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Abstract—Thaw slump susceptibility mapping (TSSM) of
Qinghai–Tibet railway corridor (QTRC) is the prerequisite and
basis for disaster assessment and prevention of permafrost projects.
The objective of this article is to construct ensemble learning models
based on single classifier models to generate the TSSM of the
QTRC, compare and verify the performance of the models, and
further explore the relationship between the high susceptibility
area and environmental factors of the QTRC. The collinearity
analysis was carried out by selecting 14 thaw slump conditioning
factors (TSCFs). We used the balance bagging method for sample
optimization, and the dataset was divided into 70% training set
and 30% verification set. Convolutional neural network, multilayer
perceptron, support vector regression, random forest single clas-
sifiers were selected to construct blending and stacking ensemble
learning models for the TSSM. The results showed that there was
no collinearity among the 14 TSCFS. The comparison of model
performance revealed that all models had good performance, but
the constructed stacking and blending ensemble learning models
had stable performance and high prediction accuracy for TSSM.
The stacking ensemble learning model had the best effect, and the
area under curve value of receiver operating characteristic curve
reached 0.9607. It showed that the generated TSSM of QTRC based
on stacking ensemble learning model had the highest reliability.
The QTRC has local areas with high thaw slump susceptibility,
mainly concentrated in the permafrost areas with high altitude,
high slope, adjacent faults, sparse vegetation, ice and snow and the
more cumulative precipitation.

Index Terms—Ensemble learning, Qinghai–Tibet railway,
sample optimization, thaw slump susceptibility mapping (TSSM).
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I. INTRODUCTION

THAW slump is a typical thermal karst landform, which
refers to the phenomenon that the underground ice is

exposed by natural factors or human activities in the slope area
where the underground ice is distributed, so that the melting soil
above it loses its support and collapses under the action of its
own weight [1], [2]. Thaw slumps that are accompanied by the
melting of underground ice will have a series of disaster effects
on ecological environment, water environment, climate, and
infrastructure [3], [4]. Specifically, thaw slump disasters expose
the surface and promote ecosystem degradation [5]; Thaw slump
disasters break water balance, releasing chemical solutes and
causing water environment pollution [6]; Thaw slump disasters
release greenhouse gases and accelerate global warming [7].
In addition, thaw slump disasters will destroy roadbed, block
bridges and culverts, and threaten the safe operation of frozen
soil projects [8], [9]. In recent years, with the influence of
global warming and anthropogenic activities, the number of
thaw slumps development has increased rapidly [10], [11]. It is
very important to identify the potential thaw slumps. The eval-
uation of thaw slump susceptibility can predict the probability
of potential thaw slumps, which is of great significance for the
prevention and control of thaw slump disasters.

The QTRC is a belt area that runs through the south and
north. Due to the rapid warming of the global climate, the thaw
slump geological hazards in the QTRC show a trend of obvious
intensification [12]. In particular, the new thaw slump disasters
in recent years not only threaten the safety and stability of
existing permafrost projects such as the Qinghai–Tibet railway
(QTR), but also have a great impact on the design and operation
of future Qinghai–Tibet projects [13]. It is extremely important
to carry out comprehensive identification of potential thaw
slumps of QTRC. However, there are few reports on the
evaluation of thaw slump susceptibility, and even fewer studies
on the evaluation of thaw slump susceptibility of the QTRC.
Therefore, this article carried out the evaluation of thaw slump
susceptibility of QTRC and realized the evaluation of thaw
slump susceptibility “one map.”

Machine learning methods have the ability to express
nonlinear relationships and have been widely explored and
applied in susceptibility assessment, such as logistic regression
[14], decision tree [15], RF [16], SVM [17], artificial neural
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networks [18], and other neural networks [19], which perform
better than general statistical models in susceptibility assessment
[20], [21]. In the susceptibility assessment, when facing the
classification task of complex scenes, the machine learning
methods enhance the more complex nonlinear mapping to
generate the end-to-end capability by increasing the layer width
and model depth [22]. Accordingly, more sample label data is
needed to adapt to the model with larger capacity. Samples in
different environments are very different, and it is difficult to
ensure the representativeness and balance of samples when sam-
ples are selected at random. Unbalanced prediction results will
be generated in complex environments, which seriously affects
the generalization ability and reliability of machine learning
susceptibility evaluation methods. When the sample contains
noise, it may even lead to the wrong model being trained [23],
[24]. When faced with limited samples, the method of integrating
existing models is used to solve this problem. For example, Zhou
et al. [25] proposed a landslide susceptibility assessment method
based on a coupled model of ensemble learning and radial basis
neural network. Wang et al. [26] proposed that the ensemble
learning technology of stacking combines CNN and recurrent
neural networks to predict landslide hazard vulnerability. Lv
et al. [27] proposed a hybrid landslide susceptibility mapping
framework based on heterogeneous ensemble learning and deep
learning models to evaluate the susceptibility of landslides in
the Three Gorges Reservoir area, China. Wu et al. [28] proposed
a landslide susceptibility assessment method using Alternating
decision tree and a new ensembled technique based on GIS.
Di Napoli et al. [29] proposed an ensembled method based
on artificial neural network, generalized boosting model and
maximum entropy machine learning algorithms to evaluate
landslide susceptibility. However, these studies mainly focus
on the evaluation of landslide susceptibility, and there are
few studies on the evaluation of thaw slump susceptibility. In
addition, the blending and stacking ensemble learning methods
based on an outstanding deep learning CNN, popular machine
learning MLP, SVR, and RF single classifier for TSSM are
lacking.

In this article, the QTRC is selected as the research area, and
the thaw slump susceptibility is evaluated based on single clas-
sifier models and ensemble learning technology. The research
objectives are as follows.

1) To optimize thaw slump samples of QTRC based on the
balance bagging method.

2) To construct CNN, MLP, SVR, and RF single classifier
models to generate the TSSM of QTRC.

3) To construct blending and stacking ensemble learning
technology based on CNN, MLP, SVR, and RF single
classifier model to generate TSSM.

4) To compare and analyze the performance of single clas-
sifier models and ensemble learning models, and verify
their accuracy based on InSAR technology.

5) To explore the relationship between the thaw slump high
susceptibility area and environmental factors in the QTRC.

The results of this article can provide theoretical and technical
support for disaster prevention and control in Qinghai–Tibet
project.

II. STUDY AREA AND MATERIALS

A. Study Area

The QTR traverses the mid-latitude region of the
Qinghai–Tibet Plateau, with a towering terrain with an average
altitude of more than 4000 m. The QTR is rich in geological
structures and has great differences in topography, landform
and regional climate. The permafrost in the QTRC is widely
distributed and can be roughly divided into three types of
geomorphic units, namely mountain hilly area, fault basin plain
area and canyon terrace area. The average annual temperature
in the permafrost area is -3.0∼—7.0 °C. Climate warming
has a great impact on the geological environment, engineering
geological environment and engineering geological conditions
of the Qinghai–Tibet railway engineering corridor. Under
the background of serious permafrost degradation and global
warming on the Qinghai–Tibet plateau, human engineering
activities have intensified the permafrost degradation process in
the QTRC, and thaw slump disasters have occurred frequently
[12], causing certain hidden dangers to railway safety operation.
Therefore, it is very important to identify thaw slumps of QTRC
in the early stage.

B. Thaw Slumps Database

In this article, we used Google Earth image from October
2022 to February 2023 to visually interpret the thaw slumps of
QTRC based on the historical thaw slumps data, and built a thaw
slumps database. We identified a total of 707 thaw slumps with
a total area of 84.33 km2 and the largest thaw slump area of
2.88 km2. The distribution of thaw slumps is shown in Fig. 1.

C. Thaw Slump Conditioning Factors (TSCFs)

Thaw slumps of QTRC were affected by a variety of environ-
mental factors. According to the existing research results and the
characteristics of thaw slumps, 14 TSCFs were selected in this
article, including altitude, slope, aspect, distance from faults,
normalized difference vegetation index (NDVI), land surface
temperature (LST), curvature, lithology, frozen soil, distance
from QTR, distance from rivers, topographic wetness index
(TWI), cumulative precipitation and land use and land cover
(LULC). The data details are given in Table I and Fig. 2. To
investigate the relationship between thaw slumps and its high
susceptibility in detail, we divide the TSCFs into different levels,
TSCFS class intervals are given in Table II.

Altitude, slope, aspect, curvature and TWI are calculated by
digital elevation model (DEM). distance from faults, distance
from QTR and distance from rivers are obtained by euclidean
distance interpolation. LST is monthly average temperature that
is calculated based on the daily average temperature. Cumula-
tive precipitation is obtained by monthly average precipitation.
Finally, all TSCFs are resampled to 30 m spatial resolution.

III. METHODOLOGY

In this article, first, the thaw slump samples of QTRC were
optimized based on the balanced bagging method, and then the
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Fig. 1. Overview of the study area. (a) Location of the QTR. (b) Location of the QTRC. (c) (d) Results of our visual interpretation of thaw slumps using Google
Earth image.

collinearity of the TSCFs was analyzed based on the collinear-
ity equation. Then, CNN, MLP, SVR and RF single classifier
models and blending and stacking ensemble learning technology
were constructed, Finally, the performance of the models was
compared and analyzed, and TSSMs were generated based on
the constructed models. In addition, the results of thaw slump
high susceptibility were verified based on InSAR results, and
relationship influencing factors and high susceptibility of thaw
slumps were discussed. The workflow of this study is shown in
Fig. 3.

A. Sample Optimization Balanced Bagging Method

Range of QTRC is large and geographical environment is
complex, thaw slump samples are imbalance, it is easy to lead
to the poor reliability of TSSM, so it is necessary to equalize the
thaw slump samples. The balanced bagging classifier is a sample
balancing method based on the idea of ensemble learning, which
aims to solve the class imbalance problem by redistributing
sample weights [31]. In the balanced bagging classifier, each
basic classifier is trained by re-weighted samples. These weights
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TABLE I
THAW SLUMP CONDITIONING FACTORS DATA

are calculated according to the class distribution of the samples,
so that the weight of a few samples is higher, and the weight
of most samples is lower. In the training process, the basic
classifier will pay more attention to the minority class samples,
thus improving the classification performance of the minority
class, similar to oversampling and under sampling.

Previous studies have shown that SVM model has excel-
lent performance of balancing data samples [32], [33]. In this
article, SVM is selected for the base classifier to better find the
hyperplane between classification samples. First, the balanced

bagging classifier uses bootstrap sampling to resample, and
obtains a new training set by sampling from the original training
set, thereby increasing the weight of samples of minority classes
and improving the learning effect of the classifier on minority
classes. Then the weight of the sample is adjusted. Initially,
the weight of the sample is initialized according to the class
distribution of the sample. The weight of a few class samples
is higher, and the weight of most class samples is lower. In the
training process, according to the classifier’s prediction results
and real labels, the misclassified samples are punished, and their
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Fig. 2. Spatial distribution of TSCFs. (a) Altitude. (b) Slope. (c) Aspect. (d) Distance from faults. (e) Normalized difference vegetation index. (f) Land surface
temperature. (g) Curvature. (h) Lithology. (i) Frozen soil. (j) Distance from QTR. (k) Distance from rivers. (l) TWI. (m) Cumulative precipitation. (n) Land use
and land cover.

weights are increased, so that the classifier pays more attention to
a few class samples. Finally, the balanced bagging classifier will
generate multiple basic classifiers, vote or average the predicted
results of all the basic classifiers, and obtain the classification
results, thus realizing the problem of unbalanced thaw slump
samples of the QTRC. The final equilibrium sample score of
this article is 0.8923, and a good sample equalization effect has
been achieved. The detailed algorithm is as follows.

B. Machine Learning Models for TSSMs

1) CNN Model: CNN is an excellent method of deep learn-
ing. In general, the basic structure of CNN includes a feature

extraction layer and a feature mapping layer. In the feature
extraction layer, the input of each neuron relates to the local
receiving domain of the previous layer, and the local features
are extracted [34]. Each computing layer of the network in the
feature mapping layer is composed of multiple feature maps. The
sigmoid function, which affects the small kernel of the function,
is used as the activation function of the convolutional network
in the feature mapping structure, which makes the feature maps
have displacement invariance. Therefore, CNN is widely used
in image recognition and susceptibility assessment [35]. The
CNN model consists of five network layers: data input layer;
convolution layer; pooling layer; full connection layer; and
output layer. In this article, the CNN model is selected as the base



5448 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE II
TSCFS AND CLASS INTERVALS

classifier for subsequent ensemble learning, and the structure
of the CNN model for the evaluation of thermal thaw slump
susceptibility is constructed as shown in Fig. 4. In particular, a
3 × 3 sized convolutional kernel was used with depths of 32, 48,
64, 96, 128, and 256, respectively. In the model training, batch
size was 128, epoch was 120 and the minimum learning rate was
1×10-6.

2) MLP Model: MLP is also called artificial neural network,
the hierarchy of MLP is a directed acyclic graph, which can have
multiple hidden layers, usually each layer is fully connected to
the next layer, the output of each artificial neuron on a layer
becomes the input of several artificial neurons in the next layer
[36]. MLP can solve nonlinear separable problems and is widely
used in susceptibility evaluation [37]. In this article, the MLP
model is selected as the base classifier for subsequent ensemble
learning, and the structure of the constructed MLP network
model is as follows (see Fig. 5), which consists of one input
layer, three hidden layers with depths of 512, 256, and 128,
respectively, and one output layer The input layer receives the
data of TSCFs, the hidden layer learns the features of the TSCFs,
and the output layer outputs the prediction result of the thaw
slump susceptibility. In the model training, batch size was 128,
epoch was 180 and the learning rate was 1×10-4.

3) SVR Model: SVR is an application model for SVM
to regression problems, which performs classification and
regression tasks by mapping data to a high-dimensional space
using kernel functions and by finding an optimal hyperplane

in the feature space. SVR has been successfully applied to
system identification, nonlinear system prediction and so on,
and has achieved good results [38]. SVR creates an interval
band on both sides of the linear function (see Fig. 6). No
loss is calculated for all samples falling into the interval band,
only those outside the interval band are included in the loss
function, and then the model is optimized by minimizing the
width of the interval band and the total loss. In this article, SVR
model is selected as the base classifier for subsequent ensemble
learning. Where, the cubic Radial basis function is selected as the
kernel function, and the tolerances (TOLs) in the regularization
parameters and the insensitive loss function are 1 and 0.1,
respectively.

4) RF Model: RF algorithm was first proposed by Breiman
[39], which randomly generated multiple decision trees and
adopted Bootstrap method for resampling. RF model has the ad-
vantages of high algorithm accuracy, can handle large datasets,
no need to delete feature variables, can effectively deal with
missing data, is not easy to produce overfitting, strong gen-
eralization ability and many other advantages, and is widely
used in classification, susceptibility assessment and other prob-
lems [40]. In this article, RF model is selected as the second-
layer high-level classifier of the subsequent integrated model.
Among the main parameters, the number of classification trees
is 100, the node depth of each tree is 8, and the features of
the training sample include the characteristic attributes of the
TSCFs.
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Fig. 3. Schematic diagram of this article.

Fig. 4. CNN model for TSSM.

C. Ensemble Learning Models for TSSMs

1) Stacking Ensemble Learning: The stacking method is to
stack multiple models (the same layer) in multiple layers to
obtain the final stacking results [41]. The stacking method can
be understood as the relationship between parallel and series.
Generally, models in the first stacking layer use models with a
high fit degree to fully learn the training data. The first layer

model uses complex nonlinear changes to extract features, and
overfitting is easy to occur. Therefore, the second layer model
uses simple models, which can complement each other in mul-
tiple first-layer models and improve the accuracy and stability
of predictions [42]. In this article, CNN, SVR, and MLP are
used as the first layer base classifier model, and RF is used as
the second layer advanced classifier. The specific framework is
shown in Fig. 7.
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Algorithm : Actively Balanced Bagging.
Input:

• Training dataset X: The imbalanced thaw slump dataset is divided into training (70%) and test (30%) sets.
• Training labels Y
• Base classifier base_classifier: The base classifier is used SVM method to learn thaw slump features.
• Number of base classifiers n_estimators: The number of estimators is 10.
• Sampling ratio ratio: The ratio is 1.0.
• Balancing method balancing_method: Balancing method is a strategy or method used to balance the dataset during the

training process. In this study, under sampling method is used to randomly remove samples from the majority category to
equal the number of the minority category.

Output:
• Ensemble classifier ensemble_classifier

Procedure:
1. Initialize an empty ensemble classifier ensemble_classifier
2. For each index i of the base classifier in {1, 2, …, n estimators}, do the following:

2.1 Extract a balanced subset X_balanced, Y_balanced from the training dataset using the balancing method
balancing_method

2.2 Randomly sample a training subset X_train, Y_train from X_balanced, Y_balanced using the ratio ratio
2.3 Fit the base classifier base_classifier on the training subset X_train, Y_train
2.4 Add the base classifier to the ensemble classifier ensemble_classifier

3. Return ensemble_classifier

Fig. 5. MLP network model for TSSM.

Fig. 6. SVR model.

2) Blending Ensemble Learning: Blending is another form
of ensemble learning technique that is derived from stacking
[43], the only difference between the two models is that the
blending model uses a retained (verified) set from a training set
to make predictions. Simply put, predictions are made only for
the retained dataset, and the retained dataset and predictions are
used to build the second-level model. The specific operation
process is as follows: the training data is divided, a part of
the divided training data is trained on the base model, and
other part is predicted by the model as a new feature training
meta-model. The test data is also predicted by the base model
to form new test data. Finally, the metamodel makes predic-
tions about the new test data. The specific framework is shown
in Fig. 8.
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Fig. 7. Stacking ensemble learning model for TSSM.

Fig. 8. Blending ensemble learning model for TSSM.

D. Model Evaluation

In this article, eight statistical indicators were selected to
evaluate the models, including accuracy, G-mean, specificity,
recall, precision, Heidke skill score (HSS), Matthew correlation
coefficient (MCC), and Kappa. In addition, ROC curve was also
selected to evaluate the performance of the prediction model
[44], [45]. The detailed description of various indicators is
shown in Fig. 9.

IV. RESULTS

A. Multicollinearity Analysis of TSCFs in QTRC

Multicollinearity refers to the fact that the model estimation is
distorted or difficult to estimate accurately due to the existence
of exact correlation or high correlation between explanatory

variables in the linear regression model [46]. Therefore, it is
necessary to carry out multicollinearity analysis of TSCFs in
QTRC. Variance inflation factor (VIF) and TOL are used in this
article to analyze the collinearity of TSCFs [47]. VIF is less
than 10 and TOL is greater than 0.1, indicating that there is
no collinearity problem among the TSCFs, and it can be used
for model training [37]. In this article, the VIF and TOL values
among the selected TSCFs were calculated, and the results were
shown in the Fig. 10. As can be seen from the Fig. 10, the VIF
value of the thaw slump impact factor LST was the largest, which
was 7.340, and the VIF value of curvature was the smallest,
which was 1.094. The VIF value of all the selected TSCFs was
less than 10. The TOL values of all TSCFs were greater than
0.1, among which the TOL value of curvature was the largest
(0.914) and that of LST was the smallest (0.136). It showed that
there was no collinearity among the selected TSCFs in QTRC in
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Fig. 9. Confusion matrix and evaluation index.

Fig. 10. Collinearity analysis of TSCFs in QTRC.

this article, and the TSCFs are independent of each other, which
will not be distorted in the subsequent model training and can
accurately predict the thaw slump susceptibility [35].

B. Accuracy and Performance Analysis of the Models

The verification dataset is not used to train the model, so
the verification dataset is applied to evaluate the accuracy and
performance of the model, we calculated various evaluation indi-
cators, and the results are shown in Fig. 11. Specificity represents
the percentage of correct classifications in all categories of a

negative sample; Kappa coefficient measures the classification
accuracy; Recall represents the proportion of positive samples
with correct prediction; G-mean is a system performance eval-
uation index for specificity and recall. Precision represents the
proportion of predicted positive samples in the predicted positive
samples; MCC is a comprehensive evaluation index; Accuracy
measures how many samples are correctly identified in the two
categories; HSS is a measure of correct prediction ability. The
calculation results of these indicators are much greater than 0.5
in six models, which shows that all the evaluation models of
thaw slump susceptibility have good prediction ability, and the
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Fig. 11. Statistics of multiple indicators for six models.

Fig. 12. ROC curve of thaw slump susceptibility prediction model.

predicted TSSM of QTRC is reliable. However, the statistical
values of all indicators of the constructed stacking ensemble
learning model are the highest, followed by the blending model,
and the values of the SVR and RF models are the lowest,
revealing that the constructed ensemble learning model mining
the advantages of a single weak classifier, enhancing features,
and improving the reliability of TSSM.

ROC curve has been widely used in geological hazard model
evaluation [48]. AUC is the area under the ROC curve, and the
larger the area, the better the model performance [49]. Therefore,
AUC was used to reveal the total performance of the thaw slump
susceptibility models. The AUC value was calculated based on
validation dataset in this article and the results were shown in
Fig 12. The AUC values of all models were more than 0.94,
indicating all models have good performance. The AUC value
of the constructed stacking ensemble learning model was the
highest, reaching 0.9607, followed by the constructed blending
ensemble learning model, and the AUC value of the SVR model

is the lowest, reaching 0.9421. Based on the outcome, the
constructed ensemble learning models had the best prediction
performance and the most stable, especially the constructed
stacking ensemble learning model has better accuracy, TSSM
is more reliable than that of the other models.

C. Thaw Slump Susceptibility Mapping (TSSM)

In this article, based on the CNN, MLP, SVR, RF single
classifier and constructed blending, stacking ensemble learning
methods, the TSSMs were generated, and the natural breakpoint
statistical method was used to divide it into very high (VH), high
(H), medium (M), low (L), and very low (VL) susceptibility. The
results were shown in Fig. 13. Based on the six types of thaw
slump susceptibility plots of CNN, MLP, SVR, RF, constructed
blending and stacking models, the distribution of TSSMs was
similar, but the range of high susceptibility areas predicted by
SVR model was larger. Thaw slumps were mostly distributed in
the high susceptibility areas.

We have calculated the distribution proportions of each level
of thaw slump susceptibility in the QTRC generated by six mod-
els, and the results are shown in Fig. 14. The proportion of very
high and high susceptibility areas predicted by CNN, MLP, SVR,
RF, constructed blending and stacking models were 12.11%,
13.76%, 15.12%, 14.11%, 13.11%, and 13.78%, respectively.
The high susceptibility areas predicted by the CNN, MLP, SVR,
RF, constructed blending and stacking models accounted for
85.62%, 86.35%, 86.29%, 85.17%, 85.30%, and 86.12% of all
thaw slumps, respectively. It can be observed in all models that
85% of the thaw slumps is distributed in the high susceptibility
areas, indicating that the six models have good prediction results.

Based on the above analysis, the TSSM obtained by the
proposed stacking ensemble learning model has the highest
precision. Therefore, we select the TSSM result to analyze the
thaw slump characteristic of QTRC. Due to the large area of
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Fig. 13. Distribution of TSSMs based on CNN (a) multilayer perceptron, (b) support vector regression, (c) random forest, (d) constructed blending, (e) stacking
ensemble learning, and (f) models.

Fig. 14. Proportion of each level of thaw slump susceptibility predicted by the six models and the distribution of thaw slumps.
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Fig. 15. Distribution of TSSMs based on CNN, MLP, SVR, RF, constructed blending and stacking ensemble learning models. (a)∼(i) are 9 consecutive areas
along the QTR.

the QTRC, we divided it into nine areas for visual display (see
Fig 15). The thaw slump susceptibility area of QTRC showed
local differences, and there were more high thaw slump sus-
ceptibility areas in the western section (G, H, and I areas). At
the same time, some high and very high-risk areas are predicted
on both sides of the QTR. These areas belong to potential risk
areas and are very likely to occur thaw slumps in the future,
which should be paid attention to.

V. DISCUSSION

A. Evaluation of the Ensemble Learning Models

Accurate and reliable susceptibility maps are crucial in disas-
ter management [23], [49], [50]. In recent years, machine learn-
ing single classifiers and ensemble learning have been widely
used in susceptibility assessment [42], [51], [52]. The objective
of this article is to construct the blending and stacking ensemble
learning methods for TSSM based on CNN, MLP, SVR, and RF
single classifiers. CNN is an outstanding deep learning models
for susceptibility mapping [34], MLP, SVR, and RF are popular
machine learning model for susceptibility mapping [37], [38],
[39], CNN, MLP, SVR, and RF are selected as base classifiers,
and it is bound to get better susceptibility mapping results when
constructing ensemble learning models. Among them, CNN,
MLP, and SVR are used as the first classifier and RF is used as
the second classifier. Generally, in ensemble learning models,
the first layer model fully learns complex nonlinear changes
to extract features of the training data, and the second layer
model complement each other in multiple first-layer models and

improve the accuracy and stability of predictions [42]. There-
fore, the first layer model is relatively complex, the second layer
model is relatively simple. The constructed ensemble learning
in this article meets this requirement. Therefore, the ensemble
learning model we constructed is reasonably structured. All
statistical index values also show that the constructed ensemble
learning model is the highest, which further proves that the
constructed ensemble learning model in this article is reliable.

Ensemble learning performs better than single classifier,
because ensemble learning usually integrates multiple single
classifiers, so that they can complete the learning task together,
multiple classifiers can help each other, take advantage of each
other, and the learning task is more beautiful [42]. Our research
results show that the constructed ensemble learning performance
is better than that of the single classifier. The results of this article
are also consistent with previous studies, ensemble learning can
improve the performance of single classifiers and obtain better
results of susceptibility mapping [25], [26], [42]. Therefore, the
evaluation results of thaw slump susceptibility generated by the
constructed ensemble learning model are reliable in the QTRC.

B. InSAR Verification of TSSM Based on Stacking Ensemble
Learning Model

Based on the CNN, MLP, SVR, RF single classifier and blend-
ing, stacking ensemble learning methods, we have evaluated the
thaw slump susceptibility of QTRC. Through the analysis of the
results, it is found that the stacking ensemble learning model has
the highest reliability. To further verify the prediction accuracy
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Fig. 16. InSAR verification of thaw slump high susceptibility of QTRC. (a)–(d) Are four TSSM validation regions.

of thaw slump susceptibility, we conduct validation based on
interferometric synthetic aperture radar (InSAR) deformation
results. InSAR technology is widely applied to monitor the slow
deformation of landslides, land subsidence and other disasters
[53], [54], [55], [56]. If there is the deformation in InSAR results
in the high susceptibility areas predicted by our proposed model,
the reliability of our predicted results can be reflected.

Typical areas in the permafrost region of QTRC are selected,
and the stacking prediction results with the best performance
were used for InSAR verification. In this article, we use SBAS-
InSAR technology [57] to obtain the surface deformation of the
typical frozen soil region from 2019 to 2022 and select the typical
thaw slumps for verification. Where the surface deformation data
is based on the SARscape 5.6.2 software of Environment for
Visualizing Images platform, the multilook, max normal base-
line (%), max temporal baseline (days) and coherence threshold
are set to 4:1, 10, 90, and 0.25, respectively. The filtering method,
unwrapping method and atmospheric correction method are
used Goldstein adaptive filtering algorithm, minimum cost flow
algorithm and generic atmospheric correction online service.
The verification results are shown in the following Fig. 16. The
cumulative surface deformation of typical regions a, b, c, and
d were increasing continuously, and the deformation rate of the
thaw slumps surface is large. These typical regions are all located
in the predicted high-susceptibility areas. This suggests that
InSAR deformation exists in the high susceptibility predicted

area of thaw slumps. Therefore, the prediction results of thaw
slump susceptibility in this article can be proved to be credible.

C. Analysis of Influencing Factors of Thaw Slump High
Susceptibility in QTRC

From the above analysis, the TSSM generated by stacking
ensemble learning has the highest reliability. We select the high
susceptibility areas generated by stacking ensemble learning to
explore the relationship between high susceptibility areas and
the influencing factors of thaw slumps. We count the number
of factors pixels of 14 thaw slump influencing factors and the
frequency ratio (FR) value of high susceptibility areas in each
level, and the results are shown in the Fig. 17. The proportions
of high susceptibility pixels of thaw slumps are high at high
altitude in the QTRC, indicating that thaw slumps are easy to
develop at high altitude. The proportions of high susceptibility
pixels of thaw slumps are high with slope greater than 10°.
The proportions of high susceptibility pixels of thaw slumps
are high in north and west direction. The closer the distance
from faults are, the higher the proportions of high susceptibility
pixels of thaw slumps. The lower the NDVI value, the higher
the proportions of high susceptibility pixels of thaw slumps. The
proportions of high susceptibility pixels of thaw slumps are the
highest with LST between -1.5°C and 1.5°C. The proportions
of high susceptibility pixels of thaw slumps are high in acid
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Fig. 17. Relationship influencing factors and high susceptibility of thaw slumps.

volcanic and ice and glaciers lithology. The father the distance
from QTR is, the higher the proportions of high susceptibility
pixels of thaw slumps. The proportions of high susceptibility
pixels of thaw slumps are the highest with distance from rivers
between 3000 and 5000 m. The lower the TWI value, the higher
the proportions of high susceptibility pixels of thaw slumps. The
more the cumulative precipitation, the higher the proportions of
high susceptibility pixels of thaw slumps. The proportions of
high susceptibility pixels of thaw slumps are high in snow and
ice regions.

According to analysis of thaw slump high susceptibility re-
sults obtained by experiments, the thaw slumps in the QTRC
are mainly distributed in areas with high altitude, high slope,
adjacent faults, sparse vegetation, ice, and snow regions and the
more cumulative precipitation. These conclusions are also in
good agreement with the formation mechanism of thaw slumps
[1], [2], which further indicates that the TSSM generated by the
models constructed in this article is reliable and credible.

VI. CONCLUSION

In recent years, with the influence of global warming and
anthropogenic activities, the number of thaw slumps develop-
ment has increased rapidly in the QTRC. It is very important
to predict the probability of potential thaw slumps. In this
article, we generate the TSSM of QTRC. First, we optimized
thaw slump samples of QTRC based on the balance bagging
method and analyzed the collinearity among the 14 TSCFS.
Then, blending and stacking ensemble learning models were
constructed for the TSSM based on CNN, MLP, SVR, and RF
single classifiers. Finally, the performance of CNN, MLP, SVR,
and RF single classifier models and the constructed blending
and stacking ensemble learning models were evaluated by ROC
and statistical indexes. This article results showed that the final
equilibrium sample score of this article is 0.8923, and a good

sample equalization effect had been achieved. There was no
collinearity among the selected 14 TSCFS. The constructed
stacking and blending ensemble learning models had stable per-
formance and high prediction accuracy for TSSM. The stacking
ensemble learning model had the best effect, and AUC value
reached 0.9607, the generated TSSM of QTRC had the highest
reliability. The QTRC has local areas with high susceptibility of
thaw slumps, mainly concentrated in the permafrost areas.

This article generated TSSMs based on sample optimization
and ensemble learning techniques. It provided data and technical
support for disaster reduction and prevention in Qinghai–Tibet
railway corridor. We used the balanced bagging method to
optimize the samples, however, the balance of samples was
not considered in a similar pregnancy disaster environment,
resulting in a high false alarm rate of the TSSM results. In
future studies, we will select samples based on the constraints of
similar pregnancy-disaster environments to ensure the balance
of positive and negative samples in similar pregnancy-disaster
environments. In addition, the existing susceptibility assessment
models lack learning across spatial environment features, lead-
ing to insufficient reliability of prediction results. In the future,
we will conduct the susceptibility assessment models based on
graph networks.
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