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Evaluation of Deep Learning Models for Building
Damage Mapping in Emergency Response Settings

Sesa Wiguna , Bruno Adriano , Senior Member, IEEE, Erick Mas , and Shunichi Koshimura

Abstract—Integrated with remote sensing technology, deep
learning has been increasingly used for rapid damage assessment.
Despite reportedly having high accuracy, the approach requires
numerous samples to maintain its performance. However, in the
emergency response phase, training samples are often unavailable.
Since no ground truth data is available, deep learning models
cannot be trained for this specific situation and, thus, have to
be applied to unseen data. Previous research has implemented
transfer learning techniques to solve data unavailability. However,
many studies do not accurately reflect the rapid damage mapping
in real-world scenarios. This study illustrates the use of Earth
observation and deep learning technologies in predicting damage
in realistic emergency response settings. To this aim, we conducted
extensive experiments using historical data to find the best model
by examining multiple neural network models and loss functions.
Then, we evaluated the performance of the best model for predict-
ing building damage due to two different disasters, the 2011 Tohoku
Tsunami and the 2023 Türkiye–Syria Earthquake, which were
independent of the training samples. We found that a transformer-
based model with a combined cross-entropy loss (CEL) and focal
loss generates the highest scoring values. The testing on both unseen
sites illustrates that the model can perform well in no-damage and
destroyed classes. However, the scores dropped in the middle class.
We also compared our transformer-based approach with other
state-of-the-art models, specifically the xView-2 winning solution.
The results show that the transformer-based models have stable
generalization toward multiclass classification and multiresolution
imagery.

Index Terms—Building damage detection, deep learning (DL),
disaster resilience, Earth observation, emergency response.

I. INTRODUCTION

IN THE aftermath of a disaster, damaged conditions, includ-
ing affected buildings, are essential to detect for humanitarian

activities. This information can help aid decision-makers in
assessing the needs of affected populations, prioritizing response
efforts, and allocating resources effectively. However, gaining
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the damage information in an emergency condition is chal-
lenging due to safety and accessibility reasons. Integrated with
remotely sensed data, deep learning (DL) technology has been
an emerging technique to serve in automatic building damage
recognition.

Despite being superior in accuracy compared to other meth-
ods [1], [2], DL requires a large amount of data to maintain
its performance. However, generating training samples is a
laborious and time-consuming task that is not suitable for an
emergency response setting [3] since the damage information
is usually required for quick decision-making and action. The
attention then turns into transfer learning techniques, that is,
utilizing knowledge learned from a large dataset to test in a
different but related task.

Previous researchers have studied transfer learning ap-
proaches for building damage detection. However, many studies
do not accurately represent rapid damage mapping in real-world
scenarios or realistic disaster emergency mapping. For example,
the authors in [4] and [5] evaluated model generalization by
utilizing the trained model to predict building damages in new
instances unseen during the training. Gupta and Shah [4] split
samples by the type of disaster, where some groups of a disaster
event were used for training and other groups for testing. Benson
and Ecker [5] used a similar split criteria as [4]. However, rather
than using the whole testing set as in [4] and [5], split the
testing set into three folds consisting of smaller disaster groups to
reduce the computational cost. Although this reflects the transfer
learning scenario and grouping can help to avoid an insufficient
number of samples for testing, we argue that their split is less
representative of realistic disaster emergency mapping. First,
emergency mapping is conducted for an individual event with
damage mechanisms that may differ from other hazards or
events. Thus, grouping samples from various types of disasters in
the testing stage might introduce biases to the model. Therefore,
the testing should be done for an individual disaster type. Sec-
ond, using multiple disaster events as the testing dataset is rather
wasteful since the data can actually be used to enrich training
processes. In a real scenario, one would maximize all available
data for the training and then predict one new disaster [4].

Other studies applied transfer learning in an individual event
rather than in a group of disasters. However, many focus on a
single type of hazard. In fact, each disaster is unique. In other
words, each disaster behaves differently so that a model may
generalize well in one disaster but may not work equally in
other events. It calls for more understanding of model gen-
eralization ability toward multiple disaster events. In [6], for
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example, the model generalization was tested in both location
and data variation; however, the focus was only on an earthquake.
Zahs et al. [7] introduced a method involving machine learning
and point-cloud data, then evaluated the model’s transferability
on earthquake-induced building damage. Similarly, Adriano
et al. [8] assessed the cross-domain generalization by generating
synthetic postevent SAR imagery focusing on tsunami damage.

The primary contribution of this study lies within the perfor-
mance evaluation of DL models for building damage mapping in
realistic emergency settings. We replicate rapid building damage
assessment in a condition where samples are unavailable, which
is the case in almost all disaster emergency situations. That
said, we trained multiple DL models on a global disaster dataset
and used the best-performing model to estimate damage in two
unseen disaster events. Specifically, the main steps to our work’s
contribution are threefold.

1) We formulate the building damage recognition in a real-
istic disaster emergency scenario where the ground truth
data is unavailable. Since no ground truth data is available,
DL models cannot be trained for this specific situation and,
thus, have to be applied to unseen data. We demonstrate
the feasibility of DL models trained on a global dataset
in predicting damage in new locations, namely the 2011
Tohoku Tsunami and the 2023 Türkiye–Syria Earthquake.

2) We conduct extensive experiments to find the best-
performing models, including the state-of-the-art convo-
lutional neural network (CNN) and modern transformer
models. We also experiment with different input scenarios
considering the optical image availability in the aftermath
of disasters.

3) We compare the best-performing model with state-of-
the-art DL approaches for building damage recognition.
We evaluate the metrics of semantic segmentation-based
models at the pixel level and building level to harmonize
model performance of semantic segmentation and image
classification tasks, two commonly used methods of build-
ing damage assessment.

A. Related Works

Damage detection analyzes using remotely sensed data have
been widely studied. A comprehensive review of this field has
been made by several authors, for example, [9] for tsunami, [10],
[11] for earthquake, and [12] for synthetic aperture radar-based
building damage assessment. The use of remote sensing (RS) for
damage detection can be grouped into regional and local levels.
At the regional level, the estimation is usually made to estimate
the affected area [13], [14]. For example, Yusuf et al. [15] used
Landsat 7 images to detect affected areas due to the 2001 Gu-
jarat Earthquake. While the regional-level approach provides an
insight into the overview of the overall affected area, it is unable
to give the details of the object being affected. The analysis
is then targeted to inspect the damage at the local level, e.g.,
building. At the building level, the common approaches used
include the following: 1) image classification, where a particular
damage class is assigned to an image, e.g., [6], [16], [17] or
where a damage category is assigned to each building patch and

2) semantic segmentation, where the categorization takes place
at a pixel level, e.g., [18], [19]. Adriano et al. [20] proposed a
semantic segmentation-based building damage mapping frame-
work by considering data availability following a disaster. The
proposed framework involves a multitemporal (utilizing pre- and
postdisaster images) and multimodal using optical and radar
imagery Earth observation dataset from large-scale earthquakes
and tsunamis around the globe.

The analysis at the object level has been enhanced by the
advancement of DL and data availability. Since winning the Im-
ageNet competition in 2012, CNN-based models have become
more popular in the computer vision field, including RS [21].
Nowadays, transformer models, which were initially developed
in natural language processing, have been adopted for various
computer vision tasks, e.g., [22]. Previous studies, such as the
authors in [23] and [24] showed that the transformer-based
model outweighs the CNN models. Chen et al. [23] designed a
transformer-based damage assessment architecture. The model
consists of a Siamese transformer encoder to extract features
from multitemporal images. The extracted features are then
fused by a multitemporal fusion module before feeding them
into a lightweight dual-tasks decoder that aggregates multilevel
features for final prediction. The experiments show that the de-
signed model has surpassed CNN-based state-of-the-art models.

Moreover, a number of dataset benchmarks, such as Open-
EarthMap [25], INRIA [26], WHU-OHS [27], and xBD [28]
have been introduced to advance the research in the field. For
example, Deng and Wang [29] used the xBD dataset to improve
the U-Net model by designing a two-stage building damage
assessment network in a semantic segmentation task. In the
building segmentation stage, an extra skip connection and asym-
metric convolution block were used to enhance the network’s
ability to segment buildings on different scales. Meanwhile,
shuffle attention is utilized to improve the model by directing the
network’s attention to the correlation between buildings before
and after the disaster. Similarly, Shen et al. [30] took advantage
of xBD data to apply their proposed cross-directional attention
module that explores the correlations between pre- and postdis-
aster images. Zheng et al. [31] proposed ChangeOS, a model that
features an object generation module and an object classification
module. The model was trained on the xBD dataset to develop
an end-to-end building damage detection with high performance
in both speed and accuracy. Yu et al. [3] utilized xBD to verify
their SegDetector to detect small-scale targets and overlapping
targets in target detection tasks. Xie et al. [32] developed two
subnetworks named building subclass segmentation network for
building subclass segmentation by combining binary building
segmentation and multiclass building segmentation by utilizing
the dataset.

On many occasions, DL models are designed for particular lo-
cations. This makes the ability of models to generalize to unseen
data remains unknown [33] as the models may be dependent
on the training dataset [34]. In fact, models would be more
practically useful for real-world applications if the model can
generalize to new unseen datasets [5], [35]. Furthermore, Benson
and Ecker [5] insist that a model should be ranked through its
ability to generalize to unseen (out of domain or OOD) data
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rather than in-domain (IND) datasets. In this case, IND refers
to a proportion of samples that are intentionally split from all
samples for testing purposes.

Previous studies, such as [5], [6], [8], [16], [35], [36], [37],
have attempted to evaluate the generalization ability to serve
emergency response efforts. Yang et al. [6] evaluated the gen-
eralization ability of several well-known CNN-based networks
namely VGG-16, InceptionV3, ResNet50, and DenseNet121.
In their study, the generalization of models was assessed in
terms of geographic location (testing on satellite images of an
unseen area) and data generalization (transferring from satellite
to aerial photo), mainly in binary classification (damage or
no-damage). Bouchard et al. [37] proposed a two-step model
design comprised of BuildingNet for building localizer followed
by DamageNet for damage classifier. Each model was trained
before disasters to make them ready for inference, thus mini-
mizing the postincident execution time.

The existing literature mostly focuses on binary class. For ex-
ample, Nex et al. [36] evaluated the geographical transferability
in three different datasets: satellite, airborne, and UAV in two
building damage classes, namely damage and intact. Similarly,
the authors in [33], [37], and [38] work in binary mapping.
Bouchard et al. [37] combined no-damage and minor-damage
into one class and major- and destroyed class into another.
They argue that minor-damage levels do not require immediate
emergency attention from humanitarian organizations. As for
more general purposes [32], for example, for assessing monetary
damages, damaged buildings should be classified into detailed
classes [39].

Limited studies assess the OOD generalization in larger disas-
ter types and damage classes. Benson and Ecker [5] developed
four-class damage models and tested them in three test folds
containing disasters driven by wind, fire, and water. Valentijn
et al. [16] tested their models on performance on flood and
tornado, also comparing the performance of binary and mul-
tidamage classes (no-damage, minor-damage, major-damage,
destroyed). Both studies use the xBD dataset solely in their
experiments. The data were then split in such a way as to
meet the OOD evaluation scheme. For example, Benson and
Ecker [5] hold several disaster events from xBD intentionally to
be used only for OOD-generalization testing. Similarly, Valen-
tijn et al. [16] excluded Nepal Flooding and Joplin Tornado of
xBD datasets from the training and used those events only for
OOD testing. Our study expands the generalization studies by
utilizing data beyond xBD for testing. We believe that our setting
reflects a more realistic disaster emergency condition where the
dataset used for testing is generated independently from the
training set. More specifically, both training and testing sets may
vary in sensors to acquire the images and methods to determine
the damage levels.

In summary, this study expands the literature by evaluating
the usefulness of RS and DL technologies in realistic emergency
settings. We maintain the model training and testing procedures
as in real-world emergency mapping. We maximize the historical
data and find the best-performing DL models among the state-
of-the-art to predict damage in new areas.

The rest of this article is organized as follows. Section II
presents the methods in which data research workflow, DL

architectures, and loss function are described. Sections III and IV
provide the experimental results and the discussion, respectively.
Finally, Section V concludes this article.

II. METHODS

This section describes the methods used in this study. It starts
by describing the approach of the study, then will describe the
details of the methods.

A. Research Settings

The study illustrates rapid building damage assessment in
realistic emergency disaster response. In this scenario, obtaining
ground truth data is limited, making it impractical to train a DL
model from scratch. Therefore, the study relies on historical data
to estimate the building damage in targeted locations.

In general, building damage detection can be perceived as
semantic segmentation or image classification tasks. This study
sets the current task as an image classification problem. Specifi-
cally, the model takes building patches as inputs and predicts
the damage state of every building patch in the following
four categories: no-damage, minor-damage, major-damage, or
destroyed. Since a particular class is assigned to each image
(patch) rather than to a pixel, the method is inexpensive in
computation and, hence, suitable for disaster rapid assessment
purposes. Moreover, building footprints that are usually required
to create samples, e.g., to crop the satellite imagery to the
extent of building polygon, are available publicly from a number
of sources, including openstreetmap (OSM)1 and Global ML
Building footprints from Microsoft for large areas of the world.2

In [40], damaged buildings were identified through a semantic
segmentation approach; then, they summarized the model’s out-
put over the Microsoft Building footprint dataset. Our approach
simplifies the process by directly categorizing the damage at the
building level.

As depicted in Fig. 1, the study starts with preparing data
inputs. Details about the data preprocessing are described in
Section II-B. Second, the data inputs are used for model training.
Here, we examine multiple DL architectures and loss functions
to find the best-performing model. Details of which are described
in Sections II-C and II-D. For all DL models, we also designed
Siamese networks comprised of two encoders to utilize mul-
titemporal images. This model selection process utilized the
historical disaster events gathered in the xBD datasets. Finally,
to illustrate the usefulness of the historical dataset in assisting
the real emergency scenario, the best model is used to predict
disasters that are not included in the training processes. To this
aim, the 2011 Tohoku Tsunami and the 2023 Türkiye–Syria
Earthquake datasets are used as real case testing scenarios.

Damage mapping studies generally involve images before-
and after disasters. Although it is possible to use postdisaster
images only, this approach may lose accuracy due to insufficient
information [41], [42]. In contrast, multitemporal inputs make
it possible to compare the degree of similarity between the two

1[Online]. Available: https://www.openstreetmap.org/
2[Online]. Available: https://github.com/microsoft/GlobalMLBuilding

Footprints

https://www.openstreetmap.org/
https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints


5654 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Workflow of the research. Left: Data source containing Images and damage labels. Middle: Building patches. Right: Model training includes the best DL
model selection. The best-performing model is then used for real-case testing.

samples [43]. As shown by [44] and [35], utilizing multitem-
poral images outperforms postonly inputs in building damage
mapping. However, multitemporal images may not always be
available. This study evaluates two input scenarios as follows.

1) Unitemporal: This scheme feeds only postdisaster images
to the models. The setting fits conditions where only post-
disaster images, short-range imagery, e.g., aerial photos,
are available.

2) Bitemporal: The setting assumes that both pre- and post-
disaster images are available, e.g., provided through dis-
aster charters such as Maxar Open Data Program.3

B. Data Preprocessing

Data preprocessing includes steps to prepare inputs for model
training. The study utilizes the xBD Dataset [28] as the source
of model training. The dataset was originally established for the
xView-2 Challenge and is accessible at.4 The database comprises
building damage labels and satellite images. The damage infor-
mation is stored in building footprint polygons containing four
classes of damage, namely no-damage, minor-damage, major-
damage, and destroyed. The images are very high-resolution
satellite images with a ground sampling distance (GSD) of 0.5×
0.5 m acquired before and after 19 major disasters from nine dis-
aster types, including earthquake, fire, bushfire, wildfire, floods,
hurricane, tornado, tsunami, and volcanic eruption. Details of
the making of the xBD dataset and the damage description for
each class can be referred to [45]. The samples are collected
from around the globe. However, the samples are biased toward
the United States, where the country holds the majority of the
sites. The location distribution of samples used in the study is
illustrated in Fig. 2.

Training samples were obtained by cropping the pre- and
postdisaster images with the bounding box of each building
footprint. A buffer of 2 pixels (1 m) was added to each bounding

3[Online]. Available: https://www.maxar.com/open-data/
4[Online]. Available: https://xview2.org/dataset

Fig. 2. Distribution of xBD and test locations. xBD samples are used for
training processes while testing disaster events are independent of xBD. The
disaster types are grouped based on triggering factors. Fire-related includes
bushfires, fire, and wildfire. Geo-related covers volcanic eruptions and earth-
quakes. Water-related comprises of flooding and tsunamis. Wind-related consists
of hurricanes and tornadoes.

box to capture the situation surrounding the building, i.e., exis-
tence of debris [6], [16]. Having cropped the images, we select
buildings with sizes of a minimum of 14 m at their width and
length by considering a 28 × 28 to discard small buildings. This
step results in 181 254 pair patches from pre- and postdisaster
images.

In the xView-2 Challange, the original xBD dataset was split
into the following four folders: Train, Tier3, Test, and Hold-out.
This study also takes samples from Train, Tier3, and Test folders
as train sets and uses the hold-out folder as the test set. The train
set was split at a ratio of 0.8 and 0.2 for training and validation,
respectively. The number of samples for training, validation, and
test set per damage class is illustrated in Fig. 3.

C. DL Models Architecture

The study compares the performance of multiple DL models,
including ResNet and ResNeXt of CNN and swin transformer
of the transformer models. They are among the state-of-the-
art from earlier periods to the latest DL models in numerous
applications. They vary in feature and model complexity.

https://www.maxar.com/open-data/
https://xview2.org/dataset
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Fig. 3. Number of samples generated from xBD dataset. Train, val, and test
refer to training, validation, and test set, respectively.

1) ResNet: Generally, the model’s robustness could be en-
hanced by increasing the depth of networks. However, it is found
that adding more layers may saturate the accuracy and instead
reduce the performance due to the vanishing gradient problem.
Residual Network [46] then solved the issues by introducing
residual blocks with skip connections that add intermediate input
to the output of a series of convolution blocks. Through this
mechanism, ResNet ensures that the gradient signal does not
become too small, which helps prevent the vanishing gradient
problem and, thus, allows the addition of more layers. In the
authors’ experiments, ResNet outperforms previous state-of-
the-art architectures on the ImageNet dataset, such as VGG
and GoogLeNet. Since the establishment of ResNet, it soon
became the state-of-the-art CNN model in multiple DL tasks,
including image classification, object detection, and semantic
segmentation. Many variants of ResNet architectures utilize the
same concepts yet vary in the number of layers. In this study,
ResNet34 was used. The network has 21.5 × 106 paremeters.

2) ResNeXt: ResNeXt model is proposed by [47] on top
of ResNet. The authors introduced a new dimension called
cardinality, which refers to the number of independent paths
within a residual block. Traditional residual blocks in ResNet
have a single path that connects the input to the output through
a series of convolutional layers, while ResNeXt introduces
multiple paths, each of which performs a subset of the total
convolutional operations. Their experiments show that accuracy
can be gained more efficiently by increasing the cardinality
than going deeper or wider. The model architecture follows
the split-transform-merge paradigm, where input is split into
a number of paths, transformed independently, and merged by
aggregating the outputs of different paths. Each path shares
the same topology, requiring fewer parameters while adding
more layers to this architecture. Through cardinality and ag-
gregated transformations, the model can learn richer and more
diverse feature representations. Wu et al. [19] compare ResNet,
squeeze-and-excitation networks, ResNeXt, and dual path net
as the backbone for the U-net model. Their experiments show
that the ResNeXt model with attention suppressed other studied
models. This study utilized ResNeXt50, which has 25 × 106

parameters.

TABLE I
NEW ADDITIONAL LAYERS ADDED TO EACH NETWORK

3) Shifted Windows Transformer: Shifted Windows (Swin)
Transformer was introduced in 2021 by [48]. The model ar-
chitecture builds hierarchical feature maps by starting from
small-sized patches (local windows) and gradually merging
neighboring patches in deeper transformer layers. Self-attention
layers compute within each local window rather than within the
entire image patches. This mechanism results in lower com-
putation and allows the model to learn finer features, which
is useful for other tasks such as semantic segmentation. Swin
transformer reduced the number of patching through a path-
merging approach, which concatenates features of neighboring
patches and applies a linear layer. A shifted window approach
is introduced to ensure the connections between local windows.
It utilizes two partitioning configurations, where the first layer
uses regular partitioning, and the second layer uses a windowing
configuration shifted by half of the window size. This shifted
window introduces connections between neighboring windows
while keeping the local computation within each nonoverlapping
window. Swin transformer has multiple backbones in regards
to model’s size and computational complexity. In ascending
order of those parameters, the Swin variants are T (29× 106),
S (50× 106), B (88× 106), and L. SwinT, for example, has
96 channels of hidden layers in the first stage. In comparison,
Swin L has 192 total channels at the same stage. Xia et al. [25]
compared multiple DL models, including CNN and transformer-
based models in mapping land use, and they found that swin
transformer-based models are among the best among the studied
models. Ogawa et al. [49] designed a model to estimate the built
year and structure of a building using omnidirectional street view
images captured using an onboard camera. The classification
model was trained using CNN-based and transformer-based net-
works. The results show that swin transformer model effectively
improves prediction accuracy.

Our study evaluates two input scenarios: unitemporal and
bitemporal. To meet this research setting, we modified the
studied networks. Three additional linear layers were added, and
the last layer of each network was modified to accommodate four
classes of output. Each linear layer is followed by an activation
function. In addition, dropout layers are added to the first two
linear layers. The detail of each layer is summarized in Table I. In
the unitemporal input, the models are fed only with postdisaster
images.

For the bitemporal input scenario, we designed a Siamese
structure. The Siamese networks have two identical encoders.
Each encoder extracts features from pre- and postdisaster images
individually. Features maps extracted from each image were
concatenated and then fed into the additional linear layers for
classification.
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D. Loss Functions

Loss functions are an important part of the training process
in DL. They provide a measure of how well the model is
performing and guide the optimization algorithm to improve
its performance. Studies such as [50] show that loss function
selection greatly influences the modeling results. This study
investigates the two most used loss functions to gain the best
performance. The studied loss functions include CE, focal, and
CE-Focal.

1) Cross-Entropy Loss: CEL [51] measures the difference
between two probability distributions (ground truth data and
predicted distribution). CEL has become popular for many DL
tasks, including image classification. This study uses categorical
CE for multiclass classification tasks. The CEL is expressed as
follows:

LCE(y,ŷ) = −
M∑

i=1

yi log ŷi (1)

where M is the number of classes; yi represents the true class
label for class i, and ŷi is the predicted probability of class i.

2) Focal Loss: Focal Loss is proposed by [50] to address
imbalanced samples. In focal loss, the authors refined the stan-
dard CEL by adding a modulating factor to reduce the relative
loss for well-classified samples and putting more focus on hard,
misclassified samples. The focal loss is expressed as follows:

LFocal(ŷ) = −(1− ŷ)γ log(ŷ) (2)

where ŷ is the predicted probability of the true class and γ
is the focusing parameter that modulates the contribution of
well-classified examples to the loss. Their experiments on object
detection show that introducing the modulating factor can solve
the data imbalanced issues. The loss function is used in our study
to combat the class imbalance of the xBD samples. This study
uses γ of 2, which shows the best performance in the authors’
study.

3) CE-Focal Loss: Besides the aforementioned losses, the
study uses CE-Focal loss, an aggregated loss of CEL and fo-
cal loss. The CE-Focal loss takes the sum of the two losses.
Formally, the loss is expressed as follows:

LCE-Focal = LCE + LFocal. (3)

E. Evaluation Metrics

Model evaluation is an important part of DL studies. A number
of metrics are widely used in the model evaluation, including
accuracy, precision, recall, and F1. Accuracy is the proportion
of correctly classified samples out of the total samples. Precision
measures the proportion of correctly classified samples over
total samples predicted as positive by the model, while recall
measures the proportion of correctly classified samples out of
all actual positive samples in the dataset. In imbalanced datasets
where the number of samples of each class is not the same, the
accuracy metric can be misleading as the model may achieve
high accuracy by predicting the majority class even though the
minority class performs poorly. Meanwhile, F1 considers both
precision and recall, which makes it suitable for imbalanced

TABLE II
COMPUTATION RESOURCES AND HYPERPARAMETER SETTINGS FOR THE

EXPERIMENTS

datasets. As described in Fig. 3, the number of samples in each
class is unequal. Therefore, we selected F1 to evaluate the mod-
els’ performance. The formula to obtain F1 is mathematically
expressed as follows:

Precision =
TP

TP+FP
(4)

Recall =
TP

TP+FN
(5)

F1 =
2× Precision × Recall

Precision + Recall
(6)

where TP is true positive (rate of positive instances correctly
classified), FP is false positive (rate of negative instances mis-
classified), and FN is false negative, indicating the rate of
positive instances misclassified.

III. EXPERIMENTS

This section contains the training settings and the experi-
ments’ results. In the experiment results, we first describe the
DL model selection processes involving multiple DL models
and loss functions. Second, we report the performance of the
selected model on real case scenarios. Finally, we show the
model performance when the task is simplified from four-class
to three-category classification.

A. Training Settings

Details of the resources and hyperparameters used in the study
are listed in Table II. We utilized PyTorch as the DL framework.
We initialized the first layer weights using networks pretrained
on ImageNet to improve the training speed and achieve better
convergence and accuracy [49]. The models were trained on 30
epochs with a batch size of 64 and were optimized using AdamW
optimizer [52]. An initial learning rate (LR) of 1× 10−4 was set
for the training. Cosine Annealing LR with a minimum LR of
1× 10−6 was incorporated as LR Scheduler. All experiments
were done on Ubuntu 22 operating system on NVIDIA Quadro
RTX 6000 machine.

To deal with overfitting problems, we used data augmentation
techniques. Data augmentation increases the variability and
robustness of the model since the model becomes new due to
the modified versions of the input data [19], [53]. The data
augmentation techniques were implemented only in training
samples and included image rotation, resizing, color transfor-
mation, and noise transformation. All samples were resized into
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TABLE III
ACCURACY ASSESSMENT OF THE STUDIED DL NETWORKS IN UNITEMPORAL AND BITEMPORAL INPUTS

TABLE IV
ACCURACY ASSESSMENT OF THE STUDIED LOSS FUNCTIONS CALCULATED ON THE XBD TEST SET INCLUDING CEL, FOCAL LOSS, AND CE-FOCAL (COMBINED

OF CEL AND FOCAL)

128 × 128 pixels and normalized by the mean and standard
deviation of training samples. The image augmentation was done
using Albumentations library.5

B. DL Models Architecture Evaluation

This part compares the performance of ResNet34,
ResNeXt50, and swin transformer calculated on the xBD
testing set. In this evaluation, all models were trained using the
same settings as in Table II and used CEL as the loss criterion.
The training process and score calculation were done using
the xBD dataset. While the training and validation sets were
used for training, the test set was utilized to evaluate the model
performance.

The results of each studied model are listed in Table III. Gener-
ally, all models perform best in no-damage and destroyed classes
and score lower in middle classes (minor- and major-damage).
Swin transformer, however, scores higher in all classes than
ResNet and ResNeXt. Moreover, the transformer model scores
much higher in the middle classes. For example, swin trans-
former scores 64.41 in the major-damage class in the unitem-
poral model. Meanwhile, the scores of the class for ResNet and
ResNeXt are 61.18 and 58.95, respectively.

The aforementioned pattern is also found in bitemporal
scheme. The scores for both ResNet and ResNeXt are much
lower than that of swin transformer. For example, the averageF1

for ResNet is 74.32, and ResNeXt is 74.36 compared to 77.07
for the swin transformer. In comparison with the unitemporal
input, swin transformer with the Siamese model has a slightly
higher score, whereas the unitemporal model achieved 76.20.

These findings show that besides scores higher than ResNet
and ResNeXt, swin transformer is more consistent in both

5[Online]. Available: https://albumentations.ai/

input scenarios. Therefore, we used the swin transformer as the
baseline model for the loss function evaluation.

C. Loss Functions Evaluation

This section reports the comparison of loss functions perfor-
mance. As in the previous section, the scores were calculated
on the xBD test set. The results are summarized in Table IV.
Among the studied losses, the score of each loss does not vary
significantly. All loss functions have a similar pattern where
the middle classes remain the minority score compared to no-
damage and destroyed classes. For the macroaverage, the scores
of all losses and image inputs range from 76.02 to 77.22. As per
the harmonic mean, the score is slightly lower considering the
score differences among the damage classes.

CE-Focal loss achieved the highest score in both unitem-
poral and bitemporal models. In unitemporal inputs, CE-Focal
achieved an overall score of 76.31 as the highest among others.
CEL, with a slightly lower score (76.20), stood in second place.
Similar patterns are also observed in bitemporal input images
where the average score in descending order is CE-Focal (77.22),
CE (77.07), and focal loss (76.89). By looking at the scores
in both inputs, CE-Focal shows to be superior to other losses.
Therefore, we selected CE-Focal as the standard loss function
for the next experiments.

Having found the best scoring model and its loss function, we
implemented an ensemble technique involving multiple back-
bones of swin transformer, namely S, B, and T. In addition, we
apply test-time augmentation techniques, including image rota-
tions to each testing sample. We took the average value of each
vector resulting from each backbone before feeding it into the
Softmax activation function for classification. The ensemble ap-
proaches have been implemented in the xBD winning approach

https://albumentations.ai/
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and [31] to help improve the final results. In addition, ensembling
multiple models is reported to outweigh the performance of
single models [54] and have a better generalization [55].

The results of the Ensemble models EnsSwin are illustrated in
Table IV. Overall, ensemble models yield better performance in
all damage levels, even when compared to other loss functions.
For unitemporal models, for instance, the highest score was
initially achieved by CE-Focal loss with a score of 76.31. By
assembling multiple models, the score outweighs this single
model. The same pattern is also found in bitemporal input.
The ensemble model has increased the overall F1 from 77.22
acquired by a single model of swin transformer to 77.79. In
conclusion, assembling multiple models can achieve a higher
score than a single model. We then used the swin transformer
ensemble model to predict building damage in real-case testing.
In addition, the similarity in score between the two input scenar-
ios indicates that postevent-only images can yield satisfactory
results in data scarcity.

D. Application to 2011 Tohoku Tsunami

This section evaluates the generalization performance of the
trained model on the 2011 Tohoku Tsunami. It starts by describ-
ing the dataset and then reports the prediction results.

1) Tohoku Dataset: As in training, the 2011 Tohoku Tsunami
dataset also consists of image pairs and building damage an-
notations. The images used are WorldView3 imagery sensed
before August 10, 2010 and after March 11, 2021, the disaster
and were resampled into 0.5 × 0.5 m GSD. The images were
acquired by the International Research Institute for Desaster
Science (IRIDeS), Tohoku University. As for the damage labels,
the data were obtained from [56]. The data are available at.6

The xBD and MLIT labels differ in several ways, including
the number of classes and the method to determine the damage
level. For the number of classes, xBD has four damage levels. In
contrast, MLIT segregated the building status into seven classes,
including no-damage, minor-damage, moderate-damage, major
damage, complete damage, collapsed, and washed away. In
addition, unlike the xBD dataset, where the damage status is
primarily determined through visual interpretation of overhead
imagery, MLIT considered the damage level through field in-
spections. Besides, although some class names are common,
they may vary in the class definition. Due to the differences in the
number of classes and damage class definition, the two datasets
need to be harmonized. In this regard, the Tohoku dataset was
reclassified as many xBD classes in the following two different
ways.

1) Semantic Meaning: In this approach, the class mapping
was done according to the semantic meaning of each
damage class. For example, the no-damage of Tohoku
remains a no-damage class since it has a similar class
name in xBD. This method illustrates a scenario where
attention is paid to comparing damage descriptions used
in different sources.

2) RS-Based Meaning: In this technique, the class was
mapped based on an RS point-of-view. Satellites are

6[Online]. Available: http://fukkou.csis.u-tokyo.ac.jp/dataset/list_all

positioned in space and observe the Earth’s surface from
above, which makes Earth objects, including houses, ob-
served from a top-down perspective, i.e., from the roof.
That said, RS only evaluates the building damage from
the top of the building rather than from other angles or
perspectives. As mentioned in [56], however, the dam-
aged houses were also evaluated from wall inspection
and height of inundation. Those factors are not visible
from the sky. Therefore, this scenario ensures that the
model determines the damage of two datasets from the
same perspective. Thus, the samples from each MLIT
class are inspected visually and compared with those from
xBD. Technically, a number of images per damage class
from MLIT were randomly selected and compared to the
xBD samples. For obvious classes, such as no-damage
and washed away, 80 samples were selected. For the
middle classes, one percent of the samples were inspected.
Those samples are matched based on visual similarity in
depicting building damage. Since the xBD is treated as
a reference, each MLIT class was mapped to the xBD
classes. Based on the visual inspection, each damage class
from MLIT has a general agreement toward a particular
class of xBD. For example, major-damage images of the
Tohoku dataset do not show damage from the RS images.
In this case, the major-damage class of the Tohoku is
assigned as the no-damage class.

The class mapping methods between xBD and Tohoku dataset
are summarized in Table V and Fig. 4 for the image sample
comparison.

2) Prediction Results: This part reports the prediction of our
model (swin transformer-based) trained on xBD data for the
2011 Tohoku Tsunami event. First, we present the results of
different labeling schemes, and finally, we compare the result
with the first place of the xView-2 Challenge.

The performance comparison is illustrated in Table VI and
Fig. 5. Comparing labeling techniques illustrates that semantic
meaning yields a lower score than RS-based meaning. For
instance, the average score of semantic-based labeling for bitem-
poral is 27.30. Meanwhile, the value for RS-based labeling is
47.29. In other words, scores for all classes increased when
RS-based labeling was used. Specifically, the no-damage class
score rose significantly from 12.57 to 75.18 in the unitemporal
model.

In this study area, the bitemporal network yields a higher
score than single temporal inputs, especially in no-damage and
destroyed classes. The changes between pre- and postdisaster
images may cause this. Since the bitemporal model takes input
from both images, any significant change, such as in destroyed
classes or unchanged images as in no-damage classes, is more
recognized by the model than changes in the middle classes
(minor- and major-damage).

3) Comparison With the xView-2 Challenge Solution: The
winner adopted a Siamese network structure with bitemporal
inputs, the details of which are available at.7 Since the xView-2
Challenge was designed for segmentation tasks, it results in a
semantic map. We then calculated the score at both pixel and

7[Online]. Available: https://github.com/DIUx-xView/xView2_first_place

http://fukkou.csis.u-tokyo.ac.jp/dataset/list_all
https://github.com/DIUx-xView/xView2_first_place
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Fig. 4. Image samples of each damage class. Semantic Meaning matches the xBD and MLIT based on damage descriptor similarity. RS-based Meaning maps
the two datasets based on the visual similarity of each sample.



5660 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE V
SUMMARY OF DAMAGE CLASS MATCHING BETWEEN XBD AND MLIT

TABLE VI
ACCURACY ASSESSMENT OF XVIEW-2 SOLUTION AND OUR MODEL CALCULATED ON 2011 TOHOKU TSUNAMI

Fig. 5. Building damage distribution of Tohoku Tsunami estimated by xView-2 solution and our model. (a) Ground truth reclassified from MLIT data using the
semantic meaning method. (b) Ground truth obtained from the RS-based meaning approach. (c) Building damage predicted by the xView-2 solution. (d) and (e)
Predicted results of our model using uni, and bitemporal inputs, respectively.

building-levels. For the pixel level, F1 is directly estimated by
comparing the semantic maps with ground truth maps. As for
the building level, the damage status of a building is determined
by the majority voting of pixels falling into each building [57].

Regarding the xView-2 approach, pixel-level scores are the
lowest among all testing. Moreover, it could not detect minor-
damage classes. The lower score in the pixel-level evaluation
may be caused by pixel-wise methods being sensitive to different
values between predicted and ground truth data. However, the
sensitivity is reduced at the building level since the label decision
depends on the majority pixel class falling into a building. For
building-level testing, the patterns are similar to that of the swin
transformer-based model. Although the xView-2’s average score
is higher than our unitemporal model, it is slightly lower than
the bitemporal model. In addition, as in the pixel-level score, the

result from semantic mapping could not detect minor-damage
classes.

E. Application to 2023 Türkiye–Syria Earthquake

Besides the 2011 Tohoku Tsunami, we utilize our model to
predict the damage caused by the 2023 Türkiye–Syria Earth-
quake. On February 6, 2023, two earthquakes with a magnitude
of 7.8 and 7.5 hit Kahramanmaraş, Türkiye [58]. According
to [59], the disaster affected 11 provinces and have killed 45 089
lives, and displaced 1 971 589 people.

The study focuses on the Islahiye City of Türkiye as one of
the areas that were heavily affected by the disaster. The event
and study area locations are depicted in Fig. 6. In this evaluation,
the images for both pre- and postdisaster are obtained from the
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TABLE VII
ACCURACY ASSESSMENT OF XVIEW-2 SOLUTION AND OUR MODEL CALCULATED ON SATELLITE IMAGERY OF 2023 TÜRKIYE–SYRIA EARTHQUAKE

Fig. 6. Overview of the 2023 Türkiye–Syria Earthquake. A blue dot indicates
Islahiye City as the study area.

Maxar Open Data Program.8 The images were acquired from
the WoldView3 satellite on December 27, 2022 and February
7, 2023 for pre- and postevent, respectively. Both temporal
images have a GSD of approximately 0.3 m. As in the 2011
Tohoku Tsunami, the Türkiye Dataset was also not included in
the training.

Besides the satellite imagery, the testing also involved an
aerial photo. The photo after the disaster was acquired on
February 15, 2023 and is available publicly from Ope-
nAerialMap.9 In addition, the OSM building footprint was used
to generate the building patches. The polygons were updated and
aligned following the satellite images. The building footprints
were removed or added according to the building’s existence in
the predisaster image.

To evaluate the performance of our model, we constructed
reference labels of 6145 buildings through visual interpreta-
tion of satellite imagery. The adjusted building footprint was
classified into four classes to comply with the xBD dataset.

8[Online]. Available: https://www.maxar.com/open-dataturkey-earthquake-
2023

9[Online]. Available: https://openaerialmap.org/

Fig. 7. Damage descriptions for building damage inspection in 2023 Türkiye–
Syria Earthquake.

Moreover, the damage description used in xBD was also adopted
for the Islahiye damage inspection. The details of the damage
description are illustrated in Fig. 7.

1) Testing on Satellite Imagery: The results of model testing
for the Türkiye–Syria Earthquake are reported in Table VII.
Like the Tohoku Tsunami results, theF1 for Türkiye Earthquake
varies in every damage class. Generally, the model can predict
well in the no-damage class with a score of 91.50 for unitemporal
and 92.95 for bitemporal. The second highest scoring class is
the destroyed class, with a score of 32.89 for unitemporal and
40.87 for bitemporal. The minor- and major-damage classes
score much lower, which causes the average score to reach only
32.45 and 36.30 for unitemporal and bitemporal, respectively.

For segmentation-based results, the score for pixel-based
evaluation is much lower than building-based. A similar scor-
ing pattern of the transformer-based model is also found in
segmentation-based results. The no-damage and destroyed are
two chiefly scoring classes. In segmentation-based scores, how-
ever, the model could not detect minor-damage classes. On
average, our model acquired higher accuracy compared to the
semantic-segmentation-based model. This is true for both input
scenarios. The building damage distribution predicted by the
models is depicted in Fig. 8.

https://www.maxar.com/open-dataturkey-earthquake-2023
https://www.maxar.com/open-dataturkey-earthquake-2023
https://openaerialmap.org/
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Fig. 8. Building damage distribution in the Islahiye City of Türkiye Earthquake estimated by xView-2 solution and our model. The maps were calculated on
satellite imagery. (a) Ground truth obtained through the visual interpretation of satellite imagery. (b) Building damage predicted by the xView-2 solution at the
building level. (c) and (d) Predicted results of our model using uni, and bitemporal inputs, respectively.

TABLE VIII
ACCURACY ASSESSMENT OF XVIEW-2 SOLUTION AND OUR MODEL CALCULATED ON THE AERIAL PHOTO OF 2023 TÜRKIYE–SYRIA EARTHQUAKE

Fig. 9. Building damage distribution of Türkiye Earthquake estimated by xView-2 solution and our model. The maps were calculated on the aerial photo.
(a) Ground truth obtained through the visual interpretation of satellite imagery. (b) Building damage predicted by the xView-2 solution at the building level.
(c) and (d) Predicted results of our model using uni, and bitemporal inputs, respectively.

2) Testing on Aerial Photo: The aerial photo has a GSD of
around 8 centimeters. However, it only has postdisaster (ac-
quired on February 14, 2023) and covers a smaller area than
satellite imagery. The pre-event image of the satellite imagery
was then used as an image pair by resampling and cropping
it according to GSD and the extent of the aerial image. The
results of the transferability test on aerial imagery are depicted
in Table VIII for the summary and Fig. 9 for the damage
distribution.

The scores of aerial photo testing for our model have a similar
pattern as in satellite imagery. Although the model could not

detect the minor-damage class, it scored higher in the no-damage
and destroyed class, resulting in a higher average score. In
contrast, the xView-2 solution drops in scores for both building-
and pixel levels. Besides not detecting minor-damage class, the
scores for no-damage and destroyed dropped significantly.

As depicted in Fig. 9(b), it is noticeable that xView-2 so-
lution’s map has fewer buildings than other maps. This is
mainly because the building damage is determined by the
majority class of each pixel falling into each building poly-
gon. In a semantic segmentation task, there is any possibil-
ity that pixels are classified as background instead of any
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TABLE IX
ACCURACY ASSESSMENT OF XVIEW-2 SOLUTION AND OUR MODEL IN THREE-CLASS OF DAMAGE

damage class. In this case, when most pixels inside a build-
ing polygon are classified as “background,” the class for the
building is background. This indicates that many buildings are
unidentifiable by the models and, thus, become nonbuilding,
hence, no polygons. These experiments show that an image
classification scheme yields more stable results when applied
to images from different sources, even though they vary in
resolution.

F. Reduced Classes

The previous section shows that the models perform well in
no-damage and destroyed classes. However, the scores drop in
the middle classes. The study then experiments with combining
the middle classes (minor- and major-damage) into a single class
called damage. The classification results for the xBD testing set,
Tohoku, and Islahiye are outlined in Table IX.

As listed in Table IX, the overall performance in all test-
ing datasets has increased by merging the middle classes. For
the unitemporal of the xBD test set, the score has risen from
77.14 in the four-class to 84.99 in the three-class. No-damage
and destroyed classes remain the two chiefly classes with the
values of 92.51 and 88.55, respectively. The damage class stood
as the smallest score. However, the merged class has a higher
score than the original classes. After merging, the score is 73.92,
rising from only 61.39 and 66.12 in the original class for minor-
and major-damage classes, respectively. This pattern is similar
in bitemporal with slightly higher scores.

For the emergency scenario testing, the generalization scores
have a similar pattern to the four-class scheme. However, the
overall scores have increased in the reduced-class scheme. More-
over, unlike in the four-class, where no-damage is generally
not recognized by the xView-2 model, all classes in the three-
class are detectable. xView-2 solution generalized better than
the transformer-based model in RS-based labeling of Tohoku
Tsunami yet scored lower in Semantic-based labeling. Mean-
while, the transformer-based performed better in Islahiye for
both satellite and aerial images.

IV. DISCUSSION

In this study, we did extensive experiments in selecting a
best-performing model to predict damage from new disaster
events, illustrating the rapid damage assessment in emergency
settings. First, we computed the score on the xBD test set to find
the best model. Then, we used the model to recognize damage
in the unseen dataset. Overall, the model performs well in the
xBD test set. However, when the performance per damage class
is compared, the score is unequal. Specifically, the descending
order of the damage class in terms ofF1 is no-damage, destroyed,
major-, and minor-damage. This may be affected by several
causes, including intraclass discrepancy and sample imbalance.

The fact that the no-damage and destroyed classes are the two
chiefly classes indicates that the model performs well according
to the intraclass discrepancy. As illustrated in Fig. 4, the figures
for the destroyed and no-damage classes are robust. For the
destroyed class, the image has completely changed from a
building into ruins. For the no-damage class, images in both
pre- and postdisaster show no change. In contrast, the change is
not so distinguishable for the middle class. For minor-damage
classes, for instance, some changes are only slightly visible. This
may be the source of confusion for the model in recognizing
the damage in the middle class. Besides, this may also reflect
one of the challenges of optical RS. As the system is limited to
nadir-looking, the image may also have a limited perspective of
the objects. Any geometrical changes will be difficult to detect in
optical RS. In fact, the degree of changes in buildings’ geometry
may indicate the level of damage experienced by the buildings.
Moreover, as depicted in Fig. 3, the no-damage class occupies
most of the total samples. It could be another reason why the
no-damage class is the top score in all models and all input
scenarios. As the samples for this class are abundant, the model
has more chances to recognize the pattern for the no-damage
class.

Although achieved high scores on the xBD test split, the
scores generally dropped when the trained model was used
in new unseen datasets. A similar finding is also reported by
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Fig. 10. Confusion matrices of normalized F1 of the reduced classes. The middle (damage) class is a merged classes of minor- and major-damage. The matrices
are generated from unitemporal model. (a)–(e) refers to the different datasets used for testing where (a) xBD, (b) Tohoku using semantic labeling, (c) Tohoku under
RS-based labeling, (d) satellite imagery of Islahiye, and (e) aerial photo of Islahiye city.

some studies, including [5], [6], [35], [36], and [34]. In [60],
due to the fall in OOD score, few samples from the target
area were collected for fine-tuning the model. Yang et al. [6]
pointed out that one of the reasons for the drop is a difference in
geographical locations. The building variation in size, structure,
and surrounding environment makes it difficult to generalize in
new locations. In addition, the difference in the images used for
training (source) and testing (target) may have been the cause
of the fall in performance in the unseen datasets. As the images
were acquired in a different sensing condition, e.g., atmospheric
conditions [36], both source and target images will have different
data distributions and may suffer from domain shifts. Additional
techniques, such as domain adaption, which allows the source
and target domain to have invariant features, can be a direction
for future studies.

To evaluate the results further, confusion matrices are
provided in Fig. 10. The figure provides the normalized F1

of our model testing on different datasets computed using the
unitemporal model. The matrix for the xBD test set shows that
most samples are classified correctly, indicating that the model
learned relevant features from the data. This is understandable
since the model learned from the same data subset. For the
OOD testing, however, the matrices show undesirable results.
For Tohoku Tsunami, samples from a particular class tend to be
misclassified as their adjacent classes. The pattern is more visible
in semantic-based labeling. While for the RS-based labeling, the
model tends to be classified as a no-damage class, especially
from the middle class.

For the Türkiye earthquake, the model has a higher tendency
to predict no-damage classes. This pattern is true for both
satellite and aerial photo images. The fact that the model has
a tendency to predict no-damage in OOD is probably caused by
the sample imbalance. As shown in Fig. 3, the no-damage class
occupies the majority of samples. This makes the model likely
to predict a no-damage class, as the model learned more about
no-damage features.

Merging middle classes (minor- and major-damage classes)
aims to improve the middle classes’ performance. Although
insignificant, this approach can increase the overall scores, espe-
cially the merged classes. The increase is also found in both the
Tohoku and Islahiye datasets. In [16], the multiclass is compared
with the binary class. Their experiments show that reducing
class means reducing the complexity of the task and, hence,

can improve the results when the task is simpler. Similarly,
Yang et al. [6] found that multiclass acquires lower performance
than binary models. In [17], utilizing only unitemporal images
acquires high accuracy in binary mapping.

A similar approach as ours has been done by [40]. xBD
dataset was used as weight initialization. Although the xBD
dataset has four damage categories, they only use binary classes
(damaged/undamaged) for their final output. This indicates that
utilizing optical RS images and current DL models still works
better in smaller damage classes, especially for OOD generaliza-
tion purposes. To improve the generalization in middle classes,
a multimodal approach will be required, for example, by taking
advantage of SAR images. With their side-looking ability, SAR
systems can add more perspective and stronger characteristics
to each category, which eventually can help models identify
different classes.

As for the generalization test, we use the 2011 Tohoku Dataset
as one of the studies. As the Tohoku Dataset and xBD vary in
terms of total damage class and damage determination, we ex-
periment with two label mapping techniques: based on semantic
meaning and RS-based meaning. The increase in the score due
to the change in labeling approaches shows that the model is
sensitive to the damage definitions. The score gets higher when
the samples are mapped based on visual similarity rather than
semantic definition. Specifically, MLIT determined the damage
level by looking at the wall condition, which is not visible
from the roof. Meanwhile, the model only decides the damage
states from the top. In this case, the model may determine such
buildings as no damage since no ruins are visible from the top.
Owing to this factor, a higher score was achieved when the class
definition was mapped according to the visual similarity between
each class. In other words, visual-based matching gains higher
performance since the ground truth data is defined in a similar
method as the model was trained on.

This experiment shows that label matching is an important
factor to determine, especially when the training and testing are
of different sources. Specifically, the class matching should be
conducted as close as possible to the scheme used for training
processes. Since the xBD labels (and most RS-based detection)
are obtained from visual interpretation, class matching would
preferably use the same approach. This also emphasizes the
limitation of RS methods, where its ability is mostly limited
to roof appearance.



WIGUNA et al.: EVALUATION OF DEEP LEARNING MODELS FOR BUILDING DAMAGE MAPPING 5665

V. CONCLUSION

This study replicates building damage identification in an
emergency response context. In this setting, ground truth data
is unavailable. Therefore, we rely on historical data to predict
building damage from an event unseen during the training.
We utilized a large disaster damage dataset compiled from
multiple major-disaster events around the globe. Extensive ex-
periments have been done involving multiple loss functions
and CNN-based models, including transformer-based models.
Besides, we also compared two inputs based on data availabil-
ity, namely unitemporal and bitemporal where we designed a
Siamese model. The best-performing model was then used to
predict building damage caused by the 2011 Tohoku Tsunami
and the 2023 Türkiye–Syria earthquake. We also compared the
best model to the state-of-the-art building damage recognition
(xView-2 Challenge solution).

Calculated on the xBD test set, the experiments show that
swin transformer with CE-Focal Loss is the best combination.
The model performs best in no-damage and destroyed classes.
However, the model scores lower in the middle classes (minor-
and major-damage). When the trained model is used to predict
the damage of two different disasters, the model can maintain its
high performance in no-damage and destroyed classes. However,
the scores dropped in both minor- and major-damage classes,
making the average scores fall. This pattern is found in both
input scenarios, indicating that unitemporal input can perform
satisfyingly in case of data scarcity. However, bitemporal input
shows a higher score in almost all cases. Therefore, when data
are available, utilizing predisaster images is preferred.

In comparison with xView-2 solution, since there is still a de-
crease in performance, there is comparably stable generalization.
While the transformer-based model maintains its performance
in satellite and aerial images, the xView-2 model’s score drops in
predicting aerial imagery damage. Moreover, the xView-2-based
model generally can only detect no-damage, major-damage, and
destroyed classes. In contrast, our model, especially bitemporal
inputs, can detect all damage classes, including minor-damage
ones.

To summarize, our study shows that current DL models
perform inferior in predicting damage to buildings on a new
event. This may be accounted to the geographical difference and
domain shift between the source (where the model is trained on)
and target domains (unseen disaster events). In future research,
we will extend our study by implementing domain adaptation
techniques to reduce the domain gap between the source and
target domains and involving SAR imagery for a multimodal
approach.
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