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MHST: Multiscale Head Selection Transformer for
Hyperspectral and LiDAR Classification

Kang Ni¥, Member, IEEE, Duo Wang

Abstract—The joint use of hyperspectral image (HSI) and light
detection and ranging (LiDAR) data has gained significant per-
formance on land-cover classification. Although spatial-spectral
feature learning methods based on convolutional neural networks
and transformer networks have achieved prominent advances,
contextual information described by fixed convolutional kernels
and all self-attention heads selected have limited ability to char-
acterize the detailed information and nonredundant features of
land-covers on multimodal data. In this article, a multiscale head
selection transformer (MHST) network, is proposed to fully ex-
plore detailed and nonredundant features in spatial and spectral
dimensions of HSI and LiDAR data. To better acquire detailed
information of spatial and spectral features at different scales, a
multiscale spectral-spatial feature extraction module, including
cascaded multiscale 3-D and 2-D convolutional layers, is inserted
into MHST. Simultaneously, an adaptive global feature extraction
module based on head selection pooling transformer is given after
transformer encoder module for alleviating token redundancy in
an adaptive computation style. Finally, we develop a multimodal-
multiscale feature fusion classification module with local features
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and global class token, to exploit a powerful global-local fuse style.
The extensive experiments on three popular datasets demonstrate
that MHST significantly outperforms other related networks.

Index Terms—Classification, feature learning, global class token,
hyperspectral image (HSI), light detection and ranging (LiDAR)
data, transformer.

I. INTRODUCTION

YPERSPECTRAL image (HSI) [1], [2], [3], [4], [5], one
H of remote sensing data, has been widely used in several
applications [6], [7], [8], [9], [10] related to land-cover map-
ping, target detection, mineral exploration, etc., due to its rich
spectral information, which can accurately reflect the spectral
reflection characteristics of the surface of ground objects [11].
Nevertheless, with more types of land covers with complex
structures, single remote sensing image has been unable to meet
the requirements of high precision, such as ground objects with
similar spectral characteristics and different elevation informa-
tion. Light detection and ranging (LiDAR) data or digital surface
model (DSM) could provide the object height information of
Earth surface [12], [13], [14], then the integration of HSI and
LiDAR data opens up the possibility to enhance the land-cover
classification performance [15], [16],[17] by multimodal feature
fusion and interaction.

Despite these advantages of HSI and LiDAR data, there
remain some unique technical challenges in land-cover classifi-
cation as follows that significantly constraining its applicability.

1) For data characteristics, the scale variation of land covers

makes it difficult to accurately depict the local character-

istics of land covers.

2) For feature learning, given the comprehensive considera-

tion of feature redundancy, the global sequence properties

of HSI spectral features and LiDAR data, limits the im-

provement in classification accuracy.

Due to rapid development of deep learning, a multitude
of deep neural networks, e.g., convolutional neural networks
(CNNSs), have exhibited significant promise in joint hyperspec-
tral and LiDAR classification [18], [19], [20], [21] due to their
powerful ability to extract local features. Hang et al. [22] utilized
coupled CNNs, feature-level fusion and decision-level fusion
strategies for acquiring the distinguishable features from HSI
and LiDAR data. Zhang et al. [23] proposed an interleaving
perception CNN, which is an information fusion CNNs, for
classifying land covers via hyperspectral and LiDAR data. More-
over, emphasizing the challenge of addressing weak boundaries
and spatially fragmented classification, a dual-tunnel CNNs and
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hierarchical random walk layer [24] were given and significantly
enhanced classification performance of HSI and LiDAR data.
Nevertheless, for land covers with different scales and complex
terrain structure, multiple scale data blocks can be used as
network inputs, e.g., global-local transformer network (GLT-
Net) [25], or multiscale convolution operation is an effective
method. This enables the simultaneous utilization of distinguish-
able local information at different levels, thus leading to a better
understanding of high-level semantic features within HSI and
LiDAR data.

For global sequence feature learning, transformer has a signif-
icant advantage in capturing long-term dependencies and global
deep features. In the collaborative land cover classification using
HSI and LiDAR, constructing long-range dependencies can
effectively capture spectral information and global information
of land cover, such as binary-tree transformer network [26] and
parallel transformer [27]. Particularly, for multisource remote
sensing feature fusion learning, feature redundancy affects the
model discriminability. Then, a local information interaction
transformer model was proposed by Zhang et al. [28] for mining
the complementary information and data imbalance problem
of HSI-LiDAR data, simultaneously, this proposed model re-
duces the redundant information via dynamically filtering source
components. For addressing the limitations and gaps in the
newly acquired Earth observation data from a single source data,
Feng et al. [29] inserted two effective modules into spectral—
spatial-elevation fusion transformer, it is worth noting that this
proposed transformer network could reduce redundant spatial
information. Currently, despite some existing transformer-based
methods considering the redundancy of spatial features, most of
them do not consider the redundancy of global sequence features
for HSI and LiDAR data. Therefore, starting from the char-
acteristics of transformer models, it is of great significance to
construct an adaptive feature selection mechanism for extracting
global sequence properties of HSI and LiDAR data.

To address the challenge of characterizing the detailed local
information and nonredundant global sequence properties of
land-covers on multimodal data, followed by CNNs-transformer
feature learning style, a multiscale head selection transformer
(MHST) network is proposed. For the spatial and spectral feature
information of HSI images, cascading multiple multiscale 2-D
convolutions and 3-D convolutions are utilized to fully cap-
ture the spatial-spectral detail information of HSI images. For
LiDAR data, multiple multiscale 2-D convolutions are employed
to fully capture the elevation spatial information of LiDAR.
Furthermore, starting from the transformer structure, an adaptive
global feature extraction module based on head selection pool-
ing transformer after dual-branch fusion features, is introduced
after the transformer encoder module to mitigate token redun-
dancy in an adaptive computational style. Finally, the multiscale
aggregated spatial-spectral features and nonredundant global
sequence properties are fed into the classifier to accomplish
land cover classification. Toward the end, the proposed MHST
exhibits three main contributions, which include the following.

1) The embedding of multiscale spectral-spatial feature ex-

traction (MSFE) module can simultaneously capture spa-
tial and spectral features from HSI and LiDAR data at
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different scales, effectively considering the global struc-
ture and local detailed characteristics of various-scale
land-covers.

2) The head selection pooling transformer based on a deci-
sion network is proposed for learning global and nonre-
dundant spectral features. This is achieved through the
sequential stacking of multiple layers of conventional
transformer and an adaptive head selection pooling trans-
former.

3) In three publicly available datasets, we validated the im-
pact of different feature fusion weights on MHST and
confirmed the effectiveness of MHST as proposed in this
article. In addition, we publicly provide codes, training
weights, and training log.

The rest of the article is organized as follows. Related works
are given in Section II. In Section III, we introduce MHST
and provide a comparison of its experimental results with other
related methods in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK
A. CNNs-Based Methods

In CNNs-based methods, dual-branch or multibranch clas-
sification architecture can effectively classify land-cover [30],
Xue et al. [31] inserted hierarchical residual structure, self-
calibrated convolution, self-attention module, and nonlinear
feature fusion style into multiscale deep learning network with
self-calibrated convolution. Xu et al. [17] focused extensively on
addressing the challenge of imbalanced multimodal learning and
feature interaction, proposed a dual-branch dynamic modulation
network. Roy et al. [32] incorporated morphology learning and
convolutional features into dual-branch networks for exploring
the powerful joint features. Fang et al. [33] utilized spatial
and spectral enhancement modules to enhance the spatial and
spectral features effectively. To enhance the collaborative utiliza-
tion of multisource land cover classification, superpixel-guided
kernel principal component analysis, 2-D and 3-D Gabor filters,
and a weighted majority voting-based decision fusion strategy
were incorporated to effectively enhance multisource land cover
classification [34]. Other relevant CNNs-based methods include
attention-based CNNs method [35], [36], [37], [38], [39], a
triplet deep neural network [40], deep encoder—decoder network
(EndNet) [41], MDL-cross method [42], and a feature fusion
and extraction framework (FusAtNet) [43]. CNNs-based meth-
ods can effectively fuse the rich spectral information of HSI
and the elevation information of LiDAR, fully leveraging their
complementarity.

B. Transformer-Based Methods

Although CNNs excel in capturing local features and spa-
tial structures in imagery, global spatial-spectral association is
absolutely crucial for classifying HSI and LiDAR data. The
GLT-Net [25] introduced multiscale convolutional and spectral
feature learning (based on transformer network) modules, then
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Fig. 1.

the complete exploration and collaborative utilization of sup-
plementary data in multiple modes, as well as the local and
global spectral—spatial details, can be achieved. Meanwhile, a
fusion encoder known as cross-token attention [44] was created
to merge the spectral and spatial features of HSTand LiDAR data.
Xue et al. [45] and Zhang et al. [46] designed spatial-spectral
hierarchical transformer and multimodal transformer for explor-
ing the effectiveness of transformer structures. A transformer
and multiscale fusion network [47], including attention strategy
and scale-based method, was performed on LiDAR and HSI
classification. In addition, numbers of improved transformer
networks were employed in HSI classification filed, such as [48],
[49], [50], [51], [52], [53], [54]. Although the above-mentioned
methods exhibit significant advantages in feature-level learning
and fusion, they face limitations in effectively capturing the
intricate details and distinctive characteristics of land cover in
multimodal data.

III. METHODOLOGY

The proposed MHST primarily consists of three parts
as follows. MSFE, adaptive global-local feature extraction
(AGFE), and multimodal-multiscale feature fusion classifica-
tion (MFFC), as illustrated in Fig. 1. The MSFE learns the
spectral and spatial features of HSI by cascading multiscale
3-D CNNs and 2-D CNNSs, and fuses them with elevation
features extracted by multiscale 2-D CNNs to capture local
spectral-spatial features. The AGFE aims to selectively learn
global-local spectral features by cascading multiple layers of
conventional transformer and adaptive head selection pool-
ing transformer. MFFC integrates local spectral-spatial fea-
tures and global-local spectral features, thereby improving the
model’s classification performance. The sections in the fol-
lowing provide detailed descriptions of MSFE, AGFE, and
MFFC.

@ BatchNorm 2D [J] LiDAR Feature ® Conv operation

@ Full Connection @ Position embedding

Multi-Head Drop Drop | AN
Self-Attention out out [\

@ Add operation

Layer
Norm

© Concat operation

Overall framework of MHST for HSI and LiDAR classification, including MSFE, AGFE, and MFFC.

A. Multiscale Spectral-Spatial Feature Extraction

Since the conventional transformer has deficiencies in local
feature expression, numbers of models applied on land-cover
classification adopt CNNs to preliminarily extract local spatial
features from input images. In previous work, smaller sized
convolutional kernels have been widely used in CNNs due
to their fewer parameters and high computational efficiency.
These CNNs expand the receptive field by stacking multiple
small-sized kernels to form a convolutional chain, and use down-
sampling layers to gradually reduce the size of input. However,
as each convolutional kernel only focuses on a local area, after
stacking multiple layers, the receptive field may still be limited,
leading to the filtering out of some subtle but important details
in the feature map, thereby affecting the posterior transformer
block’s understanding of the global structure of HST and LiDAR
images based on the features extracted by CNNs. What is more,
the strategy of using relatively smaller convolutional kernels and
gradually increasing the receptive field may have limitations in
handling objects of different sizes. To address these issues, we
have designed the MSFE module, which consists of multiscale
CNNs aimed at resolving the input image by parallel applying
kernels of different sizes, expanding the receptive field, and
capturing information at different levels to improve the model’s
ability to handle multiscale and complex scenes.

Moreover, there are physical interactions among spectral
bands and correlations between spectral features in HSI data.
Due to the distinct spectral reflection information of the same
land cover in different bands, these bands provide unique and
complementary information for land-cover classification. Build-
ing upon this, we propose a multiscale 3-D CNNs designed
to simultaneously consider multiple correlated spectral bands
during multiscale local spatial feature extraction, allowing the
model to comprehensively capture the rich spectral informa-
tion in HSI data, thereby improving classification accuracy. In
particular, multiscale 3-D CNNs with four different levels of
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convolutional kernels are inserted into MSFE to simultaneously
capture spectral and spatial features from HSI data. The size of
spatial dimensions of multiscale 3-D convolutional kernels are
all set to 1, while the size of depth dimensions are sequentially
set to a, a € {1,3,5,11}. For multiscale 2-D CNNs used in
LiDAR data [55], [56], the sizes of four levels of convolutional
kernels are empirically given as b x b, b € {3,5,7,9}. Notably,
spectral channels within each convolution layer are grouped for
reducing model computation. Finally, batch normalization layer
and ReLU activation function are given in MSFE.

MSEFE captures features from single scale HSI and LiDAR
image blocks by spectral-spatial feature encoder (SSFE) and
spatial feature encoder (SFE). Concretely, SSFE is a 3-D con-
volutional sequence composed of single scale 3-D CNNs and
multiscale 3-D CNNs, denoted as sequence operator Egg. An
SFE can be characterized as a 2-D convolutional sequence,
incorporating single scale 2-D CNNs alongside multiscale 2-D
CNNS, denoted as sequence operator Ej;.

For HSI data X € RE*Wxdn  and LiDAR data X €
RE*W H x W represents the original size of spatial dimen-
sions of HSI and LiDAR data, and dj is original size of
spectral dimension of HSI data. After padding around data’s
edge pixels, patch extraction operations are performed on each
pixel of HSI and LiDAR data separately, resulting in HSI
cubes X1 € R™*m*dn and LIDAR cubes X € R™*™, where
m x m denotes spatial size.

The HSI cube XE of training set is employed as the in-
put samples. Initially, it is passed through SSFE, generating a
spectral-spatial signature cube. After flattening along the depth
dimension, the cube is input into SFE to further extract spatial
features from the spectral-spatial feature cube. Finally, a max-
pooling operation is applied to reduce the spatial dimensions of
the cube by half, resulting in the HSI spectral-spatial feature
£h. Similarly, for the LIDAR cube X T used for training, it goes
through two identical layers of SFE and max-pooling operations,
resulting in the LiDAR elevation feature f”. The features " and
f% can be obtained via

£, = Maxpooling(Fu( Fu(X5))) (M
£l = Maxpooling( E( E(XT))). (2)

Hence, multimodal local spectral-spatial feature f.,, based
on CNNs extraction can be calculated via

fon=w -+ (1 -w) f (3)

where w is the weight coefficient, which can be manually ad-
justed. Herein, MSFE could capture spatial and spectral features
from HSI and LiDAR data at different scales.

B. Adaptive Global-Local Feature Extraction

Multiple layers of conventional global transformers [57] are
utilized to integrate multimodal features from local spectral
space f.,, and are performed initial global spectral feature
extraction of AGFE. Assuming that zg € R™V*? represents the
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features derived from £, after tokenization strategy, the pro-
cessing of zg through ViT encoder is as follows:

z) = MHSA(LN(z;_1)) + zi_1, 1=1,2,....L; (4
z, =FFN(LN(z)) + 2}, 1=1,2,...,14 5)

where L represents the depth of conventional transformer en-
coder. Note f;, as the spectral sequence attribute feature maps
obtained after L; conventional transformer blocks. FEN, LN,
and MHSA stand for feedforward networks, layer normalization,
and multihead self-attention, respectively. The number of heads
is empirically set to 4 and the attention calculation of each head

is as follows:

Attn(Q, K, V) = Softma (QKT) A% (6)
) ) = X
Vdy
where Q, K, and V are the query, key and value matrices,
respectively, and dj, represents the scaling factor. An MHSA
employs the same computation process to obtain attention scores
for each head, and it concatenates the attention scores from
multiple heads and projects them into

MHSA(Q, K, V) = Concat(Attny, ..., Attn, )W  (7)

where h represents the number of attention heads, WO denotes
the parameter matrix. WO € R"*%>*N N is the number of
tokens.

While the MHSA mechanism in conventional transformer
can map feature maps into different subspaces to extract global
spectral sequence features, the potential for increased overlap
in attention between heads becomes more pronounced as the
number of layers in multilayered transformer deepens. This
results in unnecessary information redundancy. Furthermore,
because there are substantial variations between feature maps in
different spectral bands, the way their long-range dependencies
are managed differs. Therefore, we have designed an adaptive
head selection decision network to learn the usage strategy of
self-attention heads. This network chooses to selectively disable
specific heads, reducing the model’s computational cost and
minimizing the processing of redundant information.

Concretely, the decision network consists of a linear layer,
a sampling process, and a threshold selection layer (O(-)).
The linear layer and sampling process are used to generate a
policy probability matrix, and threshold selection layer sets a
probability threshold (0.5) to filter out which self-attention heads
to keep or discard. For the input z; at [th block, the self-attention
head usage policy matrices for this block is

p =Wz, st p eR? (8)

where H = 16 is the number of self-attention heads. [ € [L; +
1,L1 4 Lo], and Lo represents the depth of head selection
pooling transformer. Subsequently, the binary decision k (k = 1
means the corresponding head is retained and k& = 0, discarded)
at ¢th head of Ith block is derived in the following way:

p . &P (Pr,ige + Gui/T)
Lik =
Z;ZO exp (pl,i,j +Guij/T)

, ke{0,1} (9
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Fig. 2. Illustration of head selection pooling transformer block. We insert a head selection decision network before each vision transformer block. For the input

initial features extracted by multiple layers of conventional transformer blocks, the decision network generates a usage strategy for self-attention heads. These
instance-specific usage strategies aim to reduce processing of redundant information and lower computational costs. Simultaneously, we utilize the pooling operator
P(+; ¢) in the multihead self-attention mechanism to capture relationships between patches, aiming to consider both global spectral and local spatial information.

See the texts for further details.

where G ; = —log(Exp, ;) in which Exp, ; is sampled from
exponential distribution, and 7 is used to control the distribution
of output probability [58]. Afterward, the self-attention head
selection strategy matrix in [/th block P; is computed as

P, = [@(Pl,l,k);-~-§@(PI,H,k)]a ke {0,1} (10)
while P; ; = 1, the ith head at [th block is retained; when P; ; =
0, the ith head at /th block is discarded.

Notably, before attending the input, the Q, K, and V are
achieved via the pooling operator P(-; ¢) to capture spatial rela-
tionships between patches in MHSA, aiming to simultaneously
consider global spectral and local spatial information

Q="P(Q;¢0), K=P(K;¢x), V=P(V;i¢y) (1)

where ¢ = (k, s, p) in which k, s, and p represent the pooling
kernel, corresponding stride, and padding, respectively. Cer-
tainly, the operation imposes limitations represented by con-
straints s = sy on the pooling operators applied to Q, K, and
V while utilizing the same padding strategy to preserve shape.
As shown in Fig. 2, head selection decision network and
pooling operation are inserted into head selection pooling trans-
former block. In our model, two head selection strategies are
adopted, namely partial discard and complete discard. For partial
discard of attention heads, the attention matrix corresponding
to that head is replaced by an identity matrix 1. Then the
computation of attention in 4th head of /th block [58] is as
follows:
QK"
dj

Softmax ( \Af,

1-V,

ﬁ

~ 5 5 =1
Attn(QaKaV)l,i = (12)
=0.

Regarding complete discard, the entire head is correspond-
ingly removed from the MHSA mechanism and does not partic-
ipate in the computation of self-attention for that layer

MHSA(-);; = Concat([Attn; ;., , if Pr; = 1 )W'. (13)

In general, the forward propagation process takes spectral se-
quence feature f/; obtained from conventional global trans-
former as input, and obtains the global-local spectral sequence
feature f,; after Lo head selection pooling transformer block.
The cls token £S5 € R**4 is extracted from f,; for subsequent
classification tasks

£0

Vit

i = LN(

)- (14)

fiii = 21,,

C. Multimodal-Multiscale Feature Fusion Classification

Feature fusion decision classification is employed to fully
capture the local spectral-spatial features and the global-local
spectral features in MFFC. Specifically, f.,, is classified by a
CNNs-based network for outputting classification probabilities,
consisting of a multiscale 2-D CNNs, batch normalization, and
ReLU activation layers. Afterward, adaptive global average
pooling, fully connected layer, and softmax function are in-
serted. For £, it is fed into multilayer perceptron and softmax
layer for classification.

Finally, we make a decision classification based on classi-
fication probability vectors corresponding to CNNs and ViT,
denoted as P¢,, and Py, to obtain the final probability vector
P; € R, where the label corresponding to the maximum
probability is assigned as the class for that pixel. Py can be
represented as Py = A - Py + (1 — 1) - Py, where A is the
weight coefficient for feature fusion decision classification.
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IV. EXPERIMENT AND ANALYSIS

A. Data Description

In the experiments, three commonly HSI and LiDAR datasets
are utilized to evaluate the effectiveness of MHST.

1) Houston2013 Dataset: The Houston2013 dataset [25] in-
cludes an HSI and a LiDAR-based DSM, collected by the
National Center for Airborne Laser Mapping in June 2012
using the ITRES CASI-1500 imaging sensor over the campus
of the University of Houston. The dataset was provided by the
IEEE GRSS Data Fusion Competition. The HSI comprises 144
spectral bands covering a wavelength range from 0.38 to 1.05 um
while LiDAR data are provided for a single band. Both HSI
and LiDAR data share dimensions of 349 x 1905 pixels with a
spatial resolution of 2.5 m. The dataset contains 15 categories,
with a total of 15 029 real samples available.

2) Trento Dataset: The Trento dataset comprises HSI and
LiDAR data obtained from southern Trento, Italy. The HSI was
obtained by the airborne hyperspectral imaging systems Eagle
sensor, consisting of 63 spectral bands with a wavelength range
from 0.42 to 0.99 pm [44]. LiDAR data were gathered using the
Optech airborne laser topographic mapping (ALTM) 3100EA
sensor with one raster. The scene consists of 166 x 600 pixels,
with a spatial resolution of 1 m. This dataset contains six land
cover types with a total of 30 214 real samples.

3) MUUFL Dataset: The MUUFL dataset was acquired in
November 2010 over the area of the campus of University
of Southern Mississippi Gulf Park, Long Beach Mississippi,
USA. The HSI data were gathered via ITRES Research Limited
(ITRES) compact airborne spectral imager (CASI-1500) sensor,
initially comprising 72 bands. Due to excessive noise, the first
and last eight spectral bands were removed, resulting in a total
of 64 available spectral channels ranging from 0.38 to 1.05 pm.
LiDAR data were captured by an ALTM sensor, containing
two rasters with a wavelength of 1.06 pm. This dataset con-
sists of 53687 ground-truth pixels, encompassing 11 different
land-cover classes.

B. Experimental Setting

The proposed MHST is implemented in PyTorch framework.
The experiments are performed on Ubuntu 22.04 platform
equipped with an 19-13900 K CPU, a NIVIDIA RTX 4090Ti
GPU, and RAM: 32 GB. We use an AdamW optimizer with a
learning rate decay parameter of 0.9 to optimize the network.
In the training phase, the batch size, and the number of training
epochs are set to 64, and 3000, respectively. Considering three
datasets have different data scales and spatial resolutions, ini-
tial learning rates are set to 8e-4 (Houston2013 dataset), Se-4
(Trento dataset), and 4e-4 (MUUFL dataset). In terms of model
parameter configuration, the depths of conventional transformer
encoder block and head selection pooling transformer block are
set to 5 and 8, respectively. And initial values of feature fusion
weight coefficient w and feature fusion decision classification
weight coefficient A are set to 0.6 and 0.7, respectively. For
head selection, a complete discard strategy is employed, unless
otherwise specified. Standard cross-entropy is utilized as the loss
function.
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Moreover, three evaluation indicators are adopted to quanti-
tatively reflect the classification performance of MHST: overall
accuracy (OA), average accuracy (AA), and Kappa coefficient.
Tables I, II, and III provide detailed information of training and
testing samples.

C. Performance Comparison

To validate the effectiveness of our proposed framework, we
selected several representative HSI and LiDAR joint classifi-
cation models for comparison, including EndNet [41], FusAt-
Net [43], MDL-cross [42], S2E [33], HCT-Net [44], and GLT-
Net [25]. Among these models, EndNet, FusAtNet, MDL-cross,
and S2E are all based on deep CNNs architectures, while
HCT-Net and GLT-Net utilize CNNs-transformer architectures.
The parameters for these models were set according to their
respective reference papers and optimized on the same server.
Furthermore, same training and testing samples were used for
fair comparison.

Several comparative methods are evaluated through visual
comparisons (as shown in Figs. 3-5) and quantitative met-
rics, e.g., per-class accuracy, OA, AA, and Kappa coefficient.
Tables I-III clearly present the objective classification results
of our proposed method and each of the comparative methods
on Houston2013, Trento, and MUUFL datasets, with the best
results in each row highlighted in bold.

1) Quantitative Analysis: Tables I-1II display the quantita-
tive classification results of different methods on three popular
HSI and LiDAR datasets, respectively. Through the analysis,
our MHST achieves the highest classification scores on three
datasets, surpassing the second-best model by approximately
0.5%, 0.3%, and 3% on Houston2013, Trento, and MUUFL
datasets, respectively. By combining the analysis of features
related to land-cover categories and their corresponding clas-
sification accuracy, we draw the following conclusions.

1) For the multimodal feature extraction fusion CNNs frame-
work, feature extraction capability of multiscale convo-
lution kernels is superior to single-scale kernels. For in-
stance, even though MHST and HCT-Net both possess
the ability to capture spectral and spatial features from
HSI simultaneously, MHST outperforms HCT-Net and
surpasses it by more than 2% on three objective metrics
for two material-similar classes on Houston2013 dataset,
“Park lot 1 and “Park lot 2.” This is due to the application
of multiscale convolutions, allowing for the capture of
more local spatial neighborhood features.

2) Concerning the extraction of features from HSI data with
multiple spectral channels, 3-D CNNss are better suited for
capturing spectral features as compared to 2-D CNNs. For
example, with MHST and GLT-Net having multiscale HSI
feature extraction modules, land-cover category ‘Rail-
way”’ on Houston2013 dataset is challenging to classify
accurately with single-modal data, our model’s classifica-
tion accuracy exceeds GLT-Net by over 3%, thanks to the
thorough exploration of spectral features by 3-D CNNs.

3) The global spectral features enhances the model’s classi-
fication performance. Specifically, although S2E method
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TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCES OBTAINED BY DIFFERENT METHODS FOR HOUSTON2013 DATA
CNNs-based networks CNNs-Transformer-based networks
No. Class(Train/Test) EndNet FusAtNet MDL-Cross S2E HCT-Net GLT-Net MHST
1 Healthy grass (20/1231) 71.00 81.48 88.95 97.40 89.03 94.09 98.05
2 Stressed grass (20/1234) 96.84 93.84 98.06 98.78 96.52 96.74 98.22
3 Synthetic grass (20/677) 99.85 99.85 99.41 98.38 99.85 99.57 99.26
4 Trees (20/1224) 92.97 94.61 99.59 100 95.51 98.15 99.59
5 Soil (20/1222) 100 91.16 98.69 99.92 99.92 99.80 99.35
6 Water (20/305) 93.44 95.74 97.38 100 100 97.08 99.67
7 Residential (20/1248) 89.74 92.15 92.39 96.31 99.04 94.94 95.59
8 Commercial (20/1224) 78.27 77.12 93.95 89.71 89.38 91.59 90.77
9 Road (20/1232) 74.51 88.31 90.34 89.04 84.01 94.20 89.20
10 Highway (20/1207) 85.34 65.45 85.42 91.21 92.87 91.92 96.77
11 Railway (20/1215) 89.63 91.03 92.02 94.73 94.16 93.18 94.32
12 Park lot 1 (20/1213) 92.25 92.83 89.45 93.08 87.63 90.68 93.82
13 Park lot 2 (20/449) 61.91 90.87 95.99 95.32 100 98.40 97.33
14 Tennis court (20/408) 94.61 98.53 99.02 100 100 99.90 100
15 Running track (20/640) 99.38 100 99.53 100 100 99.98 100
OA(%) 87.75 88.63 93.84 95.65 94.02 95.32 96.19
AA(%) 87.98 90.20 94.68 96.26 95.19 96.01 96.80
Kappa(%) 86.74 87.72 93.34 95.29 93.53 94.95 95.88

The bold entities indicate the highest classification accuracy obtained for a single land-cover category among all comparison algorithms and the proposed model.

TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCES OBTAINED BY DIFFERENT METHODS FOR TRENTO DATA

CNNs-based networks

CNNs-Transformer-based networks

No. Class(Train/Test) EndNet FusAtNet MDL-Cross S2E HCT-Net GLT-Net MHST
1 Apple trees (20/4014) 85.97 98.85 99.10 99.58 98.28 99.34 99.60
2 Buildings (20/2883) 94.00 98.89 97.40 96.43 94.48 97.68 98.06
3 Ground (20/459) 94.34 97.60 97.39 97.82 100 97.89 99.78
4 Woods (20/9103) 98.76 99.93 100 100 100 99.93 100
5 Vineyard (20/10481) 62.71 99.55 99.90 99.99 99.55 99.80 99.99
6 Roads (20/3154) 90.71 97.40 95.97 98.10 92.61 97.17 97.08

OA(%) 83.13 99.26 99.13 99.37 98.31 99.27 99.45
AA(%) 87.75 98.71 98.29 98.65 97.49 98.63 99.09
Kappa(%) 78.19 99.01 98.84 99.15 97.75 99.03 99.26

The bold entities indicate the highest classification accuracy obtained for a single land-cover category among all comparison algorithms and the proposed model.

4)

exhibits high classification accuracy, surpassing all CNNs-
based networks, our approach, which is based on a com-
bination of conventional transformer and head selection
pooling transformer in the global feature extraction mod-
ule, makes full use of global spectral dependencies. As
a result, our method still achieves higher classification
accuracy and has the best classification performance in
five categories of 15 land-cover categories as compared to
S2E method.

The classification strategy after decision-level
multimodal-multiscale feature fusion can further improve
classification accuracy. For instance, the performance
of MHST with MFFC module surpasses any single

5)

feature-level fusion method on MUUFL dataset, such
as MDL-cross. Similarly, GLT-Net, employing a similar
decision-level feature fusion strategy, achieves the
second-best results.

The selection of self-attention heads in the transformer
contributes to reducing attention on redundant features.
Specifically, for “Yellow curb” on MUUFL dataset with
a smaller number of samples, despite the complexity and
clutter in the scenes near the pixels of this category, bene-
fiting from the embedding of the designed head selection
decision network in transformer architecture, the proposed
MHST achieves a classification accuracy of up to 92.68%,
which is about 10% and 13% higher than HCT-Net and
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TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCES OBTAINED BY DIFFERENT METHODS FOR MUUFL DATA

CNNs-based networks

CNNs-Transformer-based networks

No. Class(Train/Test) EndNet FusAtNet MDL-Cross S2E HCT-Net GLT-Net MHST
1 Trees (60/23186) 82.04 90.75 87.14 89.64 87.32 92.20 91.81
2 Mostly grass (60/4210) 79.48 74.20 75.58 81.00 75.99 80.59 85.70
3 Mixed ground surface (60/6822) 64.00 64.45 74.04 67.40 69.29 70.57 72.78
4 Dirt and sand (60/1766) 89.47 87.49 87.77 94.73 95.13 80.41 89.81
5 Road (60/6627) 86.10 87.22 84.23 81.80 81.67 88.77 88.29
6 Water (60/406) 98.77 100 100 100 100 100 100
7 Buildings shadow (60/2173) 89.78 92.54 94.52 94.43 90.29 96.36 93.05
8 Buildings (60/6180) 87.61 93.06 94.16 92.51 94.66 93.41 95.52
9 Sidewalk (60/1325) 73.28 71.77 64.60 76.08 64.60 84.68 82.19
10 Yellow curb (60/123) 95.12 82.11 86.18 92.68 82.93 79.67 92.68
11 Cloth panels (60/209) 98.09 97.61 98.56 99.52 99.52 99.52 99.04

OA(%) 81.24 85.45 84.89 85.60 84.20 87.86 88.71
AA(%) 85.79 85.56 86.07 88.16 85.58 87.84 90.08
Kappa(%) 76.08 81.15 80.52 81.42 79.67 84.20 85.32

The bold entities indicate the highest classification accuracy obtained for a single land-cover category among all comparison algorithms and the proposed model.
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Classification maps by different methods on Houston2013 dataset. (a) Pseudocolor image for HSI. (b) LiDAR-based DSM. (c) Ground-truth map. (d)

EndNet (87.75%). (e) FusAtNet (88.63%). (f) MDL-cross (93.84%). (g) S2E (95.65%). (h) HCT-Net (94.02%). (i) GLT-Net (95.32%). (j) MHST (96.19%).

GLT-Net,respectively. Furthermore, our MHST achieves
the highest classification scores in three out of 11 cate-
gories.

Based on these advantages, we seamlessly embed the pro-
posed modules into an end-to-end framework, aiming to simul-
taneously consider multiscale, local spectral-spatial features.
Simultaneously, we utilize MHSA mechanism with a combined
head selection decision network to consider global spectral

nonredundant information. The decision-level feature fusion
classification method is also adopted to improve the classifi-
cation performance.

2) Visual Comparison and Analysis: Figs. 3-5, respectively,
illustrate the classification maps of several methods on three
datasets, where Trento and MUUFL utilize local zoom oper-
ations to more clearly display the performance differences be-
tween different methods. It can be seen that as compared to other
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Classification maps by different methods on MUUFL dataset. (a) Pseudocolor image for HSI. (b) LIDAR-based DSM. (c) Ground-truth map. (d) EndNet

(81.24%). (e) FusAtNet (85.45%). (f) MDL-cross (84.89%). (g) S2E (85.60%). (h) HCT-Net (84.20%). (i) GLT-Net (87.86%). (j) MHST (88.71%).

methods, the visualized classification results of MHST are closer
to the ground-truth map, resulting in better classification per-
formance. Furthermore, MHST exhibits superior classification
performance compared to other methods, resulting in smoother
classification results. On the other hand, several classification
methods, such as EndNet, FusAtNet, and MDL-cross tend to
have more isolated data points. Specifically, almost all other
methods incorrectly classify some “vineyard” as “apple trees” on
Trento dataset, as shown in Fig. 4. In the locally enlarged image,
some methods classify this category as the “vineyard” which
is geographically adjacent, for the “ground” with fewer sam-
ples. In contrast, the classification results of MHST are almost
completely correct, consistent with the results shown in Table
II. For MUUFL dataset shown in Fig. 5, the proposed method

produces clearer classification boundaries. Such as, MHST’s
results are closest to the ground-truth map for the boundary
between “road” and “trees,” while the boundaries produced
by other methods are not only more blurred and difficult to
distinguish, but also produce more classification errors, e.g.,
classifying “trees” as “buildings shadow.” In conclusion, MHST
has demonstrated its effectiveness in both quantitative and visual
analysis, showcasing strong classification performance.

3) Computational Complexity Analysis: Table IV shows the
computational complexity of different methods, including the
trainable parameters in the backpropagation phase and the test-
ing time on the MUUFL dataset. It can be seen that the number
of trainable parameters in CNNs-transformer-based networks is
higher than in most CNNs-based networks. The EndNet method
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TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITY AND TESTING TIME(S) OF DIFFERENT METHODS ON THE MUUFL DATA

Methods EndNet FusAtNet

MDL-Cross

S2E HCT-Net GLT-Net MHST
Trainable Params 381.45K 138.48M 445.58K 745.86K 1.76M 1.83M 3.45M
Testing time(s) 4.50 31.57 7.98 8.45 7.80 22.79 25.28
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has the fewest trainable parameters, while the FusAtNet uses
the most parameters. The proposed model’s parameter counts
and testing time are slightly higher than those of the GLT-Net
with a similar network structure because we embedded multiple
layers of head selection pooling transformer blocks after the
conventional transformer encoder, increasing the computational
cost while improving the accuracy of land-cover classification.
Within an acceptable range of testing time and computational
cost, MHST exhibits the best classification performance.

D. Parameters Analysis

1) Weight Coefficient: Different feature fusion weights w and
decision classification weights A have influences on classifi-
cation performance. Then, we set the default values of w and
A to 0.5, while keeping other hyperparameters fixed, and set
the values of w and A from 0.1 to 0.9 in fixed increments of
0.1. Figs. 6 and 7 show the different values of w and A and
their corresponding OA, AA, and Kappa on three datasets. It

0.4
Value of Parameter A

0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6

Value of Parameter A

(©)

0.7 0.8 0.9

(b)

Effects of the weight parameter A on classification performance. (a) Houston2013. (b) Trento. (¢) MUUFL.

can be observed that while w is less than 0.5, which means
fewer HSI feature feeds, MHST achieves optimal classification
performance on two datasets (Houston2013 and Trento). Nev-
ertheless, while A exceeds 0.5, indicating that the classification
decision relies more on the features extracted by the head selec-
tion pooling transformer, the proposed model delivers the best
classification results across all three datasets. In addition, while A
is too large or too small, it will lead to varying degrees of decline
in classification performance. These observations collectively
underscore the importance of integrating fused features from
HSI and LiDAR for further spectral feature extraction, while
also affirming the efficacy of designed head selection pooling
transformer.

2) Training Samples (TS) Number: To better validate the
robustness and generalizability of MHST, we systematically
vary the quantity of TS and analyze the corresponding trends
in overall classification accuracy. Specifically, we randomly
select different samples of each land-cover category for training,
and the remaining samples are used for testing. The number
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TABLE V
IMPACT OF THE NUMBER OF TS PER CLASS ON MHST

Houston2013 Trento MUUFL
TS OA (%) AA (%) Kappa (%) TS OA (%) AA (%) Kappa (%) TS OA (%) AA (%) Kappa (%)
20 96.19 96.80 95.88 20 99.45 99.09 99.26 60 88.71 90.08 85.32
40 96.15 96.62 95.84 40 99.68 99.49 99.57 70 89.40 89.46 86.13
60 97.57 98.01 97.37 60 99.70 99.51 99.60 80 88.61 90.61 85.22
80 98.22 98.34 98.07 80 99.72 99.50 99.63 90 88.35 91.46 84.87
100 99.14 99.21 99.07 100 99.74 99.57 99.65 100 88.68 90.49 85.23
120 99.09 99.28 99.02 120 99.78 99.66 99.71 110 88.74 91.39 85.33
140 99.53 99.59 99.49 140 99.75 99.58 99.66 120 89.43 92.21 86.22
160 99.26 99.42 99.19 160 99.85 99.75 99.80 130 90.10 91.96 87.05
180 99.35 99.50 99.30 180 99.82 99.71 99.76 140 87.83 91.34 84.17
200 99.62 99.71 99.58 200 99.81 99.70 99.75 150 90.31 92.44 87.27

The bold values represents the maximum value of each column.
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of selected TS are increased from 20 to 200 in steps of 20
on Houston2013 and Trento datasets. For MUUFL dataset, the
number of TS is increased from 60 to 150 in steps of 10. All the
training parameters are set the same as the original settings, and
the evaluation metrics remained as OA, AA, and Kappa.

Table V shows the classification performance of MHST under
different TS sizes. On all three datasets, the three evaluation
metrics exhibit a trend of fluctuating improvement with increas-
ing TS. Taking the Houston2013 dataset as an example, the
performance of proposed network notably improves as the TS
increase from 40 to 100, benefiting from additional samples pro-
viding more feature and interfeature relationship information.
Nevertheless, the performance gain from 100 to 200 samples is
only about 20% of the gain observed from 40 to 100 samples.
This might be because the model already captured most crucial
features with 100 TS for each category, so increasing the TS size
may not bring the same level of information gains. The marginal
reduction on classification performance could be attributed to
potential model overfitting at a particular training data, leading
to fluctuations in the classification performance, rather than a
consistent increase. In general, with more TS fed, the proposed
MHST is able to extract strong features to improve the accuracy
of classification and generalize across varying data volumes,
resulting in consistent and strong classification performance.

3) Depth of Conventional Transformer Encoder: The depth
of the conventional transformer encoder L, will affect the

Depth of Conventional Transformer Encoder

5 2 9 11 13 15 18 21
Depth of Conventional Transformer Encoder

©

1 13 15 18 21

(b)

Effects of the depth of conventional transformer block on classification performance. (a) Houston2013. (b) Trento. (¢) MUUFL.

model’s feature representation ability. As shown in Fig. 8, by
varying the size of L; on three datasets to explore its impact
on classification performance, it can be observed that while the
encoder depth is 5, the proposed model can achieve the best clas-
sification performance. In addition, increasing the depth does
not necessarily lead to better classification performance. With
the increase in depth, the model’s classification performance
on the three datasets shows a decreasing trend. On the other
hand, a conventional transformer encoder that is too shallow may
not be sufficient to capture complex data patterns and features,
which can also lead to a decrease in model performance. This
indicates the importance of determining the optimal encoder
depth through experiments to balance representation ability and
prevent overfitting.

E. Ablation Studies

Due to some trainable parameters located within the head
selection pooling transformer module, we conducted ablation
experiments to specifically assess the effectiveness of the head
selection decision network and pooling operation. The exper-
imental results, based on three objective metrics (OA, AA,
and Kappa) from three datasets, are depicted in Fig. 9, the
discrepancy in classification evaluation metrics among different
datasets signifies the varying advantages of two modules in
feature extraction. For Houston2013 dataset with higher scene
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complexity, benefiting from the integration of pooling operation
in transformer, the second variant can focus on global features
while also considering the extraction of local features, thereby
paying more attention to information near the target classified
pixels. Consequently, compared to first variant, which omits the
pooling operation, the second variant achieves slightly higher
classification accuracy. Conversely, as for the Trento dataset,
it has lower scene complexity, which leads to limited local
feature information. Since the head selection decision network
enhances the global feature extraction capability, the first variant
achieves a higher score than the second variant. Simultaneously,
the contribution of locally extracted features by the pooling
operation module to classification accuracy is reduced. Thus,
the scores of the first variant is only slightly lower than both two
modules.

For MUUFL dataset, only using the head selection decision
network or pooling operation leads to lower classification ac-
curacy, by around 1.3%, as compared to the combined use of
both modules. Overall, the experimental findings and objective
analysis suggest that both head selection decision network and
pooling operation have a positive impact on land-cover classifi-
cation.

V. CONCLUSION

This article focuses on the detailed and nonredundant features
in spatial and spectral dimension for efficiently HSI and LiDAR
classification. The MSFE module effectively accounts for the
overall patterns and intricate local attributes of various-scale
land-covers. Adaptive global feature extraction module could
adaptively select the heads in transformer to avoid feature re-
dundancy caused by the participation of all heads. Furthermore,
we validated the effectiveness of MHST under different fea-
ture fusion ratios and verified the performances of proposed
MHST from multiple dimensions, such as different TS and
ablation experiments. Moreover, there are some details in MHST
that deserve improvement. For example, structural features are
crucial for HSI and LiDAR data classification, so one of the
key focuses in future work is how to fully utilize the selected
structural features of HSI. Specifically, we will further explore
how to improve the head selection decision network to generate
a more effective head selection strategy, reasonably allocate
weights to the retained heads, and make the model further select

Kappa oA AA

(b) ©

Kappa

Impact of head selection decision network and pooling operation on classification performance. (a) Houston2013. (b) Trento. (c¢) MUUFL.

the retained nonredundant features after filtering out redundant
features. Simultaneously, since word tokens carry more specific
information, the model could pay more detailed attention to
local features. Therefore, one of the main research contents in
the future is to explore how to more effectively integrate word
tokens in order to optimize the model’s understanding of HSI
and LiDAR data.
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