the key matrix

Softmax

(
QxK

T
y√

dk

)
= Pxy. (2)

The SA is approximately solved as depicted in (3). The SA
resolves the inner product correlation between each feature
token and all others, thereby characterizing the angular dis-
parity of local feature vectors within the feature space. In
scenarios where the target is partially occluded, besides lever-
aging CNN-modeled appearance depth features, the intrinsic
correlations can provide valuable cues to guide the network
in completing missing local features. This assists in modeling
based on the global features of the target, ensuring the integrity
of its appearance characteristics and mitigating tracking drift
caused by damaged local features. Moreover, we sample N
dynamic templates {t1, t2, . . . , tN} and utilize self-attention
to establish association among multiple templates in SAt.
Specifically, the subfeature vectors Token of the N templates
are concatenated along the batch dimension to obtain Qtd,
Ktd, and Vtd with spatio-temporal information. The SA re-
tains spatio-temporally encoded global features of N tem-
plates, enabling the network to perceive long-term changes in
target appearance and enhance robustness in long-term target
tracking

SA = SAs + SAt � Pss · Vs + Ptt · Vt. (3)

The cross-attention expression CA is approximately solved
as depicted in (4). On one hand, the CA utilizes the appear-
ance feature Token constructed by CNN to address the local
feature correlation between the template and the target. On
the other hand, within the multilayer cross-attention solution,
the CA leverages the global modeling outcomes of the SA to
tackle global feature correlation. Integrating local and global

Fig. 3. Visualization results of different attention weights on Group3 and
Car12 of UAV123.

feature correlations effectively enhances the accuracy of feature
matching.

CA � Pst · Vt. (4)

The working mechanism of FIAM is intuitively depicted in
Fig. 3. Including FIAM in the network enables the construction
of global features by leveraging local subfeature relationships,
thereby enhancing attention toward the complete target in oc-
clusion scenarios and ultimately improving tracking robustness.
Conversely, without FIAM, the network primarily focuses on
unoccluded parts of the target, which may lead to tracking drift
or errors in scale estimation.

B. Feature Verification Module

It is worth noting that the confidence scores based on similar
responses to local appearance features may not immediately
decrease when the large occlusion covers the target. This phe-
nomenon can be attributed to the tracking network’s ability
to use local information to complete feature matching due to
masked positive samples during training. As long as the dis-
criminative features of the target remain unaffected by occlusion,
the tracking result will still exhibit a relatively high response.
While this phenomenon has for the tracking task itself, it poses
potential risks in determining the timing of template updating.
The tracking network needs to update the dynamic template
based on the current target state; however, extensive occlusion
introduces noise information that potentially contaminates the
historical template pool.

We have developed an additional verifier to assess the extent
of compromise in feature integrity, as illustrated in Fig. 4. This
module takes the global feature from feature modeling as input,
which includes both the global feature SAs from the search
region and the global featureSAt from the template. We perform
a reverse mapping of the bounding box from the tracker’s output
to its corresponding position inSAs and extract a portion ofSAs

with spatial resolution matching that of Sat, denoted as SA′
s.

Subsequently, we compute the inner product correlation between
the target global feature SA′

s and the template global feature
SAt. To provide a more intuitive measure of target feature
completeness, we introduce a score token VScore for independent
training of this verifier after completing tracker training. QSA′

s

and KSAt
are obtained through global feature encoding, with

their correlation established by the inner product. The resulting
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Fig. 4. Structure diagram of FVM based on integrity discrimination.

inner product correlation is then mapped onto the score Token,
followed by a multilayer perceptron (MLP) output to generate
the final result. The expression is as follows:

Score = MLP

(
Softmax(

[QSA′
s
][KSAt

]T√
dk

) · [VScore]

)
(5)

The learning objectives of the verifier network and the tracker
network differ. Specifically, while the tracking network con-
siders all masked samples as positive samples to enhance its
ability to reason the global information from locally damaged
features, the verifier network treats samples with a mask range
greater than half as negative samples. This ensures that the
feature verification network can effectively determine whether
target features are complete or incomplete, thereby reducing
the introduction of noise during template updating. The feature
verification network is trained using a standard cross-entropy
loss function

LScore = yilog(pi) + (1− yi)log(1− pi) (6)

where yi represents the groundtruth label, and pi denotes the
predicted score.

Similar to the cross-attention representation in the Trans-
former structure, we propose that [QSA′

s
][KSAt

]T effectively
captures the inner product correlation of high-dimensional fea-
ture embeddings, thereby reflecting the angular disparity among
features within a class. The minimal intraclass disparity of global
features can be considered as an indication of the completeness
of the target feature. Furthermore, since the FIAM has com-
prehensively modeled the global features, the FVM does not
impose significant computational burdens, seamlessly aligning
with platform deployment requirements.

C. Other Key Modules

1) Feature Extraction Module: The feature extraction back-
bone network has been redesigned as shown in Fig. 5 to over-
come the limitations of computing power. It is important to note
that while native ResNet or MobileNet are better classification
tasks, accurate target localization requires higher demands on the
target tracking task. Taking inspiration from NAS in LightTrack,
we have replaced the 3× 3 small-size convolution kernels with a

Fig. 5. Lightweight backbone for efficient feature extraction. Conv represents
an ordinary conventional operation. MB incorporates the architectural compo-
nents from MobileNet, which consist of Expansion (EX), Depth-Wise convo-
lution (DW), Point-Wise linear (PW), Squeeze Excitation (SE), and residual
connection (Res).

significant number of 7×7 and 5 × 5 large-size convolution ker-
nels to expedite the acquisition of a sufficiently large receptive
field and enhance the positioning accuracy of the tracker.

Furthermore, to ensure that the final output feature map en-
compasses both high-level semantic information and low-level
details, such as the texture and color of the target object, we
employ a concatenation approach for multilevel feature maps.
This enhances the accuracy of tracking small targets. After max-
pooling downsampling (Pool in Fig. 5), the low-level feature
map maintains the same spatial resolution as the high-level
feature map. A 1×1 convolution kernel is used to adjust the
channel weights of each feature map, and then these maps are
concatenated (Concat in Fig. 5) along the channel dimension.
The resulting output of the feature map can be expressed as
follows.

Eall(·) =
∑

αi ⊗ ηi(·) (7)

where αi represents the scaling factor for channel weights of
each layer’s feature map, while ⊗ denotes the convolution
operation.

2) State Estimation Module: Our tracking state estimation
module is inspired by the STARK tracking network and uses
a corner-based fully convolutional module that generates two
probability maps representing the top-left and bottom-right
corners of the object bounding box. By utilizing a fully con-
volutional network for feature matching, we can obtain both
probability distributions for each corner as well as for the overall
bounding box of our target. During training, we employ a com-
bination of L1 loss and GIOU loss to train our tracking network
end-to-end while also incorporating a set of hyperparameters for
weight adjustment

Lall = γ1L1 + γ2Lgiou (8)

where γ1 and γ2 represent the weight ratio in the loss function.

IV. EXPERIMENTS

In this subsection, we conduct quantitative and qualita-
tive experiments on three publicly available tracking datasets
(UAV20 L, UAV123, and LaSOT) to compare the proposed
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method with other state-of-the-art tracking networks and vali-
date the effectiveness of both the FIAM and the feature validator
module.

A. Dataset and Evaluation Metrics

UAV20L [48]: As the number of frames within a sequence
increases in long-term tracking, the challenges associated with
changes in object position, size, perspective, illumination, and
other factors become progressively more demanding. This inten-
sifies the complexity of visual tracking. The dataset comprises 20
extensive sequences, with the largest one of over 5000 frames
and an average length of close to 3000 frames per sequence.
Consequently, UAV20 L is employed to assess the performance
of long-term tracking.

UAV123 [48]: The UAV123 dataset has been selected to eval-
uate the adaptability of the long-term tracking network to various
challenges in short-term tracking. This dataset encompasses
diverse tracking scenarios, including illumination changes, fast
motion, occlusion, target deformation, background interference,
and scale variations. It comprises 123 video clips and over
100 000 frames of images.

LaSOT [51]: The dataset is a large-scale, high-quality dataset
for long-term tracking of single objects, consisting of 1400
challenge videos: 1120 for training and 280 for testing. With
over 3.52 million frames of manually labeled images covering
more than 70 categories, this dataset enables comprehensive and
robust evaluation of tracking networks.

The tracking network is assessed using the one-pass evalua-
tion across all the aforementioned datasets, with accuracy and
success rate serving as the evaluation metrics. Specifically, the
success rate is measured through IoU, where the success plot
illustrates the proportion of frames that exceed a predetermined
threshold. The area-under-the-curve of this plot is employed for
ranking purposes. Furthermore, accuracy is gauged by center
location error, which quantifies the disparity between estimated
and ground truth bounding boxes. The accuracy plot shows
the percentage of scenes in which said disparity falls below
the thresholds. In the following section, a score at 20 pixels
is utilized for ranking.

B. Implementation Details

The training process of the tracking network comprises two
stages: 1) tracker training and 2) verifier training. The entire
process is trained end-to-end using four datasets: 1) COCO [49];
2) GOT-10K [50]; 3) LaSOT [51], and 4) TrackingNet [52].
During the tracker training phase, we assign hyperparameter
weights γ1 and γ2 to be 5 and 2 in the loss function. The
training phase requires 800 epochs, with the global learning rate
decaying from 0.0004 to 0.00001. It is worth noting that the
feature modeling network’s learning rate is set at only 0.1 times
the global learning rate. As for the selection of positive and neg-
ative samples, we chose sample pairs consisting of a 128×128
template image patch and a 288×288 search field image patch
from the dataset. Subsequently, we randomly applied a mask
coverage rate of less than 75% on the 288×288 search field,
considering mask sample pairs containing the target in the same

sequence as positive samples. Sample pairs that do not contain
the target are considered negative samples. During the verifier
training phase, we freeze the parameters of the tracker network
and independently train the verifier network for 200 epochs. To
decrease the correlation response between the template feature
and the target feature during occlusion, masked samples with
over 50% coverage are utilized as negative samples, while the
learning rate is set to 0.001 and decayed to 0.00001 in gradient
fashion.

We instantiate two types of trace models: 1) Model-L and 2)
Model-S. By modifying the hidden feature layer dimension of
FIAM, the network exhibits distinct parameters and computa-
tional complexity, as illustrated in Table I.

C. Quantitative Evaluation

On the UAV20 L dataset, we compared our proposed net-
work with eight advanced convolutional neural network-based
tracking networks, namely SiamGAT [39], LightTrack [38],
SiamBAN [53], SiamRPN++ [32], SiamRPN [54], Siam-
CAR [55], Ocean [56], and SiamDW [33]. These tracking net-
works encompass models focusing solely on spatial information
(e.g., LightTrack and SiamRPN++) as well as those incorporat-
ing interframe relationships (e.g., Ocean). All tracking network
results were obtained from published data [20]. The success rate
of the proposed tracking network reaches 70.6%, as presented in
Table II, surpassing that of SiamGAT by 8.6%. The leading re-
sults on the long-term tracking dataset demonstrate that incorpo-
rating a robust antiocclusion capability into the tracking network
effectively mitigates drift error accumulation and significantly
enhances the success rate of the tracking task. Furthermore,
this outcome further emphasizes the significant improvement
achieved through the integration of global information into the
tracking network to enhance its anti-occlusion ability.

To evaluate the robustness of the long-term tracking network
in diverse environments, we further assess its performance on
the UAV123 tracking dataset. The experimental results are pre-
sented in Fig. 6. It is worth noting that all methods utilize the
lightweight configuration of this tracking network, which aligns
well with real-world UAVs earth observation application scenar-
ios. Our proposed algorithm achieves a success rate of 69.2%
and a precision rate of 90.3%. Compared to LightTrack, another
lightweight tracking network, our approach demonstrates an
improvement of 4.8% in success rate and 8.1% in precision rate.
Furthermore, our method exhibits performance enhancements
of 5.2% in success rate and 7.0% in precision rate compared to
SaimGAT.

We conduct additional tests on challenging problems, such
as background clutter, scale changes, partial occlusion, and
complete occlusion, that are prone to occur in long-term tracking
tasks. The proposed tracker significantly enhances the success
rate and precision rate. With the help of the template updating
mechanism, we effectively adapt to target scale changes in long-
term tracking scenarios. Furthermore, the FVM ensures that the
template remains unaffected by noise information caused by
occlusions during tracking, thereby establishing a more stable
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TABLE I
IMPORTANT PARAMETERS OF THE MODEL, ALONG WITH THEIR CORRESPONDING UTILIZATION OF COMPUTATIONAL AND STORAGE RESOURCES

Fig. 6. Performance of the nine tracking networks is comprehensively evaluated on UAV123 while also presenting evaluation results for common scenarios
encountered in long-term tracking, including Background Clutter, Scale Variation, Partial Occlusion, and Full Occlusion. Our tracking network surpasses others in
terms of both the overall evaluation metric and each subevaluation metric.

TABLE II
COMPARISONS ON UAV20 L TEST SET

template pool and endowing the tracking network with anti-
occlusion capabilities. In addition, our modeling method based

on intrinsic feature association exhibits strong resistance when
targets are disturbed by background clutter since it enables effec-
tive utilization of local features to complement global features
and enhance overall robustness.

On the LaSOT dataset, we compare the aforementioned
convolutional neural network-based tracking network with the
proposed approach. By utilizing large-scale datasets like LaSOT,
we can comprehensively evaluate the effectiveness of the track-
ing network in diverse environments. Fig. 7 visually illustrates
the tradeoff between tracking performance and computational
resource consumption for each tracking network. Considering
practical constraints on UAVs platform performance, we advo-
cate deploying tracking networks that consume less than 6G
Flops of computing resources. The specific test values of the
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Fig. 7. Success rate and computational complexity of the proposed tracking
network are compared with state-of-the-art tracking networks based on the
LaSOT benchmark set. Different colors indicate the suitability of each tracking
network for deployment on an embedded platform.

TABLE III
COMPARISONS ON LASOT TEST SET

TABLE IV
SUCCESS AND PRECISION RATE (IN PERCENTAGE) WITH RESPECT TO THE

FRAME INTERVAL AND THE TEMPLATE FEATURES NUMBER PARAMETERS

tracking network are presented in Table III. Both our tracking
network and LightTrack exhibit low computational require-
ments. However, compared to LightTrack, our proposed tracking
network demonstrates a 9.6% improvement in success rate and
an 12.7% improvement in precision rate. Consequently, the pro-
posed tracking network demonstrates a superior performance-
price ratio within the context of Earth observation applications.

D. Parametric Sensitivity

As demonstrated in Section IV-B, our tracker requires the con-
figuration of numerous hyperparameters. Initially, we maintain
consistency with SiamRPN++ by setting the common param-
eters γ1, γ1, and αi to identical values for a fair comparison.
Subsequently, we conduct experiments on the UAV123 dataset
using different settings for the update frame interval, number
of retained template features, and occlusion rate threshold. To
ensure fairness in comparisons, all other parameters are kept
constant when evaluating each specific parameter.

First, we conducted experiments on the configuration of
the Frame Interval of the dynamic template and the Template
Features Number, and the results are shown in Table IV. The
findings indicate that performance significantly degrades when

TABLE V
SUCCESS AND PRECISION RATE (IN PERCENTAGE) WITH RESPECT TO THE

OCCLUSION PERCENTAGE THRESHOLD

the Frame Interval is set to 50 or 400. Moreover, under a high-
frequency update strategy, excessive attention to recent features
and forgetting historical information exacerbate due to highly
similar appearances within a period of time. This situation is
not conducive to long-term tracking of targets by the network.
Conversely, adopting a low-frequency update strategy may lead
to target matching drift or tracking failure due to drastic changes
in target scale and viewing angle. Furthermore, the performance
experiences a significant decrease when only one or two template
features are retained, suggesting that the tracking network relies
on multiple template features to fully capture variations in target
appearance over an extended period of time. This improvement
plays a crucial role in enhancing the resilience of long-term
target tracking.

Furthermore, as mentioned in Section III-B, our tracking
network utilizes the FVM to evaluate the degree of damage to
template appearance features and selects templates that exceed
the predefined threshold for participation in template update.
Consequently, we conducted experimental analysis on the con-
figuration with the Occlusion Percentage Threshold, and the
results are presented in Table V. The findings indicate that setting
a low threshold (e.g., 0.2 or 0.35) poses the risk of introducing
noise through template updates, thereby, diminishing tracking
performance. Conversely, adopting a high threshold (e.g., 0.9)
leads to excessively strict criteria that exclude mildly occluded
samples from participating in template updates. This limitation
hampers accurate perception of target state when significant
appearance changes occur during prolonged mild occlusion
periods, ultimately impairing tracking performance.

E. Qualitative Evaluation

In this section, a qualitative comparison is conducted between
the proposed tracking network and eight other advanced track-
ers, as shown in Fig. 8. The UAV123 dataset is selected as the
benchmark for comparison, from which three sets of representa-
tive image sequences with occluded targets are chosen: (a) Car7,
(b) Group2, and (c) Group3.

In the Car7 sequence, the black car is frequently occluded
by trees for short durations, with approximately 10 frames per
occlusion. When the target experiences frequent occlusions, the
verifier within the network detects these occlusions and triggers
a brief locking state in the tracking network to prevent distur-
bances from incorrect responses, thereby minimizing significant
drift in the tracking position. When the target reappears, the
network performs new matching based on historical template
characteristics.

In the Group2 sequence, the person remains occluded by
the building for an extended period, lasting much longer than
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Fig. 8. Visual tracking results on UAV123.The figure consists of three subsequences, corresponding to challenges posed by frequent short-term occlusion,
long-term complete occlusion, and masked coverage occlusion.

TABLE VI
RESULTS OF DIFFERENT FEATURE MODELING AND TEMPLATE UPDATING STRATEGIES ON UAV123 DATASET

10 frames. The proposed tracking network transitions into a
lock state and gradually expands the search area to ensure the
successful recapture of the target and achieve stable tracking
upon its reappearance.

In the Group3 sequence, only a partial amount of appearance
information remains visible after the person is randomly oc-
cluded by branches and leaves. On one hand, this proposed track-
ing network utilizes local appearance feature clues to complete
global features for maintaining tracking. On the other hand, the
verifier network determines feature integrity to prevent degrada-
tion caused by an excessive amount of background information
introduced into the history template.

However, we observed that the tracking performance is often
affected by similar target interference during occlusion. Further-
more, long-term full occlusion may result in significant target

variations and lead to inferior performance. In future, we will
continue to optimize our approach to address such challenge.

F. Ablation Study

In this section, we present extensive analysis of the proposed
submodules on the UAV123 dataset, which include the FIAM,
the FVM, and a manually designed backbone feature extraction
network.

We designed a range of template updating conditions to
validate the efficacy of the FVM, and the comparative results
are presented in Table VI. In Experiment #1, we employed a
static template (ST) strategy where only the initial frame of
target information was utilized as the template without any
subsequent updates during tracking. The tracking achieved a
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TABLE VII
RESULTS OF TESTING BACKBONE ON UAV123 DATASET

success rate of 65.1% and a precision rate of 85.6%. In Ex-
periment #2, we adopted a dynamic template approach that
updated at a fixed frame rate (FFR), resulting in a success rate
of 64.9% and a precision rate of 84.6%. By comparing the test
outcomes between Experiment #1 and Experiment #2, it can be
observed that updating the template at a fixed frame rate may
introduce erroneous information and result in the degradation
of the template, thereby reducing the robustness of the dynamic
template compared to that of the static template. In Experiment
#3, we utilize the tacking correlation response (TCR) of the
tracking network as the criterion for template updating, with a
response threshold set at 50%. The tracking success rate achieves
66.5%, and the precision rate reaches 87.1%. In Experiment #4,
we employ the score from the FVM as the basis for template
updating while maintaining a threshold of 50%. Consequently,
the tracking success rate improves to 67.5%, and the precision
rate improves to 87.9%. By comparing test results between
Experiment #3 and Experiment #4, it is evident that establishing
an independent verifier to assess the completeness of target ap-
pearance becomes imperative in effectively preventing template
contamination caused by noise. Experiment #5 incorporates a
FIAM after the CNN and utilizes the feature verification score
(FVM) as the decision criterion for template updating. We still
set the threshold at 50%. The tracking success rate is 69.2%,
and the precision rate is 90.3%. Comparing the test results
of Experiment #4 and Experiment #5, we observe that FIAM
can construct more robust global features, leading to a further
improvement in both tracking success rate and precision rate by
1.7% and 2.4%, respectively.

As stated in Section III-D, our tracking network utilizes a
manually designed lightweight backbone network. To validate
this backbone, we exclusively focus on evaluating it alongside
the complete tracker, incorporating the FIAM and the FVM as
configuration baselines. The corresponding results are presented
in Table VII. First, we selected ResNet as the feature extraction
network, which yields in a tracking success rate and precision
rate of 65.2% and 86.3%. By employing a single-stage output
feature map (MB4 in Fig. 5) from a lightweight backbone net-
work, we achieved 2.9% and 2.3% improvement in the success
rate and precision rate, respectively. These results demonstrate
that our lightweight backbone network is more suitable for
UAVs object tracking tasks compared to ResNet. Consequently,
we have implemented a configuration that integrates multilayer
feature maps (MB4 + MB3 + MB2 in Fig. 5.), which shows
1.1% and 1.7% improvement in the tracking success rate and
precision rate. This experiment demonstrates the advantageous
impact of fusing convolutional image features from multiple

layers on enhancing target perception ability for tracking tasks.
In addition, our lightweight backbone network only requires
0.35G Flops of computation, which is over 100 times less than
that of ResNet, making it highly suitable for deployment on
UAVs platforms.

V. CONCLUSION

This article presents an antiocclusion tracker for long-term
Earth Observation tasks. Following the CNN backbone network,
an intrinsic feature association module exploits the internal
potential correlation of local appearance features to complement
global features, thereby enhancing robustness in occlusion sce-
narios. In addition, an FVM supplements occlusion supervision
information and carefully filters cases where the target is heavily
occluded to ensure the purity of the template. Experimental
results on public datasets, including UAV20 L, UAV123, and
LaSOT, demonstrate the superior performance of the proposed
tracking network, which could be deployed on UAVs computing
platforms.
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