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Abstract—Excellent performance has been demonstrated by
convolutional neural network (CNN) in salient object detection
for optical remote sensing images (ORSI-SOD). However, the lim-
itations of CNN’s feature extraction using sliding window ap-
proach hinder the capture of global representations. Therefore,
an end-to-end detection model, known as adaptive dual-stream
sparse transformer network (ADSTNet), has been proposed for
ORSI-SOD and is assisted by the vision transformer. It effectively
addresses the compensation issue of global and local information
in ORSI-SOD. In particular, an adaptive interaction encoder has
been devised, amalgamating the multiscale sparse transformer
and the pyramid atrous attention to constitute the adaptive dual-
stream sparse encoder. This encoder collaborates with the CNN
to enhance long-range dependency modeling and preserve global
information more effectively base on local features. In addition, a
directional feature reconfiguration is constructed to extract texture
details from multiple directional dimensions. Finally, we propose
the adaptive feature cascade decoder that synthesizes content infor-
mation from the foreground, edges, and background to enhance the
representational capacity of the image. Furthermore, a structural
loss function, known as the weight compensation mechanism, is
introduced to balance the performance of boundary and salmap
segmentation losses. The proposed model has been demonstrated
to outperform 26 state-of-the-art ORSI-SOD methods across eight
evaluation metrics on two standard datasets, as evidenced by
extensive experiments. Furthermore, to verify its robustness, the
generalization performance of the model on the latest challenging
ORSI-4199 dataset is reported.

Index Terms—Adaptive, boundary detection operator, optical
remote sensing images (ORSIs), salient object detection (SOD),
sparse transformer.

I. INTRODUCTION

SALIENT object detection (SOD) [1], [2], inspired by human
visual attention mechanisms, aims to identify the most

distinctive objects and determine their locations in complex
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images. Widely applied in image and video processing, SOD
finds diverse applications in areas such as camouflaged detec-
tion [3], [4], human–computer interaction [5], [6], [7], [8],
video surveillance [9], [10], [11], and medical imaging [12],
[13], [14], [15]. Our focus is on salient object detection for
optical remote sensing images (ORSI-SOD) [16], [17], [18],
[19], distinguishing it from classical salient object detection
in natural scene images (NSI-SOD) [20], [21]. ORSI-SOD, a
rapidly growing subfield, has proven successful in ship detec-
tion [22], [23], airport detection [24], [25], [26], instance, and
semantic segmentation [27], [28]. Compared with prominent
semantic segmentation [29], [30], [31], [32], [33], [34], [35]
in computer vision, ORSI-SOD shares some resemblances but
distinguishes itself with unique characteristics. Concerning task
objectives, both contribute to segmentation; however, semantic
segmentation entails pixel-level delineation of the entire image,
while optical remote sensing image saliency models concentrate
on isolating a specific object or region within remote sensing
images. The objective is to accentuate the most salient object
against the surrounding backdrop, rather than segmenting the en-
tire image comprehensively. In recent years, numerous saliency
detection methods have emerged, garnering attention and falling
into two categories: 1) traditional methods; and 2) convolutional
neural network-based (CNN-based) methods.

The emergence of traditional methods and CNN has stim-
ulated the development of ORSI-SOD [36], [37], [38]. Tradi-
tional methods for SOD [26], [39], [40] often rely on low-level
attributes such as color information content [41] and saliency
feature analysis [42]. However, they fail to generate accurate
information representations for some deep and low-level fea-
tures. In contrast, CNN can automatically learn features through
large-scale data, and exhibiting stronger adaptability to com-
plex scenes and noise. MCCNet [43] utilizes multiple content
feature information for complementarity, and ACCoNet [44]
employs multiscale information interaction. CNN is more adept
at extracting local region features. As shown in Fig. 1, the
local attention of a standard CNN structure tends to focus on
neighboring features around a key point, making it difficult
to capture global representations. In response to this issue, a
number of CNN-based methods [16], [45], [46], [47], [49] have
been proposed to capture a wide receptive field by utilizing
deeper network architectures. They also explore global cues
through different techniques such as global pooling or nonlo-
cal modules. However, the adoption of deeper network layers
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Fig. 1. Visualization of the local attention of CNN, global attention of Trans-
former and hybrid attention of the proposed ADSTNet in the feature space. It
could be get that the hybrid could capture the more comprehensive and accurate
information by compare above attention. Best viewed in color.

unavoidably incurs considerable computational overhead, while
maintaining the standard structure of deep neural networks can
pose challenges in achieving long-range dependencies.

Therefore, we believe that a framework capable of global
information stimulated the development of ORSI-SOD is also
possible. VST [50] was a pioneer in introducing the trans-
former to the SOD, replacing conventional CNN models with
self-attention mechanisms to explore global information. Sub-
sequently, ASTT [51] designed the adaptive spatial tokeniza-
tion module to mitigate the impact of optical image features
on SOD and also employed the transformer to explore global
information. These works have demonstrated the necessity of
replacing CNN with transformer architectures to explore global
information in the ORSI-SOD. Moreover, various transformer
variants have been developed by researchers for other domains
of SOD, resulting in substantial advances in RGB SOD [52],
RGB-D/T SOD [53], [54], and Video SOD (VSOD) [55]. How-
ever, transformers cannot extract local information as effectively
as CNN in Fig. 1. This is because the lack of CNN’s inductive
biases results in less effective extraction of local information
compared to CNN, leading to a degradation in performance.

Inspired by CNN- and Transformer-based approaches in
SOD, it is worthwhile to explore the fusion of these two methods
to achieve the maximum representation of SOD techniques.
However, optical images captured from high altitudes are typ-
ically characterized by small and varying scales, presenting
significant limitations when directly applying NSI-SOD meth-
ods to ORSI-SOD, resulting in unsatisfactory performance. In
addition, incorporating boundary information as supervision can
compel the network to learn more accurate pixel-level edge
information, which is crucial in ORSI-SOD. Currently, there
is no comprehensive CNN with transformer fusion architecture
suitable for ORSI-SOD while incorporating boundary supervi-
sion.

In this regard, we propose the adaptive dual-stream sparse
transformer network (ADSTNet), which effectively combines
features at different levels from both local and global per-
spectives and achieves precise detection and localization of
ORSI-SOD through boundary-guided assistance. The encoding
stage employs a sparse framework that balancing the encoding of
local region information and global object relationships. Specif-
ically, one branch of the encode extracts spatial features using
CNN are combined with global dependencies established by
the adaptive dual-stream sparse encode (ADSE), interacting to

alleviate discrepancies. Features at different levels are adaptively
captured by this encoder, thereby enhancing the interpretability
of the model results. To acquire more accurate representations
of salient object boundary features in ORSIs, we introduce a
directional feature reconfiguration (DFR) as a plug-and-play
component, enhancing boundary information. It is noteworthy
that, to the best of our knowledge, this is the initial attempt to
apply dedicated boundary detection operators to the ORSI-SOD
task.

Furthermore, we propose adaptive feature cascade decoder
(AFCD) to guide the decoder learning process using boundary
masks as explicit supervision. We construct a comprehensive
loss function that balances boundary loss and saliency map loss
through a weight compensation mechanism, further improving
the accuracy and robustness of ORSI-SOD. In this manner, the
ADSTNet network achieves the best results compared to 26
state-of-the-art (SOTA) models, achieving optimal performance
in terms of S-measure, adaptive F-measure, adaptive E-measure,
and other evaluation metrics.

Our contributions can be summarized as follows.
1) We propose an encoder–decoder structure, namely AD-

STNet, which combines the strengths of CNN and Trans-
former to efficiently complement local and global in-
formation. With the support of boundary information, it
achieves better feature extraction at different levels and
enhances representation learning. In addition, we guide the
model’s loss through a weight compensation mechanism
for implicit supervised feature learning, thus improving
the model’s robustness.

2) We introduce the ADSE, which enhances the global per-
ception of local features and local details of global rep-
resentations in the adaptive interaction encoding. We also
propose the plug-and-play DFR, which strengthens the
representation capability of boundary information using a
dedicated boundary detection operator.

3) We design an AFCD that explicitly enhances the encoding
feature representation through complementary learning
from multiple contents. Intraclass and interclass consis-
tency within the feature space are effectively captured
by it.

The rest of this article is organized as follows. Section II offers
an overview of related research, while Section III provides a
detailed description of the proposed model. Section IV reports on
the comprehensive evaluation of our model, including ablation
analyses and an analysis of failure cases. Finally, Section VI
concludes this article.

II. RELATED WORK

In this section, we begin by summarizing the work on ORSI-
SOD. Subsequently, a concise overview of the advancements in
vision transformer and the utilization of transformers in SOD is
provided. Lastly, we elucidate the boundary detection operators
employed in image processing.

A. Salient Object Detection for ORSI

Recently, extensive research has been conducted by scholars
to address the various challenges faced by the emerging task of
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ORSI-SOD within the SOD community. Among these efforts,
the CNN-based encoder–decoder structures have gained signif-
icant popularity [48], [57], [58], [59]. Hou et al. [60] introduced
deep supervision into SOD, implicitly enhancing the multiscale
feature representation of salient objects. The implementation
of this approach significantly enhances detection accuracy and
has had a profound impact on subsequent CNN-based methods.
Li et al. [61] extracted feature information from images at three
different resolutions to optimize the detection drawbacks caused
by varying object scales. Bai et al. [62] proposed a global–local–
global context-aware network to obtain the final comprehensive
representation of salient objects in a spatially and semantically
global manner. Furthermore, cross-scale interaction is achieved
through an enlarged receptive field in the network proposed
by Zheng et al. in [37], which utilizes dilated convolutions
and attention mechanisms to capture potential fine-grained
information.

In addition, some works have drawn inspiration from NSI-
SOD and proposed strategies to incorporate contextual and
boundary information to adapt to ORSI-SOD features, alle-
viating challenges in ORSI. For instance, the fusion of con-
textual features enhances the encoded representations [44],
[63], exploring the contributions of boundaries, foreground, and
background to global information through the complementary
integration of multiple content information [43], and utilizing
additional edge labels to improve the model’s boundary per-
ception capability [47], [64], [65]. Despite the foundation laid
by CNN-based ORSI-SOD models in improving performance,
their performance is limited due to the constrained long-range
semantic contextual relationships of CNN, as convolutions have
a limited receptive field. To address this limitation, we propose
a sparse transformer-assisted dual-stream encoder that enhances
the global perception of local features and captures local details
of global representation, thus compensating for the deficiency
in capturing global information by CNN.

B. Vision Transformer

While CNN [66] have demonstrated excellent performance in
visual tasks [67], [68], [69], [70], they are still constrained by the
limitation of employing a strategy involving the gradual expan-
sion of the receptive field through the use of local window move-
ments, hindering effective modeling of long-distance relation-
ships [72], [73], [74]. In a parallel field such as natural language
processing, another popular technique called transformer has
emerged. Transformer leverages its self-attention mechanism to
capture extensive global relationships and has achieved notable
success. Recognizing the significance of global information
in visual tasks, researchers have introduced transformers into
image processing to overcome the limitations of CNNs, thereby
mitigating the risks associated with compromising feature reso-
lution and representational capacity. The effective integration of
both aspects can significantly address the challenges associated
with a singular focus. Some works [75], [76], [77] proposed to
linearly combine CNN and Transformer to achieve the combi-
nation of local mechanism and dynamic attention. And [78],
[79] proposed a dual-stream network based on CNN and

Transformer to fully explore the representation ability of local
and global pattern features in image classification. In addi-
tion, the authors in [80] constructed a dual-transformer with two
parallel pathways, integrating pixel pathways and semantic path-
ways to enhance self-attention. In contrast, the authors in [72]
built an interactive structure to achieve information exchange
and joint feature learning between CNN and Transformer, fully
learning the relationships between different positions.

The accomplishments of vision transformers in NSI-SOD
have also been showcased for ORSI-SOD. For instance, a pi-
oneering study by Liu et al. [50] presented a unified RGB and
RGB-D SOD model based on a vision transformer achieving
saliency and boundary detection by introducing task-specific
labels. Wang et al. [52] proposed a transformer architecture
consisting of an FCN decoder and three additional modules to
capture salient local and global information in RGB images. The
interplay of information from different modalities facilitates the
learning of deeper information representations by the network
model. To fully exploit the essence of different modalities, Liu
et al. [53] introduced a dual-stream Swin Transformer equipped
with spatial alignment and channel calibration modules, ef-
fectively integrating multimodal information and aggregating
intralayer features. A transformer-based model was proposed
by Zhang et al. [81] to capture implicit details and create the
challenging RGBD COSAL1K dataset. This model incorpo-
rates two class labels to extract intrasaliency and intersaliency
information, respectively. Moreover, a cross-reference trans-
former model that integrates appearance and motion cues from
VSOD was presented by Huang et al. [55]. Furthermore, Zhang
et al. [82] presented a transformer-guided dual-stream structure
that enhances information features through cascading. However,
these methods are limited by a large number of parameters, mak-
ing optimization challenging. In this article, we suggest utilizing
a sparse transformer-assisted CNN to acquire global information
while reducing noise caused by irrelevant information, thereby
enhancing foreground-background discrimination.

C. Operators in Image Processing

In the field of digital image processing, operators play a
crucial role as fundamental components. Among them, boundary
detection operators, as one of the most central elements, have
garnered widespread attention and research. Two types of com-
monly used edge detection operators exist, namely: 1) first-order
derivative operators; and 2) second-order derivative operators.
The first-order derivative operators include Roberts, Prewitt,
and Sobel, while the second-order derivative operators include
Laplacian [83]. In recent years, boundary detection operators
have regained importance in pixel-level computer vision tasks,
such as camouflage object detection [3], [84], manipulation
detection [85], and MISEG [12], gaining wide applications and
research interests. Within this article, we utilize edge detection
operators to construct the AFCD as an explicit mask extractor.
The purpose of this is to guide the implicit feature learning
process in ORSI-SOD. Our research is the first to apply boundary
detection operators in ORSI-SOD, synthesizing high-quality
information predictions from the feature maps transmitted by the
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Fig. 2. Overall architecture of the proposed ADSTNet, including the ADSE, DFR, AFCD. Meanwhile, we guide the model’s loss through a weight compensation
mechanism for implicit supervised feature learning, thus improving the model’s robustness.

backbone encoder, resulting in satisfactory results. This work not
only expands the application scope of edge detection operators,
but also provides new insights and approaches for research in
the field of ORSI-SOD.

III. PROPOSED METHOD

In the present section, the proposed ADSTNet network is
introduced. Subsequently, each component is described in order,
as presented in Sections III-B to III-D. Finally, the loss function,
which balances the weighted compensation mechanism, is elu-
cidated.

A. Overview of the Proposed Architecture

The proposed ADSTNet follows an encoder–decoder struc-
ture, and its main framework is illustrated in Fig. 2, consisting
of three parts: adaptive interaction encoder, DFR, and cascade
decoder. Firstly, the input image I ∈ R

3×256×256 is fed into the
stem to obtain initial fine features fstem ∈ R

64×128×128. Then,
adaptive interaction encoder is employed to capture more ex-
tensive local and global information. Here, adaptive interaction
encoder comprises two components: the well-known Res2Net
serves as the CNN encoder, extracting multiscale and multilevel
local features fle, while the ADSE composed of pyramid atrous
attention (PAA) and multiscale sparse transformer (MST) is
designed to extract more comprehensive global information fge.
Specifically, Res2Net is divided into four stages, sequentially
extracting information denoted as f tce ∈ Rht×wt×ct , where ht
being 256/2t+1, wt being 256/2t+1, ct = {256, 512, 1024, 2048},
t is the stage index and belongs to {1, 2, 3, 4}. Meanwhile, the
features fADSE generated by ADSE are also outputted for the pri-
mary saliency map ADSE with reverse supervision, forcing the
learning of more accurate information and laying the foundation

for subsequent feature refinement. The multilevel integration
(MLI) eliminates semantic discrepancies between fle and fge
interactively, greatly enhancing the global perception ability of
local features and the local details of global representations, de-
livering rich high-level semantic information fe to the AFCD for
feature parsing. Due to the multiscale information captured by
encoder, each detection head includes a 1×1 convolutional layer
and upsampling to restore the resolution and obtain saliency
maps. In addition, to enhance the auxiliary function of bound-
aries, we employ a mixed loss function assisted by a weighted
compensation mechanism to implicitly assign clear boundaries
to the saliency maps, ensuring plausible acceptance. We also
show the inference details based on the proposed ADSTNet in
Algorithm 1. Next, we will provide detailed explanations for
each component.

B. Adaptive Dual-Stream Sparse Encoder

To address the dilemma of CNN getting trapped in global
information extraction, we propose an ADSE that complements
global and local information, as shown in Fig. 3. Specifically, the
features from the stem are concurrently fed into two branches,
each compensating for the other’s deficiencies and progressively
enhancing the missing information, thereby achieving the purifi-
cation of high-quality and effective features.

To achieve a balance between computational efficiency and
global information, we construct a new mechanism, MST, for
capturing global information in ADSE. Similar to ViT, the
encoding layer consists of a multihead attention layer and a
feed-forward network (FFN). However, the multihead attention
enriches the object information by transforming the received
Q, K, and V information through dimensionality changes. The
transformer information is then fed into the attention module to
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Fig. 3. Structure of ADSE, including the PAA and MST.

compute correlation scores. Finally, all the results are summed
and enhanced using convolution, batch normalization, and ReLU
operations to improve the feature extraction capability of remote
sensing images and enhance information accuracy. Specifically,
to maximize pixel information, we partition the image fstem into
s× s patches, where s takes values of 4, 8, 16, and 32. As
a result, the original image is resized to a size of HW

s2 with
s× s and then flattened into a vector vi ∈ R

s2×c. Subsequently,
a linear projection is utilized to transform each patch vector into
the embedding ei ∈ R

c that encodes the patch representation.
Subsequently, the patches and positional encodings are fed into
the encoder to obtain the output.

Furthermore, we introduce a sparse attention mechanism to
reduce noise and additional computational overhead caused by
irrelevant information. The sparse attention also aims to improve
foreground-background discrimination and alleviate blurriness
in the foreground edge regions, addressing the issue of blurriness
in the foreground edge regions caused by the naive ViT’s atten-
tion computation for all pixels. Inspired by [86], we conduct
a sparse multihead attention (SMAT) and apply self-attention
across channels instead of spatial dimensions to reduce time and
memory complexity. We compute the similarity between pairs of
reshaped queries and keys, considering only the k most similar
pixel values, which leads to a more concentrated foreground and
more discriminative foreground edge regions. This can also find
an approximate match for a particular region or object in the
image. We then normalize the k largest pixels in each row of the
similarity matrix using softmax, setting other elements to zero,
as derived below

SparseAtt(Q,K, V ) = Softmax

(
Tk

(
QKT

√
dk

))
V (1)

where Tk(·) is the learnable top-k selection operator. Finally,
the similarity matrix is multiplied with the values matrix to
obtain the final result. Here, k is an adjustable parameter that
dynamically controls the level of sparsity. It is obtained through
a weighted average of certain fractions, and we set it to [1/2,
3/4]. This dynamic selection enables attention to transition from
dense to sparse, as derived below

[Tk(P )]i,j =

{
Pi,j , Pi,j ∈ top− k(rowj)
0, other points.

(2)

The prepared information is fed into residual FFN (RFFN) to
complete the composition, achieving feature enhancement and
extraction through linear projection. This reduces information
loss in the sequence and effectively enhances semantic modeling
capability. The aforementioned procedure can be delineated as
follows:

fMST = RFFN (SMAT (Norm (Linear (fstem)))) (3)

where fMST is the output of the MST, SMAT(·) is the SMAT,
and RFFN(·) is the RFFN.

To assist in the preliminary extraction of multilevel infor-
mation by the Transformer, we design a PAA. While trans-
formers may discount local information extraction, we believe
that incorporating additional information supervision can guide
the learning process. On the other hand, although conventional
convolutions extract more detailed information, they come at
the cost of enormous computational complexity, contradicting
our initial goal of achieving a balance between accuracy and
real-time performance. Therefore, in this study, we leverage the
power of pyramid hollow convolutions with four different recep-
tive field sizes (r = 1, 3, 5, 7). To further enhance performance,
we introduce a 1×1 convolutional layer for feature smoothing.
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Algorithm 1: Inference Details of Proposed ADSTNet.

Input: Optical RSI I ∈ R
3×256×256, Mutil-Scale Patches

mp (32, 16, 8, 4) for MST
Output: Salmap S ∈ R

1×256×256

1: //Step1: Information coding in Adaptive Interaction
Encoder

2: fstem ⇐ Convς
3: fle = f4ce, f

t
ce ⇐ FCE(fstem), t = 1 to 4

4: fPAA ⇐ FPAA(fstem)
5: while H=W in mp do
6: while k in (1/2, 2/3, 3/4) do
7: fMST ⇐ FRFFN (FSMST (fstem, attn(k)))
8: end while
9: fMST =

∑4
i=1 fMST

10: end while
11: fge = fADSE ⇐ fPAA + fMST

12: fe ⇐ FMLI(fle, fge)
13: //Step2: The boundary Extraction base-on stage 1 and

stage 4 in CNN Encoder
14: fDFR = FDFR(f

1
ce, f

4
ce)

15: //Step3: Complementary fusion of multiple contents
in AFCD

16: if t=4 then
17: //f4AFCD ⇐ FAFCD(f4ce, fDFR, fe)
18: else
19: //f tAFCD ⇐ FAFCD(f tce, fDFR, f

t+1
AFCD)

20: end if
21: Output: S ⇐ f1AFCD

22: Return S

Then, we refine the features by summing up all the results and
eliminating noise in the output. Finally, we combine the obtained
features with the original information to facilitate information
propagation. This process can be expressed as follows:

fPAA = conv1×1(concat(fstem, convr=1,

convr=3, convr=5, convr=7)) + fstem (4)

where fPAA is the output of the PAA, conv1×1 is a 1×1 convo-
lutional layer, and convr=1 is a convolution with the receptive
field of 1.

C. Directional Feature Reconfiguration

To enhance the representation of boundary information, we
propose a DFR, as illustrated in Fig. 4. It has been observed
that salient images in remote sensing exhibit topological struc-
tures where objects such as buildings, ships, and airplanes are
often arranged in a cluttered manner, deviating from horizontal
or vertical orientations. Therefore, in addition to conventional
horizontal and vertical boundary detection computations, we
consider inclined boundaries to have significant influence on
salient objects. Drawing inspiration from the utilization of the
Sobel operator in traditional image processing, we design a
dedicated gradient-based boundary detection operator to extract
boundary information in four directions: 0◦, 45◦, 90◦, and 135◦.

Fig. 4. Illustration of the DFR.

Specifically, we construct four convolution kernels of size 3 × 3
with fixed parameters and apply convolution operations with a
stride of 1. These aforementioned four convolutions are defined
as follows:

Kx =

⎡
⎣1 0 −1
2 0 −2
1 0 −1

⎤
⎦ ,Km =

⎡
⎣ 0 1 2
−1 0 1
−2 −1 0

⎤
⎦

Ky =

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ ,Kn =

⎡
⎣2 1 0
1 0 −1
0 −1 −2

⎤
⎦ (5)

where, Kx, Km, Ky , and Kn represent specialized operators
for feature extraction along the horizontal, inclined at 45◦,
vertical, and inclined at 135◦ directions, respectively. The DFR
is employed to obtain the boundary gradient maps by applying it
to the output features of stage 1 and stage 4. The output of stage
1 exhibits finer features compared to the stem’s output, devoid of
rough information interference, while the features from stage 4
encompass rich semantic information of the overall image [64].
Subsequently, we apply four basic convolution groups to the
input features to obtain the gradient mapGt

xymn
(t= 1, 4). Then,

the features are smoothed using a 1 × 1 convolution and normal-
ized through the sigmoid function to attenuate noise. Finally, the
boundary-enhanced feature map is obtained by integrating the
normalized features with the input features. The aforementioned
procedure can be delineated as follows:

Gt
xymn

=
∑
μ

f tce �Kμ, μ = x, y,m, n; t = 1, 4 (6)

f tce
′
= f tce � σ

(
conv1×1(G

t
xymn

)
)

(7)

where � denotes element-wise multiplication, σ represents the
sigmoid operation. TheGt

xymn
is obtained by applying a special-

ized boundary detection operator on f tce, whereG
x
,G

y
,G

m
, and

G
n

are concatenated along the channel dimension. The boundary
information obtained from f tce is represented by the variable f tce

′.
In particular, our initial step involves the application of a 1× 1
convolution coupled with bilinear upsampling to the product
of stage 4, thereby facilitating feature alignment commensurate
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Fig. 5. Architecture of AFCD.

with the dimensions of stage 1. Subsequently, we utilize dis-
tinct 1×1 convolutions to ascertain uniformity in the channel
dimensions of the two feature maps under consideration. This
is succeeded by the implementation of a pair of convolution
layers to derive the ultimate feature map. The aforementioned
procedure can be delineated as follows:

fDFR = σ

[
t=1,4∑

t

ψ
(
ψ
(
Conv1×1

(
f tce

′)))]
(8)

where the variable ψ represents a convolution group consisting
of 3 × 3 Conv, BatchNorm, and ReLU. fDFR denotes the output
of DFR. To mitigate the influence of internal edge noise, we
utilize the boundary information generated from the ground
truth (GT) saliency map as a supervisory signal, disregarding
the interference from internal boundary information. In addition,
we employ a weight compensation mechanism to enhance the
supervision on boundary information, better serving the com-
pensation of information in the decoder.

D. Adaptive Feature Cascade Decoder

The boundary features obtained from DFR are utilized as a
valuable source of prior knowledge to boost the image repre-
sentation capability of the encoder. We propose the AFCD as
illustrated in Fig. 5. The integration of boundary features enables
AFCD to employ a cascaded structure that enhances the repre-
sentation of both foreground and background features. This, in
turn, facilitates the complementary fusion of multiple contents
within the image. Specifically, AFCD consists of three inputs:
1) the prior boundary knowledge extracted by DFR; 2) the mul-
tiscale features from the encoder; and 3) the features from the
upper-level AFCD. Within AFCD, three separate pathways are
implemented, each dedicated to strengthening the feature repre-
sentation in edges, foreground, and background. With regard to
the boundary information, a fusion of the prior knowledge and
encoder features is performed to acquire boundary-enhanced in-
formation. This process can be succinctly expressed as follows:

fedge = fDFR × f tce (9)

where fedge represents the output from the fusion boundary and
CNN coded information. For foreground information, fedge is
aligned and fused with features fAFCD from the previous AFCD
to strengthen the representation. Specifically, fAFCD is adjusted
in scale using bilinear interpolation, followed by SA [87] and
CA [70] attention mechanisms and three convolutional layers
for cascaded fusion, enabling complementary fusion of multiple
contents and enhancing information representation. Simultane-
ously, the output fAFCD from the previous decoder is reshaped
and passed through a sigmoid function to obtain background
information. Subsequently, three convolutional layers with batch
normalization and ReLU activation are applied to obtain opti-
mized features. This process can be described as follows:

ffg = ϑ(ϑ(ϑ(CA(SA(fAFCD))))) (10)

fbg = − 1 ∗ sigmoid(x) + 1 (11)

where the terms spatial attention and channel attention are
represented by the acronyms SA and CA, respectively.ϑ denoted
the 3 × 3 Conv, and ffg and fbg denote the feature of foreground
and background, respectively.

Finally, the aforementioned results are summed together to
obtain the final output fAFCD, which includes foreground, back-
ground, edges, and features from the previous decoder.

E. Loss Function

Given that ADSTNet is a multitask model, addressing both
interior and boundary segmentation, we introduce a comprehen-
sive loss function to simultaneously optimize these two tasks.
Moreover, a weight compensation mechanism is incorporated
to facilitate effective feature learning. The definition of interior
segmentation loss involves a weighting of both the cross-entropy
loss (LCE) and the mean intersection-over-union loss (LmIoU).
This combination is expressed mathematically as follows:

LCE = − 1

N

N∑
i=1

(
G̃i log(S̃i) + (1− G̃i) log(1− S̃i)

)
(12)

LmIoU = 1−
∑N

i=1 (G̃i ∗ S̃i)∑N
i=1 (G̃i + S̃i − G̃i ∗ S̃i)

(13)

where G̃i and S̃i denote the GT and the predicted label for
the ith pixel in image, respectively, and the total number of
pixels in the image is denoted by N. Due to class imbalance be-
tween foreground and background pixels in boundary detection,
the training effectiveness of our model on highly imbalanced
datasets is enhanced by employing the Dice Loss. The Dice
Loss (LDice) is expressed as follows:

LDice = 1− 2
∑N

i=1 (G̃i ∗ S̃i)∑N
i=1 (G̃i + S̃i)

· (14)

In summary, our designed overall loss consists of the salmap
loss (Lsal) and the boundary loss (Lbnd). It is crucial to note that,
with respect to the boundary detection loss, only the predictions
generated by the DFR, which reconstructs directional features,
are taken into account. On the other hand, for the primary image
salmap loss, a deep supervision strategy is adopted to obtain
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predictions from decoder features at different levels. As a result,
the total loss (L) is expressed as follows:

L = Lsal + Lbnd =

D∑
i

(LCE + LmIoU) + γLDice (15)

where the weight factor γ is introduced, with γ value of three
chosen to enhance the auxiliary role of the boundary and achieve
dynamic balance, and the D is the number of AFCDs. A series of
ablation experiments were carried out to investigate the optimal
value of parameter γ.

IV. EXPERIMENTS

In this section, extensive experiments were conducted to eval-
uate the proposed ADSTNet. The datasets, evaluation criteria,
and experimental settings are described in Section IV-A. A
comprehensive comparison between our proposed model and all
competing methods is presented in Section IV-B. Section IV-C
provides ablation studies and related discussions. Lastly, an
analysis of failure cases is performed.

A. Datasets and Implementation Details

1) Datasets: Our model was comprehensively evaluated on
three datasets, namely ORSSD [16], EORSSD [17], and ORSI-
4199 [65], to demonstrate its superiority. These datasets were
annotated and provided convenience during model training.
ORSSD is the first publicly available dataset designed for in-
vestigating saliency detection performance, consisting of 600
training and 200 testing images. The dataset encompasses a
wide variety of object scales, types, and backgrounds. EORSSD
serves as a supplement to ORSSD, enhancing the diversity and
complexity of the dataset with 1400 training and 600 testing
images. ORSI-4199 is a more challenging dataset compared
to ORSSD and EORSSD, comprising 2000 training and 2199
testing images. To better train the model, we applied data aug-
mentation techniques inspired by methods such as [44], [88].
Specifically, we employed methods like mirror flipping and
rotations at 90◦, 180◦, 270◦, resulting in an augmented dataset
of 4200, 9800, and 14000 images for ORSSD, EORSSD, and
ORSI-4199, respectively.

2) Evaluation Criteria: To objectively evaluate the perfor-
mance of all models, we employed eight quantitative analysis
metrics, namely S-measure (Sα, α = 0.5) [89], max F-measure
(Fmax

β , β2 to 0.3) [90], mean F-measure (Fmean
β ), adaptive F-

measure (F adp
β ), max E-measure (Emax

ξ ) [91], mean E-measure

(Emean
ξ ), adaptive E-measure (Eadp

ξ ), and MAE (M). Among
these metrics, a smaller M value is preferred, while larger
values are desirable for the other seven metrics. In addition, we
utilized two qualitative indicators, namely the F-measure curve
and the precision-recall (PR) curve, to visually illustrate the
variations among the models through the tool [92]. A model with
a curve approaching 1 in the F-measure curve indicates superior
performance, and likewise, a model’s curve approaching (1, 1)
in the PR curve represents optimal performance.

3) Implementation Details: To maximize the performance of
our model, we utilized Res2Net [56] as the initial weight for the

backbone and resized each image to 256×256 as input. The eval-
uation of our model was conducted on a NVIDIA TITAN RTX
GPU. We employed the Adam [93] optimizer with a learning
rate of 1e-4 and a batch size of 8 on PyTorch [94]. The model
was trained for 50 epochs, and the learning rate was reduced
to 0.1 every 30 epochs. To prevent exploding gradients during
training, we implemented gradient clipping with a maximum
norm of 0.5 using the clip gradient function of the optimizer.
The performance of the resultant models in terms of saliency
was subsequently assessed using test sets in the ORSSD [17],
EORSSD [16], and ORSI-4199 [65].

B. Comparison With SOTA Methods

In this study, we propose ADSTNet and compare it with 26
SOTA networks on the EORSSD and ORSSD datasets to demon-
strate its superiority. The evaluation involves both qualitative
and quantitative analyses. These methods can be classified into
five traditional NSI-SOD (RRWR [95], HDCT [96], DSG [97],
RCRR [98], VST [50]), seven CNN-based NSI-SOD (DSS [60],
RADF [99], EGNet [100], PoolNet [101], GateNet [102],
SUCA [103], PA-KRN [104]), three traditional ORSI-SOD
(VOS [26], CMC [40], SMFF [39]), and eleven CNN-based
ORSI-SOD (LVNet [16], DAFNet [17], EMFINet [64], ERP-
Net [47], ACCoNet [44], MSCNet [105], SARNet [106], Cor-
rNet [48], FSMINet [107], MJRBM [65], ASTT [51]). Fur-
thermore, among the aforementioned comparative models, we
select eleven representative models for further evaluation on
the ORSI-4199 dataset to assess their robust generalization. To
ensure fair competition, all methods adopt the same training
and testing sample settings. In addition, consistent parameter
settings and environments are maintained during the evaluation
of predicted maps. The predicted maps of all comparative models
are generated using the authors’ provided code.

1) Quantitative Comparison: The quantitative comparison
results between ADSTNet and 26 other models on the EORSSD
and ORSSD can be found in Table I. It is evident that ADSTNet
demonstrates superior or competitive performance compared
to other SOTA methods across all benchmark datasets. On the
EORSSD, although our model falls behind ACCoNet in terms
of Fmax

β , it exhibits significant advantages in other metrics.
Particularly noteworthy is the 0.0563 lead of ADSTNet over
ACCoNet inF adp

β . Similarly, when compared to DAFNet, which
excels in Emax

ξ , our model shows room for improvement in M
but achieves a comprehensive victory in other metrics, such
as a 0.2105 improvement in F adp

β and a 0.1235 improvement

in Eadp
ξ . Furthermore, when comparing ADSTNet to VST and

ASTT, both utilizing the transformer framework, our model
slightly lags behind ASTT in M but emerges as the leader in
other aspects, which is forgivable. Likewise, on the ORSSD,
our model consistently maintains a top-three position in all
comparative results. Specifically, compared to the second-best
performing ACCoNet, our proposed model exhibits a marginal
difference of 0.0058 in Sα, but compensates significantly by
leading with 0.0173 in F adp

β . In addition, we present the com-
parative results of all methods on the PR curve and F-measure
curve in Fig. 6. It is evident that our proposed model achieves
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TABLE I
QUANTITATIVE RESULTS ON EORSSD AND ORSSD

Fig. 6. F-measure and PR curves of our method compared with other representative methods: (a) F-measure curves on ORSSD, (b) PR curves on ORSSD,
(c) F-measure curves on EORSSD, and (d) PR curves on EORSSD.
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TABLE II
ELEVEN REPRESENTATIVE MODELS FOR FURTHER EVALUATION ON THE

ORSI-4199 DATASET

satisfactory performance on the F-measure curve, both on the
EORSSD and ORSSD, with curves closer to 1 compared to other
models. On the PR curve, ADSTNet demonstrates a competitive
performance with other comparative methods, but exhibits a
surpassing trend, approaching the (1, 1) coordinate point in
the later stages. Particularly on the EORSSD, ADSTNet stands
out among its peers, and the gap between ADSTNet and the
first-ranked ASTT on the ORSSD is also minimal.

ADSTNet consistently demonstrates excellent performance
on the ORSI-4199, mirroring its impressive results on the
EORSSD and ORSSD, as shown in Table II. Our model achieves
top rankings in five out of eight metrics, secures the second
position in one metric, and attains the third position in two
metrics. Specifically, compared to the highly competitive SUCA
method, our model achieves parity in Emean

ξ and outperforms it

by 0.0240 in F adp
β , albeit with a slight lag of 0.0084 in Sα.

Moreover, our method remains competitive across all metrics.
For instance, in terms of Fmax

β , we achieve 0.8698 (ours) com-
pared to 0.8560 (CorrNet), for Emax

ξ , we attain 0.9433 (ours)
compared to 0.9369 (GateNet), and for M, we obtain 0.0318
(Ours) compared to 0.0357 (ERPNet). It is noteworthy that our
model is the sole approach to surpass the threshold of 0.92 in
Eadp

ξ .
2) Computational Complexity Comparison: The computa-

tional complexity of our method was evaluated based on three
perspectives, which encompassed inference speed (I/O time
excluded), network parameters, and FLOPs. Table I reports
on the data acquired from the publicly available ORSI-SOD
benchmark [43], [62], as well as our own retraining efforts.
Upon evaluation, we discovered that the majority of CNN-based
techniques could perform in real-time (at a rate of 25–30 fps).
In contrast, our method excels with an impressive inference
speed of 39.5 fps on the ORSSD, EORSSD, and ORSI-4199.
The parameters of network are also at a middle level. However,
compared with the second-ranked ACCoNet, our network has
much better parameters, such as Params: 62.09 M (ours) versus
102.55 M (ACCoNet). Meanwhile, significant progress was
made in the FLOPs competition, with only 6.62 G separating it
from CorrNet, which ranks first on the FLOPs leaderboard. This
achievement is noteworthy in the overall comparison. Compared
with the third-ranked SUCA in ORSI-4199, our model still has

a significant advantage in speed, parameters, and FLOPs, with
an improvement of 15.5, 55.62, and 29.68, respectively. Based
on the quantitative and computational complexity comparisons
above, it can be inferred that our method is both highly compet-
itive in the field.

3) Qualitative Comparison: As illustrated in Fig. 7, we
present representative ORSI-SOD methods for each category,
along with their corresponding timelines. Five different scenar-
ios are compared, including morphologically regular buildings,
elongated rivers with topographic structures, low-light condi-
tions on complex shorelines, multiple tiny objects in complex
backgrounds, and more challenging scenes.

Our model demonstrates satisfactory results in all five show-
cased scenarios. For the first scenario, our model excels in
capturing detailed information in local regions, effectively high-
lighting salient objects compared to other models. However,
ASTT and MSCNet show deficiencies in accurately localiz-
ing the overall contours of small buildings and suffer from
misidentifications in certain instances (1st and 2nd instance).
Our model, on the other hand, distinguishes itself by accurately
discriminating salient regions of the building and providing
well-defined boundaries, which is a key advantage over other
models (3rd instance).

In the second scenario, which involves elongated rivers with
irregular topographic structures and varying background colors,
most compared models exhibit detection incompleteness and
fail to capture global information or accurately represent the
true width of the rivers. This deficiency can hinder subsequent
processes in practical applications, as seen in GateNet and DSG.
In contrast, our model overcomes these challenges, producing
saliency maps that closely resemble the GT, with clear and
distinct boundary information.

In the third scenario, which features rich boundary informa-
tion, some methods suffer from blurred boundaries and detection
omissions due to the interference of objects and surrounding
scenes. Examples include ERPNet, CMC, PoolNet, PA-KRN,
and HDCT. In addition, in the third example, where islands
have elongated extensions, a challenging aspect, some methods
such as ASTT overlook the importance of this easily neglected
information. In comparison, our proposed method excels by
achieving highly accurate detection, surpassing these obstacles.

The fourth scenario involves the detection of multiple tiny
objects, a well-known challenge in remote sensing saliency
detection where objects may be missed due to their small size.
While some methods successfully detect all tiny objects, they
inevitably make errors in boundary details. ASTT and MSCNet
exhibit imperfect boundary information and produce blurry
detections. In addition, ERPNet and PoolNet have omissions
in detecting small vehicles. In contrast, our model showcases
notable regional information, accurately capturing small objects
in local regions of remote sensing images.

Lastly, the fifth scenario combines challenges from the previ-
ous four scenarios, incorporating various shapes of tiny objects
and complex background noise. In traditional natural scene and
remote sensing methods, such as CMC, HDCT, and DSG, there
are instances where color-salient background regions are erro-
neously identified as salient objects, deviating significantly from
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Fig. 7. Qualitative comparison with nine representative SOTA methods, including three CNN-based ORSI-SOD methods (ASTT, MSCNet, ERPNet), three
CNN-based NSI-SOD methods (PoolNet, GateNet, PA-KRN), one traditional RSI-SOD method (CMC), and two traditional NSI-SOD methods (HDCT, DSG) on
various scenes.

our expectations. Moreover, CNN-based methods are prone to
mistakenly classifying object parts as background due to color
similarities with the surrounding environment. These methods
also encounter difficulties in detecting adjacent objects, leading
to adhesive detections, as observed in MSCNet, PoolNet, and
PA-KRN. In contrast, our model minimizes the influence of
complex interference factors and achieves satisfactory results.

Overall, the proposed model exhibits high detection accuracy
for multiple tiny objects, low-light interference, and topographic
structures. It excels in boundary delineation and outperforms
other methods in capturing global information.

4) Compare With SOTA Methods of Semantic Segmenta-
tion: To better illustrate the difference of ORSI-SOD com-
pared to semantic segmentation models, we retrained six SOTA
semantic segmentation models on the EORSSD and ORSSD
using the authors’ specified parameters. These models in-
clude DeepLabV3+ [30], HRNet [31], PointRend [32], Seg-
menter [33], SegNeXt [34], and SAN [35]. As shown in
Table III, although these six models demonstrated commendable
performance on remote sensing datasets, a notable performance
gap still exists when compared to our proposed ADSTNet.
Specifically, among the semantic segmentation models, SAN

TABLE III
COMPARE WITH SOTA METHODS OF SEMANTIC SEGMENTATION, INCLUDING

DEEPLABV3+, HRNET, POINTREND, SEGMENTER, SEGNEXT, AND SAN

achieved the best results, with Sα scores of 0.9019 and 0.9176
on the two datasets, respectively. However, when compared to
ADSTNet, a significant disparity remains, with differences of
0.0292 and 0.0203 on the EORSSD and ORSSD, respectively.
Notably, on the ORSSD, ADSTNet surpassed the 0.009 bot-
tleneck on the M, achieving a 55% gain over the Segmenter.
In conclusion, the dissimilarities in object localization between
the two tasks hinder the effective alignment of semantic segmen-
tation models with salient object detection tasks. Future efforts
will focus on synergizing these tasks to design a universal model
that can unlock greater value.
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Fig. 8. Performance trends produced with different values of the hyperpa-
rameter γ. The curves of Sα, Fmax

β , Emax
ξ , and M on (a) EORSSD and

(b) ORSSD.

C. Ablation Studies and Related Discussions

To evaluate the effectiveness and indispensability of our
proposed global–local–boundary information compensation
scheme and key modules, we conducted extensive ablation
experiments on the EORSSD and ORSSD. To ensure fairness in
the experiments, each variant was retrained under the consistent
experimental settings described in Section IV-A.

1) Loss Ablation: The hyperparameter γ is incorporated into
the coarse prediction branch, specifically subitem LDice, of the
overall loss function (L). In contrast to the conventional loss
weight parameters in [65], [51], and [64], we set γ to be greater
than 1, aligning with our initial intention of constructing bound-
ary detection. While mimicking the DFR for edge extraction,
we inadvertently detected internal boundaries within objects,
which deviated from our expectations. Therefore, we introduced
a weight compensation mechanism to amplify the importance
of boundary loss, forcing the DFR to primarily learn external
boundary information and disregard internal fine details. In our
investigation of γ ranging from 0 to 8, we observed that a value
of 3 yielded the optimal performance, as shown in Fig. 8. In
addition, we conducted an additional experiment with γ set to
0.5, and it was evident that its performance on ORSSD followed
the overall upward trend, while exhibiting a dramatic anomaly
on EORSSD. This indirectly confirms that γ does not belong to
this range. Thus, setting γ to a value greater than 1 is deemed
necessary.

2) Verification Process of the Individual Modules: In order
to evaluate the effectiveness of the individual modules pro-
posed, we defined a simple U-shaped baseline network with
Res2Net [56] as the encoder and a decoder consisting of three
consecutive convolutional layers for conducting ablation experi-
ments. The verification process of ADSE, DFR, and AFCD was
performed by employing a controlled variable method, where
only one component was modified at a time, ensuring strict
experimental operations. The numerical results for different
combinations of these modules are presented in Table IV. In
addition, visualizations are provided in Fig. 9.

Our proposed model demonstrates comprehensive optimiza-
tion from both quantitative and qualitative perspectives. In quan-
titative comparisons, as shown in Table IV, the baseline network
achieved only 0.9277 inSα, 0.8981 inFmax

β , 0.9724 inEmax
ξ , and

0.0110 in M on ORSSD. It is evident that the addition of ADSE

TABLE IV
ABLATION STUDY ON EVALUATING THE INDIVIDUAL CONTRIBUTION OF EACH

CONTENT IN ADSTNET

Fig. 9. Visual comparison results of individual contribution of Baseline (B),
DFR, ADSE and AFCD.

and DFR significantly improved performance. Specifically, Sα

increased to 0.9353 and 0.9374, showing an improvement of
0.0076 and 0.0097 compared to the baseline, respectively. While
the improvements within individual components may appear
marginal, the synergistic effects among these components yield
a discernible enhancement. Specifically, on the EORSSD, the
incorporation of ADSE alone results in a modest increase of
only 0.003 in the Fmax

β compared to scenarios without it (No.2
and No.5). However, the additional inclusion of both ADSE
and AFCD surpasses the sole presence of DFR, exhibiting a
substantial improvement of 0.0113 in the Fmax

β . Similarly, on
the ORSSD, although the introduction of DFR alone leads to a
marginal improvement of only 0.0002 in M, the collaborative
action of all components boosts M by 0.0024, a commendable
achievement. We also conducted an experiment wherein we
eliminated the ADSE while simultaneously introducing DFR
and AFCD (i.e., No.6) in Table IV. This ablation of components
translates to using only CNN as the encoding part. It is evident
that, with the removal of ADSE’s encoding information, and thus
utilizing only locally acquired information, there is a notable
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TABLE V
EFFECTIVE CONTRIBUTION OF COMPONENTS IN ADSE, INCLUDING MST,

PAA, AND SUPERVISION (SV)

reduction in M. For instance, on EORSSD, it decreased from
0.0068 (No.5) to 0.0065 (No.6), and on ORSSD, it decreased
from 0.0095 (No.5) to 0.0086 (No.6). Simultaneously, under
the AFCD-based condition, combining the global information
obtained by ADSE with CNN encoding information resulted
in a notable enhancement of 0.0065 on EORSSD for Fmax

β .
Furthermore, ADSTNet, which incorporates all components,
achieved comprehensive superiority. When comparing ADST-
Net to individual components for DFR, ADSE, and AFCD, this
amalgamation also achieved superior results onFmax

β in ORSSD:
0.9713 (No.2) versus 0.9735 (No.3) versus 0.9753 (No.4) versus
0.9807 (No.8). These findings underscore the pronounced syn-
ergy among the proposed components, demonstrating that their
collective impact exerts a more substantial influence on network
performance.

From a qualitative standpoint, the model incorporating all
components demonstrated superiority over individual elements
in object saliency, as illustrated in Fig. 9. This aspect better
complements the limitations of achieving limited performance.
In the first example, the component with DFR achieved more
accurate boundary delineation compared to the one without it.
With the assistance of ADSE, the model captured more compre-
hensive global information, as observed in the second example.
For irregular objects, especially those with sharp edges, such
as the third example, the combined effect of boundary and
global information resulted in a clearer overall object contour. In
particular, the synergistic pairing of DFR with AFCD produces
saliency maps characterized by enhanced boundary clarity, sur-
passing the clarity achieved with individual components. When
solely relying on ADSE and AFCD without the incorporation
of DFR, inaccuracies arise in outlining object boundaries. This
nuanced observation underscores the formidable contributions
of each component and highlights the substantial potential for
performance enhancement through the collaborative interplay
among these components.

3) Effectiveness of Each Component in ADSE: To validate
the role of the transformer in guided learning, ablation studies
were conducted on each component of ADSE. As depicted
in Table V, although PAA can contribute to local information
acquisition to some extent, its impact is limited due to the
information loss during the dilation convolution process. The
addition of PAA resulted in only marginal performance im-
provements in M for EORSSD (0.0003) and Sα for ORSSD
(0.0015), while exhibiting weaker performance in other metrics.
However, the deficiency of PAA was effectively compensated

Fig. 10. Effective visualization of components in ADSE. Best viewed in color.

under the supervision of saliency maps. Notably, this compen-
sation in the significant improvements of Fmax

β by 0.0011 on
EORSSD and Sα by 0.0055 on ORSSD. In the absence of
the comprehensive global information provided by MST, the
network’s performance experiences varying degrees of decline
as shown in Table V. For instance, on EORSSD, Fmax

β exhibits
a decrease from 0.8638 (No. 2) to 0.8676 (No. 3), and on
ORSSD, M shows a reduction from 0.0104 (No. 2) to 0.0088
(No. 3). Applying implicit supervision to the global information
extracted by MST leads to performance enhancement, notably
exemplified by a 0.0099 improvement in Emax

ξ on EORSSD.
Conversely, when MST is omitted alone (i.e., No.5), in con-
trast to the comprehensive ADSTNet with all components (i.e.,
No.6), there is a decrement of 0.0017 in M on ORSSD. These
research findings underscore the collaborative contribution of
each component within ADSE. Furthermore, introducing salient
map supervision in the early stages proves to be a judicious
and effective strategy, encouraging ADSE to assimilate more
valuable information. In addition, the role of each component
was further demonstrated through visualization, which can be
found in Fig. 10. The constructive impact of MST on global
information capture is evident; nevertheless, it falters in accu-
rately localizing crucial objects. Simultaneously, PAA excels in
delineating local object features. The introduction of MST and
PAA enhances the model’s capacity to capture comprehensive
information. Specifically, the collaborative action of MST and
PAA efficiently redirects attention from broad global contexts
to essential objects, facilitating precise localization across all
positions. The collective contribution of these components sur-
passes that of individual elements. However, the sparse nature
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Fig. 11. Ablation analysis for the implication of the number k in SMAT on
(a) EORSSD and (b) ORSSD.

of components imposes constraints on detailed information.
Implicit supervision is introduced to address this limitation.
Under this guidance, MST and PAA are compelled to refine
and acquire more precise information features, yielding results
more satisfactory than in previous scenarios. Various visual cues
affirm that the proposed components significantly enhance the
overall network performance, aligning with prior data analyses
and reinforcing the critical importance of each component in
cooperation.

4) Implication of the Number K: In the SMAT architecture
we proposed, the choice of parameter k significantly influences
overall performance, as illustrated in Fig. 11. Our findings
underscore the critical significance of optimally choosing k
to regulate boundary sparsity. Specifically, when k assumes a
particular value, such as k = 1/2, or when not considering k (w/o
Top-K), the overall network demonstrates heightened sensitivity
to k, resulting in unsatisfactory performance. Consequently, we
introduced a dynamic range to ascertain the optimal value of k,
leading to performance surpassing that of using a singular fixed
value. Throughout our experiments, we observed that a too-small
k prevented the network from capturing comprehensive informa-
tion, causing a notable performance decline. Conversely, when
k was excessively large, the network incorporated irrelevant in-
formation and noise, placing a burden on performance. Through
meticulous adjustments, we determined that optimal overall
performance is achieved when k falls within the range [1/2,
3/4]. Within this range, the network demonstrated performance
for 0.0086 and 0.0065 on M and superior results of 0.9709
and 0.9740 onEmean

ξ . These experiments validate the efficacy of
dynamically selecting k, empowering the network to adapt more
flexibly to various scenarios and datasets, thereby achieving a
more robust and efficient optical remote sensing salient object
detection performance.

5) Different Directions Role in the DFR: The DFR ablation
study was conducted to further demonstrate the necessity of cap-
turing boundary information in different directions. We split the
directions into conventional horizontal and vertical orientations,
as well as oblique orientations of 45◦ and 135◦ while ensuring
the completeness of information pairs. As shown in Table VI,
without the assistance of boundary information in the K

x
K

y

and K
m
K

n
directions (i.e., No.1), the overall detection per-

formance suffered varying degrees of degradation. Specifically,
compared to the complete DFR configuration, the absence of
K

x
K

y
boundary information led to a reduction of 0.0037 inFmax

β

TABLE VI
NECESSITY OF CAPTURING BOUNDARY INFORMATION IN

DIFFERENT DIRECTIONS

Fig. 12. Visual comparison results of the capturing boundary information in
different directions by DFR. Best viewed in color.

for EORSSD and 0.0094 for ORSSD. Similarly,Emax
ξ decreased

by 0.0026 and 0.0084, respectively. However, there was still
room for improvement compared to the variant that had K

x
K

y

but lacked K
m
K

n
. Specifically, there was minimal difference

in performance on EORSSD, but a notable gap of 0.0020 in
Sα and 0.0034 in Fmax

β on ORSSD. This indirectly confirms our
observation that objects in remote sensing images are not strictly
oriented horizontally. We further substantiated the criticality of
our proposed components through qualitative comparisons. In
Fig. 12, we present three instances and annotate the conventional
indications of different detection directions. It is evident that in-
formation from any of these directions contributes to the model’s
performance enhancement. In the first instance, the extraction
of boundary information at 90◦ allows for a complete depiction
of the object’s overall contour in horizontal orientations. In
addition, the boundary and contour information obtained under
the joint effect of multidirectional boundary detection is superior
to that obtained under the aforementioned single condition, with
particular emphasis on the third scenario. It has been validated
that proposed DFR can significantly contribute to the detection
performance of the overall model.

6) Impact of DFR Information Sources: In further validating
the impact of DFR information sources on the aggregation of
boundary information, a series of experiments was conducted
to explore optimal boundary information sources. As shown in
Table VII, information from stages 1 to 4 was combined using
various methods. The results indicate that under the condition
of only two information sources, performance is superior when
either f1ce or f4ce is essential, compared to scenarios where this
information is lacking, such as No1, No2, No3, and No4. Specifi-
cally, when based on f3ce, the performance with f1ce is thatSα was
improved by 0.0045 on EORSSD and ORSSD. Similarly, when
based on f4ce,Fmean

β is increased by 0.0210 and 0.0093 on the two
datasets, respectively. However, when three information sources
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TABLE VII
ABLATION ANALYSIS FOR MULTIPLE COMBINATIONS OF INFORMATION

FROM ENCODERS

Fig. 13. Ablation analysis for the information fusion of f1
ce and f4

ce by the
neck like FPN. (a) EORSSD. (b) ORSSD.

are used as DFR inputs, performance did not meet expectations,
showing varying degrees of decline compared to the input with
two information sources. For instance, on EORSSD, 0.9635
(No.3) versus 0.9584 (No.7) for Emean

ξ ; on ORSSD, 0.0086
(No.2) versus 0.0095 (No.6) forM. Aggregating all information
sources (f1ce, f2ce, f3ce, f4ce) for boundary information did not
yield satisfactory performance in all ablation experiments. This
further affirms that not all boundary information in the encoder
is suitable for aggregating texture features, and the effective
combination of boundary information from lower levels and
region information from higher levels significantly enhances
network performance. In addition, exploration of combining
f1ce and f4ce in a manner similar to FPN [71] to determine
overall network efficiency was conducted, as shown in Fig. 13.
It is evident that model performs better on benchmark datasets
without using FPN, achieving improvements of 0.02 and 0.0123
on Fmean

β based on EORSSD and ORSSD, respectively. In the
next steps of our research, we will continue to explore the
optimal boundary information interaction mode suitable for this
network to ensure smooth information transfer.

7) Influence of DFR With Plug-and-Play: To further vali-
date the portability of the proposed DFR module, we selected
three network architectures from the ORSI-SOD method that
simultaneously incorporate boundary information and region
features, owing to the accessibility of their source code. The
results are presented in Table VIII, demonstrating that DFR
exhibits favorable plug-and-play characteristics. Transferring
DFR to MJRBM, ERPNet, and EMFINet led to performance
improvements. On the EORSSD, theFmean

β increased by 0.0089,
0.0079, and 0.0060, respectively. On the ORSSD, the Emean

ξ

showed enhancements of 0.0137, 0.0024, and 0.0058. Notably,
with the support of DFR, EMFINet surpassed the 0.01 threshold

TABLE VIII
ABLATION ANALYSIS FOR THE TRANSPLANTABILITY PROPERTIES OF THE DFR

Fig. 14. Spatial analysis of image pixels chart on (a) EORSSD and (b) ORSSD.
Please zoom in for better view.

TABLE IX
ABLATION ANALYSIS FOR IMAGE SIZE

for M on the ORSSD, establishing itself as a frontrunner. In
addition, we presented the computational overhead introduced
by transplanting the DFR module. While maintaining the origi-
nal architecture, the parameter count increased by less than 1 M
for all architectures. MJRBM experienced a modest increase
of 0.15 M, attributed to the architectural similarity between
ADSTNet and MJRBM, facilitating the seamless transplanta-
tion of the module. In conclusion, DFR exhibits plug-and-play
characteristics and can contribute to performance enhancements
in other SOTA networks.

8) Effect of Image Size: To further investigate the impact of
remote sensing image dimensions on saliency detection models,
we conducted extensive experiments to explore the optimal
training dimensions, aiming for enhanced model robustness.
Initially, we analyzed the distribution of image sizes in the
EORSSD and ORSSD, as illustrated in Fig. 14. Given that
EORSSD is an expansion of the ORSSD, increasing from the
original 800 images to 2000, the overall distribution is similar,
with 256×256 being the most common size (1080 sheets),
followed by 600×600 (1040 sheets). Taking this as a start-
ing point, following [48], [51], we conducted experiments on
sizes neighboring 256×256, namely 224×224 and 288×288
as shown in Table IX. It is evident that the performance of
the 224×224 size is the poorest, while 256×256 and 288×288
show similar performance, with 256×256 exhibiting slightly
better results. Achieving four top positions and three second
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Fig. 15. Bar chart depicting comparative experiments with and without data
augmentation on (a) EORSSD and (b) ORSSD.

positions in the experiments. Subsequently, experiments were
conducted on the 600×600, revealing that the increase in image
size did not lead to a significant performance improvement. This
is because the upsampling of the majority of images to 600×600
introduces noninherent information, which can be considered
as noise and interferes with image information representation.
Larger images transformed into smaller ones might lose infor-
mation but retain intrinsic details, resulting in less interference
with the information representation during training compared
to the noise introduced by upsampling. This also explains why
the performance of 288×288 is slightly worse than 255×255.
In summary, redefining the image size as 256×256 optimally
unleashes the network’s potential, demonstrating satisfactory
robustness.

9) Effect of Date Augmentation: To meticulously unravel the
ramifications of data augmentation on ADSTNet’s performance,
a meticulously designed series of experiments was executed,
aiming to rigorously validate the efficacy of this augmentation
strategy. In our experimental framework, ADSTNet underwent
its initial training phase on the pristine dataset, with performance
metrics meticulously documented and visually depicted by the
distinctive yellow bar in Fig. 15. Subsequently, an advanced
phase ensued where data augmentation techniques were adroitly
applied to amplify the breadth of the training set, facilitating
a comprehensive model evolution, vividly represented by the

TABLE X
PERFORMANCE EVALUATION ACROSS VARIOUS ENCODER BACKBONES

IN ADSTNET

discernible blue bar. A meticulous comparative analysis be-
tween the two model iterations brought to light a discernible
augmentation-induced surge in ADSTNet’s prowess for salient
object detection tasks. The augmented ADSTNet showcased no-
table performance strides, manifesting as increments of 0.0763
and 0.0271 for F adp

β on the EORSSD and ORSSD, respectively.
Furthermore, commendable enhancements of 0.0119 and 0.0047
surfaced in Emean

ξ across these datasets, adding layers of ro-
bustness and reliability to the model’s repertoire. In summary,
the judicious application of data augmentation emerged as a
pivotal catalyst, facilitating the assimilation of a more nuanced
understanding of diverse object features into the model.

10) Flexibility of Our Approach: To substantiate the efficacy
of our proposed method across diverse backbone networks, two
variants, namely ADSTNet-VGG and ADSTNet-ResNet, were
introduced. These variants utilized VGG [67] and ResNet [68] as
encoding backbone networks, respectively, and underwent val-
idation on the EORSSD and ORSSD. As presented in Table X,
when compared to our initial method employing the Res2Net
backbone (ADSTNet-Res2Net), these two variants exhibited
slightly inferior performance, indirectly indicating the supe-
rior feature encoding capabilities of Res2Net over ResNet and
VGG. Particularly noteworthy is that, while ADSTNet-ResNet
demonstrated striking similarities in performance representation
to ADSTNet-Res2Net, the comprehensive evaluation favored
ADSTNet-Res2Net, securing the top position in all five evalu-
ated metrics. This underscores the advantages of Res2Net. In
summary, ADSTNet showcases robust adaptability to different
backbone networks, adept at leveraging information obtained
from various encoders and manifesting its intrinsic capabilities.

D. Analysis of Failure Samples

As stated previously, the aim of this article is twofold: first,
to propose a novel framework for ORSI-SOD that effectively
combines global and local information extraction, and second, to
enhance the contribution of features at different levels through-
out the entire image and improve the delineation of salient object
contours through multidirectional boundary assistance so as to
achieve accurate localization. However, ADSTNet still faces cer-
tain limitations when confronted with challenging scenarios as
shown in Fig. 16. For instance, due to inherent biases, our model
struggles to differentiate highly camouflaged noise information.
In the first instance, the target object bears a striking resemblance
to the surrounding distractors, and the connecting bridge seam-
lessly blends with the background color, resulting in minimal
discernible changes. Although our model successfully detects
the objects, it also exhibits instances of both false positives and
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Fig. 16. Visualization results depict the failure cases encountered on the
EORSSD, particularly with challenging scenes.

false negatives, indicating the potential for further advancements
in camouflage detection. In addition, effectively addressing com-
plex shadows still poses a challenge for ADSTNet. Specifically,
while the shadows on the fuselage can be effectively suppressed,
those at the rear of the aircraft are inaccurately preserved in the
second row of Fig. 16. Similarly, achieving comprehensive de-
tection of salient objects still presents challenges. For instance,
the bridge and winding river fail to be completely detected in the
third and fourth rows of Fig. 16. This is primarily due to their
close resemblance to the surrounding environment, making their
complete detection a formidable task. These observations reflect
the inherent challenges of the scene, which persist even in the
latest network architectures combining transformer and CNN
components, for instance, ASTT, ACCoNet, and CorrNet.

V. DISCUSSION

A. Effectiveness

The proposed ADSTNet in this article aims to acquire com-
prehensive image information and enhance information repre-
sentation through progressive multilevel information interac-
tion and boundary feature assistance, as confirmed by a series
of experiments in Section IV. Such conceptualizations hold
promise for bringing a more integrated detection framework to
ORSI-SOD and are potentially transferable to other computer
vision domains. However, there is still room for improvement
in terms of real-time performance, particularly for deployment
on airborne or spaceborne satellite equipment to realize greater
value.

B. Hierarchical Information Adaptive Interaction

Acquiring more comprehensive information in the encoder
is crucial as it significantly impacts the decoder’s capacity to
perform. This article introduces an adaptive iterative encoder,
seeking to integrate local and global information complementar-
ily. However, the current approach confines information match-
ing solely to the terminal stage. Despite the supervision of
matched information, certain limitations endure. Future work
will concentrate on optimizing the fusion of both pieces of
information, aiming to effectively diminish noise interference
and irrelevant features during the fusion process.

C. Boundary-Assisted Optimization

The introduced DFR demonstrates effective adaptability to the
complex features of remote sensing information, establishing
a robust foundation for the accurate localization of regional
information. While DFR can distill multidirectional boundary
information, this process is currently manually defined. In the
future, inspiration from domain-adaptive principles could be
considered to develop an automated boundary information ex-
traction module, tailored for a broader range of complex scenar-
ios, thereby assisting various visual downstream tasks.

VI. CONCLUSION

In this work, we address the issue of compensating global
and local information in the encoder-decoder framework and
propose a novel end-to-end SOD model called ADSTNet. In
the encoder, we introduce an adaptive interaction encoder that
combines CNN with ADSE to capture multiscale feature pro-
cessing enables a more comprehensive understanding of im-
age details and contextual information. Moreover, the sparse
attention mechanism selectively focuses on critical features,
enhancing and the model’s decision-making process can be
interpreted with high accuracy. For the decoder, we propose an
AFCD that dynamically adjusts and adapts the decoding process
based on multipath input data. Furthermore, we introduce a
plug-and-play DFR, which analyzes image information across
multiple directional dimensions to extract distinctive features.
This module assists the AFCD in compensating for diverse
content information. In order to strengthen the learning ability
of the model, we incorporate a structural loss function with a
weight compensation mechanism. This loss function enhances
the model’s capacity to capture salient objects accurately. Com-
prehensive experiments on three benchmark datasets exhibit
the advantages of our proposed model compared to 26 SOTA
methods. Our model effectively combines global and local in-
formation, showcasing the effectiveness of each component.
Despite the advantages of our approach, we plan to further
refine our research by developing a lightweight transformer-
based ORSI-SOD model. This model aims to enable practical
deployment and achieve precise saliency detection, particularly
in challenging scenarios such as camouflage situations.
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