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Nonlinear Responses of Vegetation Phenology to
Climate Change and Urbanization: A Case

Study in Beijing, China
Jiahui Yao and Haiyong Ding

Abstract—Vegetation serves as an indicator of ecological change,
and phenology is an important indicator for evaluating vegetation
growth and development. Analyzing the spatiotemporal charac-
teristics of vegetation phenology and its driving factors is of great
significance for analyzing the carbon, water, and energy balance
of terrestrial ecosystems. To better assess the impact of external
environmental changes on vegetation phenology and comprehend
the changing trends of phenology, this study employed phenological
parameters as response variables and incorporated meteorological
and urbanization factors as explanatory variables. A generalized
additive model (GAM) was constructed meticulously to investigate
how vegetation phenology responds to climate change and urban-
ization in Beijing, as well as to predict vegetation phenology. The
results showed that there were nonlinear relationships between the
vegetation phenological parameters, i.e., start of season (SOS) and
end of season (EOS), and external environmental changes.R2 of the
GAM predicted SOS and EOS with respect to the observed data
increased to 0.622 and 0.756, respectively. The prediction effects
in each region of the urban–rural gradient zone were better with
the root-mean-square error of approximately 4–7 days. This study
demonstrates that the GAM considers the nonlinear relationships
between vegetation phenology and external environmental factors.
The validation results based on the observed data show that the
models are reliable, and the findings can provide theoretical refer-
ences for urban development planning and ecological environmen-
tal protection in Beijing.

Index Terms—Climate change, generalized additive model
(GAM), urbanization, vegetation phenology.

I. INTRODUCTION

V EGETATION is the most important component of terres-
trial ecosystems [1]. It plays an important role in the global

carbon cycle and energy conversion [2] and is a sensitive indi-
cator for monitoring global environmental changes at different
temporal and spatial scales. Vegetation phenology describes the
cyclical natural change process, including budding, flowering,
maturity, defoliation, and dormancy, throughout the year [3].
Changes in vegetation phenology are an important response of
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ecosystem dynamics to climate and environmental changes [4].
The driving factors of phenological changes mainly include
the environmental (climate, soil, and biology) and management
measures [5], among which climate change is one of the most
important factors affecting vegetation growth and development
and is the basis for plant morphological construction and phys-
iological and biochemical changes [6]. At the same time, ur-
banization is developing rapidly, which has become one of the
biggest challenges of this century [7]. Urbanization has had a
certain impact on vegetation growth and development, which
can affect vegetation phenology by changing environmental
factors in urban areas, including hydrology, light, air pollutants,
and urban heat islands [8]. While changing the original land
cover and land use status, urban areas also affect the climate
conditions and ecological elements of local areas. The observed
rising of temperature in urban areas exceeds the projected global
temperature rise in the coming decades [8]. Differences in land
surface temperature in urban and rural areas are also one of the
main factors affecting phenological changes [9], and changes
in start of season (SOS) and end of season (EOS) are deeply
affected by urban heat island intensity [10]. Different from
the natural environment, the urban ecological environment is
affected by both climate change and urbanization, so studying
the changing patterns of urban vegetation phenology can provide
insights into the possible impact of future climate change and
urban ecological adaptation.

In recent years, the spatiotemporal characteristics of vege-
tation phenology and its responses to external environmental
changes have attracted the attention of scholars. Most of the
current studies have analyzed the impact of external environ-
mental changes on vegetation phenology, assuming that there
is a significant linear relationship between phenology and ex-
ternal environmental changes. Commonly analytical methods
are mainly correlation analysis and linear regression analysis of
statistical methods. However, in fact, the response of vegetation
growth and development to the environment is a highly complex
process, and simple linear relationships cannot explain the im-
pact of external environment changes on vegetation growth and
development [11]. Therefore, research on the analysis of the non-
linear relationships between vegetation phenology and external
environmental changes is gradually increasing [12], [13], [14].
Meanwhile, nonlinear models have been used for vegetation phe-
nology prediction, which are suitable for exploring the nonlinear
impact of large-scale climate change on phenology [15], and the
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prediction accuracy using nonlinear models is higher [16], [17].
Motivated by these studies of using nonlinear models to predict
phenology, this study proposes the application of the generalized
additive model (GAM) to analyze the nonlinear relationships
between vegetation phenology, climate change, and urbanization
and evaluate the feasibility of vegetation phenology prediction.
The GAM is data driven rather than model driven, does not
need to assume the distribution of the data, and is highly useful
in cases of multiple nonparametric responses. The GAM is
capable of analyzing complex nonlinear relationships between
dependent and multiple independent variables [18] and can
also explain long-term trends in data [19], [20]. Therefore, it
is well suited for the analysis of ecological data and widely
used in ecology [21], pollution [22], [23], medicine [24], [25],
and so on. In terms of phenology research, many researchers
have used the GAM to analyze vegetation growth and devel-
opment. White et al. [26] found that the accuracy of predicting
the difference of SOS among different latitude zones by the
GAM was about 2.4 days by using annual average temperature,
urban vegetation coverage, and the difference of normalized
difference vegetation index (NDVI) amplitude between urban
and forest areas. Song and Cao [27] employed the GAM to
analyze the relationships between topographic factors and veg-
etation richness in the central subtropical region of China, and
they found that there was a significant correlation between
the vegetation richness fitted by the GAM and the observed
value. Younes et al. [28] used the GAM to create models
for six different mangroves in Australia and analyze their re-
sponses to environmental variables and predicted phenological
changes.

As far as we know, most of the current studies primarily
focus on analyzing the response and feedback of vegetation
phenology to external environmental changes, without achieving
the objective of predicting phenology through a quantitative
analysis of the relationship between phenology and external
environmental variables. There was no such research on the pre-
diction of vegetation phenology in Beijing under the background
of climate change and rapid urbanization. Beijing is one of the
fastest-growing and most densely populated cities in China,
and it was found that the significant urban sprawl has had a
considerable impact on the thermal environment, resulting in
significantly higher temperature in the central urban areas than
in surrounding rural areas [29]. Therefore, it is an ideal choice to
explore the response of vegetation phenology to climate change
and urbanization in Beijing. On this basis, this study extracted
vegetation phenological parameters from the moderate resolu-
tion imaging spectroradiometer (MODIS) enhanced vegetation
index (EVI) time-series products in Beijing from 2001 to 2020
and analyzed the spatial differences and interannual variations
and trends of phenology in urban, suburban, and rural areas.
Then, the nonlinear relationships between vegetation phenology
and its driving factors were investigated, and the start and end
times of vegetation phenology on the urban–rural gradient were
predicted by the GAM. This study further evaluated the ability
of the GAM to predict vegetation phenology and provided a
theoretical basis for subsequent urban ecological sustainable
development planning.

II. STUDY AREA

Beijing is located at 115.7◦–117.4◦E, 39.4◦–41.6◦N, situated
in the northern part of the North China Plain, adjacent to
the Bohai Sea [see Fig. 1(a)]. It shares borders with Hebei
Province, except for its eastern connection with Tianjin. Beijing
has a higher elevation in the northwest and a lower elevation
in the southeast [see Fig. 1(b)], surrounded by mountains on
three sides. The climate is characterized as a warm temperate
continental monsoon climate with distinct seasonal variations
and rich vegetation cover [see Fig. 1(c)]. As the political, eco-
nomic, and cultural center of China, Beijing is the core city of
the Beijing–Tianjin–Hebei urban agglomeration. The city has
experienced rapid economic development, and its urbanization
level far exceeds that of other cities. The urban heat island effect
resulting from urbanization is the main cause of local warming
and has a certain impact on the vegetation phenology in the
city. Therefore, it is of great significance to study the vegetation
phenology in Beijing.

III. MATERIALS AND METHODS

A. Data

The Terra Moderate Resolution Imaging Spectroradiometer
Vegetation Indices (MOD13Q1) Version 6 product, with a spatial
resolution of 250 m and a temporal resolution of 16 days, was
used to detect vegetation phenology for the 2001–2020 period.
The MOD13Q1 product contains two datasets: NDVI and EVI.
The EVI dataset eliminates the influence of clouds and aerosols
to a certain extent, which is more appropriate for monitoring
vegetation dynamics in urban areas [9]. The fitted EVI curves
were used to extract vegetation phenological parameters, which
were widely used in monitoring and researching the dynamics
of vegetation at different scales. The MCD12Q2 dataset2 was
employed to validate the extracted phenological parameters
across the study area from 2001 to 2019. The dataset offered a
spatial resolution of 500 m and a temporal resolution of one year.

The urban buffer zone boundaries were derived from the
Chinese urban built-up area dataset published by He et al. [30].
This dataset extracted the built-up area of Chinese cities from
1992 to 2020, which can be used to assess the impact of urban
expansion process on the natural environment and provide data
support for understanding the process of urban expansion and
its impact in China. The built-up area of each year was the urban
area, and buffer zones of 0–5 km, 5–10 km, 10–15 km, 15–20 km,
and 20–25 km were established outside the urban areas [31],
of which 0–20 km were the suburban areas of the urban–rural
gradient zone, and 20–25 km were the rural areas [9] (see
Fig. 2).

The meteorological data were obtained from the China Cli-
mate Dataset V3.0 of the China Meteorological Science Data
Sharing Service.3 The dataset included temperature, sunshine
hours, humidity, wind speed, precipitation, etc. The kriging
interpolation method was used to interpolate the meteorological

1[Online]. Available: http://www.ncdc.ac.cn
2[Online]. Available: https://lpdaac.usgs.gov/
3[Online]. Available: http://data.cma.cn/
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Fig. 1. (a) Location, (b) elevation, and (c) land cover classification of the study area. The land cover dataset is provided by the National Cryosphere Desert Data
Center.1

Fig. 2. Spatial distribution of urban areas and buffer zones in Beijing in 2001.

station data to form a raster dataset with a spatial resolution of
250 m consistent with the phenological data. In this study, the
meteorological data from January to April and July to October
of 2001–2020 were analyzed, and the data were removed when
there were missing or abnormal values.

WorldPop4 population density data provide gridded popula-
tion data from 2000 to 2020 at a global resolution of 100 m
and 1 km, and we used gridded population density data for
Beijing from 2001 to 2020 at a spatial resolution of 100 m as a
representation of urbanization. The new nighttime light dataset
with a higher spatial resolution of 500 m has a similar quality to
the national polar-orbiting partnership visible infrared imaging
radiometer suite (NPP-VIIRS) nighttime light data and clearly
reflects the detailed information of the inner city and its temporal
variations [32]. The digital number (DN) value directly reflected
the distribution, intensity, and temporal changes of light sources,
providing reliable support for evaluating the intensity of human
activities and urbanization. The urban heat island intensity data
were obtained from MOD11A2,5 which recorded the average
surface temperature during eight days of clear weather with a
1000-m spatial resolution and was suitable for urban heat island
intensity analysis.

To be consistent with the phenology data, all data projections
were converted to WGS84 UTM Zone 50N and resampled to
250-m spatial resolution.

B. Methods

1) Extraction of Vegetation Phenological Parameters: Due
to the influence of sensor characteristics and other external

4[Online]. Available: https://worldpop.org/
5[Online]. Available: https://lpdaac.usgs.gov/
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factors such as cloud cover and atmospheric aerosols, there can
be deviations between vegetation index data and the actual phe-
nological growth patterns of vegetation seasons [33]. Therefore,
it is necessary to reconstruct the original EVI data in a time
series. In this study, the double logistic (D-L) function method
was chosen to fit the EVI time-series data

f(t) = m1 +m2

(
1

em3−m4t
− 1

em5−m6t

)
(1)

where f(t) is the fitted EVI value at day t, and mi(i = 1, . . ., 6)
are the fitted parameters.

The D-L function method does not require the determination
of a threshold, and its local fitting is based on the variation
characteristics of the EVI curve, and the fitted peak closely
approximates the peak of the original EVI curve. This method
is suitable for monitoring phenology at different vegetation-
covered regions, and even at a global scale.

The threshold method determines vegetation phenological
parameters by setting threshold conditions for the vegetation
indices. It identifies the points on the vegetation index curve,
where the amplitude reaches a certain proportion during the
rising and falling phases as the start and end of the vegetation
growing season [34]. In this study, we combined previous studies
with practical considerations and set the threshold for extracting
SOS as 0.2 and the threshold for extracting EOS as 0.4.

2) Generalized Additive Model: The GAM is a nonpara-
metric extension of the generalized linear model, which is
commonly used to explore nonlinear relationships between
dependent and independent variables [18]. The GAM is a non-
parametric regression model that utilizes additive functions,
permitting both the linear and smooth functions fit for explana-
tory variables. It can automatically select appropriate degrees of
freedom [35]. The mathematical expression of the GAM is

g(E(Y )) = α+ s1(X1) + s2(X2) + · · ·+ sp(Xp) (2)

where g is a link function, E(Y ) denotes the mathematical
expectation of the response variable, α is the constant intercept
term, sp is the nonparametric function explaining the relation-
ship of the variables, and Xp is the predictor variable.

If all the variables are introduced into the prediction model,
the model often gets disturbed by nonessential factors, resulting
in an unreasonable significance of the parameter estimation or
the loss of significance tests for some explanatory variables.
Therefore, it is necessary to screen the variables and determine
the input variables for the model. In this study, the GAM was
employed for variable selection, and the Akaike information
criterion (AIC) was used to assess the model fit [36]. The esti-
mated degree of freedom can be interpreted as the smoothness
of the predictor variable. When the estimated degree of freedom
equals 1, there is a linear relationship between the explanatory
and response variables. When the estimated degree of freedom
is greater than 1, there is a nonlinear relationship between the
explanatory and response variables. Larger values of degrees of
freedom indicate stronger nonlinear relationships.

3) Explanatory Variable Preprocessing for the GAM: The
univariate GAM was constructed first. A separate GAM was
built to fit each physical response variable (SOS and EOS)

with each explanatory variable (meteorological and urbanization
variables). The model fitting was performed using the package
mgcv in R [37]. Thin plate regression splines (the default in
mgcv) were used as the smoothing function [38]. In the second
step, explanatory variable selection was conducted. For each
phenological response variable, a forward stepwise regression
was performed by refitting the GAM with the explanatory vari-
ables selected in the first step. Each explanatory variable was
gradually added to the model, and the overall deviance explained
and AIC were recalculated. If the AIC decreased without a
corresponding decrease in deviance explained, the explanatory
variable was retained

AIC = n · ln
(∑n

i=1(yi − ŷi)
2

n

)
+ 2q. (3)

The GAM was constructed with SOS and EOS as response
variables and with meteorological and urbanization factors as
explanatory variables. Among the meteorological factors, pre-
cipitation, maximum temperature, minimum temperature, sun-
shine hours, wind speed, and humidity were selected to represent
climate change. For urbanization factors, population density,
nighttime light intensity, and urban heat island intensity were
selected to represent urbanization. Most previous studies have
primarily focused on climate change at annual or seasonal scales,
overlooking the fact that phenological events are cumulative
processes, and the dynamic changes in preseason meteorological
factors also significantly influence vegetation phenology [39].
Previous studies have defined the preseason length as the period
before the multiyear average SOS [40]. The most relevant time
periods for flowering and leaf out are typically the previous
one to three months before the phenological event [41]. Based
on multiyear phenological values, SOS mostly occurs from
mid-to-late April to early May, while EOS frequently takes place
in October and November. To ensure capturing all the relevant
climate change information preceding phenological events [42],
we selected a longer preseason time frame, designating January
to April as the period affecting SOS and July to October as the pe-
riod influencing EOS. Regarding the time of urbanization impact
factors, since urbanization is typically calculated annually, we
considered it on an annual basis. Table I presents the explanatory
variables and factor codes for each model. Before modeling,
a diagnosis of covariance was performed to address potential
multicollinearity among the variables. The variance inflation
factor (VIF) was utilized to assess the covariance, and variables
with VIF values exceeding 10 were excluded from consideration.
Specifically, in the SOS model, explanatory variables X1, X4,
X5, X6, X7, X8, and X9 were retained, while in the EOS model,
explanatory variables X1, X2, X3, X4, X5, X6, X7, X8, and X9
were retained.

4) Evaluation of Model Predictions: In this study, the leave-
one-out cross validation was employed to assess the predictive
ability of the model. Leave-one-out cross-validation generates
independent error estimates for small sample datasets that cannot
be divided into training sets and testing sets. For a dataset
with n observations, the best fitting GAM uses n− 1 points
in each iteration and predicts the remaining point, resulting
in n fits. After n iterations, error statistics can be generated
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TABLE I
EACH PREDICTOR AND FACTOR CODE

from n individual residuals. Root-mean-square error (RMSE)
and coefficient of determination (R2) were used to evaluate the
predictive ability of the model

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4)

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)2 (5)

where n is the number of observations, yi is the observed data,
ŷi is the predicted data, and ȳi is the average of the observed
data.

IV. RESULTS

A. Extraction Results of Vegetation Phenological Parameters

The phenological parameters SOS and EOS extracted by the
D-L function method and the dynamic threshold method were
verified with the start and end of the vegetation growth season
in MCD12Q2, respectively. Among all SOS pixels, 64.2% were
earlier than the SOS from MCD12Q2 and 35.8% were later,
with an average difference of 1.92 days [see Fig. 3(a)]. Larger
differences were primarily observed in urban areas. Across all
EOS pixels, 91.5% were ahead of the EOS of MCD12Q2, while
8.5% lagged behind, with an average difference of 9.00 days
[see Fig. 3(b)]. There was a significant correlation between SOS

and the SOS obtained from MCD12Q2 (r = 0.865, p < 0.01,
and RMSE = 4.529 days) [see Fig. 3(c)]. Similarly, there was a
significant correlation between EOS and the EOS obtained from
MCD12Q2 (r = 0.771, p < 0.01, and RMSE = 4.918 days) [see
Fig. 3(d)]. Overall, the comparison with the MCD12Q2 data
validated the accuracy of the extracted phenological parameters,
which can be used for further analysis of the spatiotemporal
characteristics of vegetation phenology.

B. Temporal and Spatial Characteristics of Vegetation
Phenology

Based on the D-L fitting method and the dynamic threshold
value extraction method, the annual average distribution of SOS
and EOS in Beijing from 2001 to 2020 was obtained (see Fig. 4).
There were overall spatial differences in the vegetation phenol-
ogy distribution between the southeast and northwest regions.
From 2001 to 2020, SOS in Beijing was mostly concentrated
within the range of 110–125 days. SOS occurred earlier in the
southeast, and the overall distribution feature was that SOS was
delayed from southeast to northwest. EOS was mostly concen-
trated within the range of 290–300 days, with a distribution
pattern similar to SOS. In addition, the southwest and northern
regions exhibited an earlier end of phenology, with the end
of phenology gradually advancing from the southeast to the
northwest. SOS occurred earlier in urban areas compared to
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Fig. 3. Phenological parameter validation on temporal and spatial levels. Spatial comparison of (a) SOS and SOS of MCD12Q2 and (b) EOS and EOS of
MCD12Q2. Temporal relationship between (c) SOS and SOS of MCD12Q2 and (d) EOS and EOS of MCD12Q2. The solid black line denotes the linear regression
line.

surrounding areas, while EOS occurred later. Moreover, as the
distance from the urban areas increased, the SOS occurred later,
and the EOS occurred earlier.

Significant phenological changes were observed in Beijing
from 2001 to 2020, with an overall trend of advanced SOS and
delayed EOS (see Fig. 5). The fitted curve slopes indicated that
SOS advanced at a rate of 0.850 day/year (p < 0.01) and EOS
was delayed at a rate of 0.918 day/year (p < 0.01). The SOS
ranged from 102.5 to 136.9 days in Beijing, with an average of
117.2 days. The earliest SOS was observed in 2017, lasting less
than 110 days, while the latest SOS occurred in 2006, lasting
over 130 days. The EOS ranged from 280.4 to 302.8 days,
with an average of 293.9 days. The earliest EOS appeared in
2002, around 280 days, while the latest EOS occurred in 2019,
exceeding 300 days.

There were significant phenological changes in Beijing, par-
ticularly in urban, suburban, and rural areas. Urban areas exhib-
ited an earlier SOS and a later EOS (see Fig. 6). Conversely, rural
areas exhibited the latest SOS and the earliest EOS. SOS in urban

areas advanced on average by 0.50 day/year (p < 0.05) [see Fig.
6(a)], while both suburban and rural areas exhibited consistent
trends of SOS advancement, averaging 0.96 day (p < 0.01) and
0.64 day/year (p < 0.05), respectively. EOS in suburban and
rural areas were significantly delayed, with average delays of
0.97 and 0.94 day/year (p < 0.01), respectively. Compared with
suburban and rural areas, urban areas demonstrated a more stable
EOS, with an average delay of 0.76 day/year (p< 0.01) [see Fig.
6(b)].

C. Relationships Between Meteorological, Urban Factors,
and Vegetation Phenological Parameters

1) GAM Fitting Results of SOS: In the single-factor GAM,
nighttime light intensity and population density had a significant
impact on the dependent variable at the p < 0.01 level, as shown
in Table II. This indicated that nighttime light intensity and
population density were both statistically significant when used
individually as explanatory variables for SOS variations. The
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Fig. 4. Annual vegetation phenological parameters (a) SOS and (b) EOS in Beijing from 2001 to 2020.

Fig. 5. Interannual variations of (a) SOS and (b) EOS from 2001 to 2020 in Beijing. The dashed black line denotes the linear regression line.

Fig. 6. Interannual variations of (a) SOS and (b) EOS in urban, suburban, and rural areas from 2001 to 2020. Suburban is the combination of all buffer zones
between 0 and 20 km from the edge of the urban. The slope value refers to the slope of the linear regression line.
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TABLE II
SINGLE-FACTOR GAM FITTING RESULTS OF SOS, METEOROLOGICAL FACTORS, AND URBANIZATION FACTORS

TABLE III
SINGLE-FACTOR GAM FITTING RESULTS OF EOS, METEOROLOGICAL FACTORS, AND URBANIZATION FACTORS

deviance explained by nighttime light intensity and population
density was greater than 40%, with nighttime light intensity ex-
plaining 82.6% of the deviance. Among all the factors affecting
SOS changes, mean wind speed, mean humidity, and popula-
tion density exhibited linear relationships with SOS changes,
while accumulated precipitation, accumulated sunshine hours,
urban heat island intensity, and nighttime light intensity showed
nonlinear relationships with SOS changes. Among these, the
nonlinear relationship between nighttime light intensity and
SOS was the strongest. SOS changes are complex nonlinear
changes affected by multiple factors. Therefore, the GAM can
be used to analyze the nonlinear relationships between multiple
independent variables and the SOS-dependent variable.

By analyzing all possible models, the optimal model was
determined based on the deviance explained and the minimum
AIC value. The final expression of the SOS model is as follows:

Model SOS: s (SOS) = s (nighttime light intensity) + s (accu-
mulated sunshine hours) + s (accumulated precipitation) + mean
wind speed + population density, the accumulated interpretation
of SOS in Beijing reached 68.1%.

2) GAM Fitting Results of EOS: In the single-factor GAM,
accumulated precipitation, mean maximum temperature, mean
wind speed, and population density had a significant impact
on the dependent variable at the p < 0.05 level, as shown in
Table III. This indicated that the above four factors were all
statistically significant when used as explanatory variables for
EOS changes alone, with population density explaining 79.5%
of the deviance. Among all factors affecting EOS changes,
accumulated precipitation, mean minimum temperature, mean

maximum temperature, mean wind speed, mean humidity, night-
time light intensity, and population density all exhibited non-
linear relationships with EOS changes. Notably, the nonlinear
relationship between mean maximum temperature and EOS
was found to be the strongest. In addition, there were linear
relationships between accumulated sunshine hours, urban heat
island intensity, and EOS.

By analyzing all possible models, the optimal model was
determined based on the deviance explained and the minimum
AIC value. The final expression of the EOS model is as follows:

Model EOS: s (EOS)= s (population density) + s (mean wind
speed) + s (mean humidity) + urban heat island intensity, the
accumulated interpretation of EOS in Beijing reached 73.9%.

D. Prediction Results of Vegetation Phenological Parameters

1) Prediction of Vegetation Phenological Parameters: Based
on the above models, the predictive performance of SOS and
EOS across the urban–rural gradient was evaluated using a
leave-one-out cross-validation method. According to the princi-
ple of leave-one-out cross-validation, the 19-year phenological
parameters were selected as the training set each time, with the
remaining one-year phenological parameters used as the test set.
This entire process was repeated 20 times, and the optimal model
was chosen for vegetation phenology simulation and prediction.

Fig. 7(a) presents the comparison between the observed and
predicted values of SOS, showing an R2 of 0.622 between the
observed and predicted values of SOS (p< 0.01), with an RMSE
of 4.654 days. Fig. 7(b) illustrates the comparison between the
observed and predicted values of EOS, revealing an R2 of 0.756
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Fig. 7. Comparison of predicted and observed values of SOS and EOS.

Fig. 8. Prediction results of SOS across different urban–rural gradient zones. (a) Urban. (b) 0–5 km buffer zone. (c) 5–10 km buffer zone. (d) 10–15 km buffer
zone. (e) 15–20 km buffer zone. (f) Rural.

between the observed and predicted values of EOS (p < 0.01),
with an RMSE of 3.085 days. Both models performed well and
can predict vegetation phenology in Beijing effectively.

2) Prediction of Vegetation Phenological Parameters Along
the Urban–Rural Gradient: Along the urban–rural gradient, the
SOS and EOS were predicted for different regions of Beijing.
Fig. 8 illustrates the SOS prediction results, which showed
satisfactory predictions in various regions along the urban–rural
gradient, with R2 ranging from 0.274 to 0.493 and RMSE
between 4.167 and 7.458 days. The EOS predictions across
different urban–rural gradient zones (see Fig. 9) also exhibited
good performance, withR2 between 0.166 and 0.650 and RMSE
ranging from 4.177 to 6.537 days. Through a comparative

analysis of the SOS and EOS predictions in different regions
along the urban–rural gradient, the accuracy of predicting SOS
and EOS in areas with varying degrees of urbanization through
GAM was validated.

V. DISCUSSION

Analyzing the relationship between vegetation phenology
and the external environment is an ongoing field of research
[33], [43], [44], [45]. Previous studies have primarily relied on
simple statistical relationships between phenology and external
factors [46], [47]. However, the actual response of vegetation
phenology to external environmental changes is complex and
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Fig. 9. Prediction results of EOS across different urban–rural gradient zones. (a) Urban. (b) 0–5 km buffer zone. (c) 5–10 km buffer zone. (d) 10–15 km buffer
zone. (e) 15–20 km buffer zone. (f) Rural.

nonlinear [48], [49]. This study utilized the GAM to investigate
the influencing factors of vegetation phenology and analyze the
relationships between climate change, urbanization, and vege-
tation phenology. The findings suggested that vegetation phe-
nology exhibited heterogeneity both temporally and spatially.
Through GAM analysis, it was found that the responses of SOS
and EOS to climate change and urbanization were nonlinear.
The feasibility of GAM in predicting phenology was verified
by predicting vegetation phenology across different urban–rural
gradient zones. The GAM quantitatively analyzed the impact
of climate change and urbanization on vegetation phenology.
This methodology can provide insights for future phenology
predictions.

A. Vegetation Phenological Parameters

In this study, vegetation phenological parameters were ex-
tracted using the D-L function method and the dynamic
threshold method based on MODIS data. While MODIS data
are widely used in vegetation phenology parameter extrac-
tion [1], [50], it is important to note that phenology assessment
based on remote sensing data represents an approximation of
real vegetation phenology and entails a certain degree of uncer-
tainty [16]. The extraction of vegetation phenological parame-
ters from remote sensing data using smoothing algorithms and
dynamic threshold methods is somewhat subjective, which may
introduce biases into the phenological extraction results. In order
to verify the accuracy of the extraction results, many researchers
have chosen to compare the extracted results with physical
measurements of vegetation phenology from different satellite
products [50], [51]. The correlation between the extracted phe-
nological parameters and the phenological information obtained

from MCD12Q2 data was greater than 0.7 (see Fig. 3), which
verified the accuracy of the results to a certain extent. However,
in future research, it is still necessary to consider the use of
higher resolution data and incorporate the vegetation growth
curve change pattern for phenological parameter extraction. Re-
searchers have explored the harmonized Landsat 8 and Sentinel-
2 (HLS), which can be used to estimate the time of vegetation
phenology at a spatial resolution of 30 m [52], [53]. Overall, from
2001 to 2020, there were significant spatiotemporal changes
in vegetation phenology in Beijing. The spatial distribution of
vegetation phenology in Beijing differed between the southeast
and northwest (see Fig. 4), which is considered to be influenced
by the high northwest and low southeast topography of Beijing.
The city as a whole showed an early SOS and a delayed EOS (see
Fig. 5), consistent with findings observed by other researchers
in urban phenology studies [50], [54].

B. Model Construction Factors Selection

Meteorological factors are the primary environmental factors
that affect vegetation phenology. Temperature plays a crucial
role in vegetation growth and development. Vegetation needs
low temperature to induce chilling before breaking the physio-
logical dormancy and entering the ecological dormancy period,
while high temperature promotes the transition of vegetation
from ecological dormancy to the growth period [55]. Warming in
winter can reduce the accumulation of low temperature received
by plants during the dormant period, thereby increasing the
accumulated temperature demand of plants in spring, which has
a delayed effect on spring phenology [10]. Precipitation is an
essential water source for vegetation growth and development,
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and plants grow and develop faster when there is sufficient
moisture. The increase of water promotes the early greening
period, while the warm and humid autumn is conducive to the
delay of the yellowing period [56]. In recent years, temperature
and precipitation have been widely recognized as key limiting
factors for vegetation growth and strong drivers of phenological
events. However, the start and end of the phenological period are
not always dependent on temperature and precipitation. Wind
speed also affect vegetation evapotranspiration. It can accelerate
the dissipation of soil moisture at the surface interface, affecting
vegetation growth. In addition, the weakening of the wind
speed can cause leaf shedding, reducing cooling effect and
frost damage, and slowing leaf senescence [57]. For vegetation
in Beijing, there was a relatively high chance of vegetation
entering the end of the growth period being influenced by
mean wind speed (see Table III). Photoperiod promotes leaf
germination in plants. Many plants require a certain duration
of sunshine after the end of the spring dormancy period to
initiate new leaf growth. The likelihood of vegetation starting
to grow and develop was relatively high under conditions
of sufficient sunshine (see Table II). Photoperiod regulates
vegetation phenology by delaying leaf expansion caused by
temperature changes, thereby reducing the risk of leaves
suffering from frost [58]. Humidity is an important factor that
affects plant transpiration and also affects vegetation growth
and development. Some scholars believe that humidity is a more
stable climate signal than temperature and precipitation [59].
Higher humidity can be accompanied by lower temperature
and a higher risk of frost. Therefore, as humidity rises, trees
may delay leaf unfolding to prevent frost [60]. In the process
of urbanization, human activities cannot be ignored. Urban
areas with high population densities typically have more
buildings, impermeable surfaces, and traffic activities, leading
to higher temperature compared to surrounding areas [8].
The higher temperature in urban environments enhances
plant transpiration, accelerates water evaporation rates, and
results in soil dryness and water scarcity, ultimately leading
to an earlier onset of vegetation phenology. Nighttime light
intensity refers to the visible and near-infrared electromagnetic
wave information emitted from the surface under cloudless
conditions at night. It can serve as an effective representation of
human activities and is widely used in urbanization processes
and ecological assessments [61]. Nighttime light intensity
accelerates the bud break process and delays leaf coloring.
With the process of urbanization, nighttime light intensity
will have more complex effects on terrestrial ecosystems [62].
As an important indicator of terrestrial ecosystems, vegetation
phenology exhibits a strong response to nighttime light intensity.
Nighttime light intensity explained 82.6% of the deviance in
SOS and 31.2% of the deviance in EOS (see Tables II and III).
This indicates a strong response of vegetation phenology to
nighttime light intensity and further emphasizes the significant
impact of urbanization on vegetation growth and development.
Therefore, when constructing a GAM to predict vegetation
phenology, it is important to consider these influencing factors
comprehensively for a better analysis of vegetation phenological
changes.

C. Performance of GAM

According to previous studies, climate change is the most sig-
nificant factor affecting vegetation phenology [3]. Specifically,
most studies only consider a linear relationship between climate
change and vegetation phenology [15]. However, with the rapid
development of urbanization, urbanization is also considered
as potential factor that has a significant impact on vegetation
phenology prediction [63], [64]. In this study, the GAM was
employed to explore the relationships between vegetation phe-
nology, climate change, and urbanization, based on smooth
functions of each explanatory variable. The best models were
determined based on the deviance explained and the lowest
AIC value. When using nighttime light intensity + accumulated
sunshine hours + accumulated precipitation + mean wind speed
+ population density, the SOS model showed the best results with
the lowest AIC value. When using population density + mean
wind speed + mean humidity + urban heat island intensity, the
EOS model showed the best results with the lowest AIC value.
The study showed that the response of vegetation phenology to
external factors is a highly complex process, rather than a simple
linear relationship, which is consistent with the conclusions from
other researchers [65], [66]. The RMSE between the predicted
and observed vegetation phenology values was approximately
4–7 days, showing a comparable accuracy to other results on
the predicted phenology [49], [67]. Specifically, the method
proposed in this study took into account the combined effects
of climate change and urbanization on vegetation phenology
and could be expected to be better applied to vegetation phe-
nology prediction in urban areas. Our results can contribute to
understanding the impact of climate change and urbanization
on vegetation phenology and provide important information for
ecological conservation and restoration.

The GAM performed well and predicted vegetation phe-
nological parameters with small errors. However, significant
prediction errors still exist in certain years. In addition to climate
change and urbanization, vegetation phenology may also be
affected by other external factors, such as soil conditions and
water resources [68]. These factors were not considered in this
study, which could lead to prediction errors and biases. The
basic assumption of the GAM is that the relationships between
variables are additive, meaning that the effects of variables are
independent and can be simply added together to obtain the
overall effect [11]. However, the relationships between phe-
nology, climate change, and urbanization may not be simply
additive, and there may be complex interactions and nonlinear
relationships. Further research and analysis are still needed
for these complex interactions. In general, future research can
explore the integration of GAM with data from different scales
and sources [28]. In addition, considering the integration of
GAM with other prediction methods and models can improve
the capability and interpretability of phenology predictions.

VI. CONCLUSION

This study revealed the spatiotemporal distributional char-
acteristics of vegetation phenological parameters in Beijing.
Vegetation phenology exhibited spatial variations between the
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southeast and northwest regions, with an earlier onset of SOS
and a delayed onset of EOS as the overall trend. By considering
vegetation phenological parameters as response variables and
with meteorological and urbanization factors as explanatory
variables, the GAM was constructed to explore the response
of vegetation phenology to climate change and urbanization
and predict its phenological patterns. The findings demonstrated
that the changes in SOS and EOS were the combined effects
of climate change and urbanization. SOS showed a nonlinear
advancement in response to accumulated precipitation, accumu-
lated sunshine hours, urban heat island intensity, and nighttime
light intensity. EOS exhibited a nonlinear delay in response to
accumulated precipitation, mean minimum temperature, mean
maximum temperature, mean wind speed, mean humidity, night-
time light intensity, and population density. Nighttime light
intensity and population density played a dominant role in vege-
tation phenological changes, further emphasizing the significant
impact of urbanization. The GAM significantly improved the
performance of phenology predictions, with RMSE of approxi-
mately 4–7 days. In conclusion, the GAM has been proven to be
a valuable tool for analyzing the nonlinear relationships between
vegetation phenology and external environmental changes, with
potential applications in phenology analysis and prediction.
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