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Fourier-Transform-Based Unmixing Method for
Fusion of Multiresolution Satellite Images
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Abstract—Many applications, such as agriculture and water
monitoring, require frequent observations, as well as high spatial
resolution. In practice, it is difficult to achieve both high reso-
lution and temporal coverage for satellite sensors. Accordingly,
several fusion algorithms for spatial and temporal images have been
proposed. Among them, the unmixing-based methods are widely
used. However, large-scale changes between categories cannot be
detected accurately, as they cannot estimate the variance within
individual categories, when the variances in the inhomogeneous
areas are large. To solve these problems, a fusion method based on
the frequency domain is proposed. It determines the reflectance of
the high-resolution (HR) image using the frequency relationship
between the HR image and the coarse-resolution one. It is faster
and more accurate than the conventional spatial-domain-based
fusion methods, as its operations are realized in the frequency
domain. Both the large-scale textures and the small-scale textures
can be preserved, even in the case of discern sudden or large-scale
changes. Finally, experiments over simulated images and real satel-
lite ones, using Landsat thematic mapper image and Sentinel-2
image, are carried out to demonstrate the performance of the
proposed approach.

Index Terms—Data fusion, image fusion, point spread function
(PSF), spatial and temporal resolution, unmixing-based data
fusion.

I. INTRODUCTION

THE satellite imagery with high resolution (HR) is usually
obtained within a long revisit time, while high-revisit

satellite imagery has relatively low resolution [1], [2], [3], [4],
[5]. Many applications of remote sensing, such as agriculture and
water monitoring, require frequent observations, as well as high
spatial resolution. For instance, the revisit period should ideally
be within a week or shorter with spatial resolution of 10 m or
higher [6], [7]. However, HR and medium-resolution satellites,
such as Spot-5 [8] with the resolution of 2.5 m, and WorldView-3
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[9] with the resolution of 0.3 m, have significantly longer revisit
periods than those of low-resolution satellites, such as MODIS
[10], [11], Landsat-8 (HR satellites with a good revisit, such
as Sentinel will have a huge overhead, which may exceed the
actual use value, and obtaining practically usable images is
difficult due to cloud cover and other reasons). Therefore, several
algorithms for the fusion of spatial and temporal images have
been proposed in recent decades, with the aim of obtaining
HR images with high revisit frequency. Primarily, three types
of methods are used for combining spatial and temporal im-
ages: 1) weighted-function-based methods, such as the spatial
and temporal adaptive reflectance fusion model (STARFM)
method [12], spatial temporal adaptive algorithm for mapping
reflectance change [13], and enhanced STARFM (ESTARFM)
[14] 2) unmixing-based methods, such as the multisensory mul-
tiresolution technique (MMT) [15], spatial temporal data fusion
approach [16], and spatial and temporal reflectance unmixing
model (STRUM) [17], linear mixing growth model (LMGM)
[18], spectral variability augmented sparse unmixing method
(SVASU) [19], the flexible spatiotemporal data fusion method
(FSDAF) [20] and FSDAF2.0 [21], reliable and adaptive spa-
tiotemporal data fusion method (RASDF) [22], blocks-removed
spatial unmixing (SU-BR) [23], geographically weighted spa-
tial unmixing method [24], variation-based spatiotemporal
data fusion method (VSDF) [25], and Fit-FC [26]; and
3) learning-base methods, including dictionary-pair-learning-
based methods [27] and deep-learning-based methods [28], [29],
[30], [31].

Most weighted-function-based methods assume no land cover
type changes between input and prediction date. As a result, they
can successfully predict pixels with changes in attributes like
vegetation phenology or soil moisture, because these changes
are strongly related to the changes in similar pixels selected from
the input imagery. However, current methods are not effective
for predicting spectral changes that are sudden or not observed
in input imagery, in that the changes are not predictable from
pixels that were similar in the input date. These changes include
urbanization, deforestation/reforestation, wildfires, floods, and
land cover transitions caused by other forces.

Dictionary-pair-learning-based methods only use statistical
relationships between fine- and coarse-resolution (CR) images
rather than any physical properties of remote sensing signals.
Although they can better predict pixels with land cover type
changes, they do not accurately maintain the shape of objects,
especially when the scale difference between fine- and coarse-
resolution images is large.
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Fig. 1. Theoretical workflow of the unmixing-based data fusion algorithm.

Compared with the afore-mentioned two types of methods, the
main advantage of unmixing-based methods is that they do not
require high- and medium-resolution data to have corresponding
spectral bands. This allows for two additional possibilities. First,
unmixing-based data fusion can be used to downscale extra
spectral bands and/or biophysical parameters to increase the
spectral resolution of the HR datasets. Second, auxiliary datasets
such land cover may supplement or replace HR imagery in
the grouping of spectrally similar pixels into clusters. So, the
unmixing-based methods are popular for the fusion of multires-
olution images.

The first unmixing-based method is MMT [15]. It predicts
the HR image by classifying the input HR one to define the
endmembers at a CR, then calculates the endmember fractions
of each coarse pixel. Subsequently, it unmixes the coarse pixels
at the time of prediction within a moving window and assigns
the reflectance to obtain the HR image.

In recent years, MMT has been modified by several studies to
improve its accuracy [17], [32]. STRUM combines the unmixing
method with STARFM, which has better performance when
there is a sudden change. In the case that there are less previous
images, FSDAF [20] and FSDAF2.0 [21] method employs one
pair of high- and low-resolution images, and gains better perfor-
mance than STARFM. LMGM uses the corresponding growth
rate to get a better result. Unmixing-based algorithms are still
the hot spot in the field of spatiotemporal fusion, and excellent
algorithms and strategies, such as Fit-FC [26], SVASU [19],
RASDF [22], SU-BR [23], VSDF [25], and have emerged in
recent years.

However, existing unmixing-based fusion methods cannot
estimate the variance within individual categories (i.e., areas
in which the reflectance is fluctuating) when the variances in
the inhomogeneous areas are large. It is because the calculated
reflectance for each category is regarded as the mean value and
the variance among each category is not considered. Therefore,

large-scale changes between categories cannot be detected
accurately. Conventional weighted-function-based methods,
such as STARFM and ESTARFM, predict the HR image by
averaging over the spatial domain, while other unmixing-based
methods, such as MMT and STRUM, predict the HR image by
calculating the mean reflectance of each category. On the other
hand, these methods consider the CR image to be the average
of the neighborhoods in the HR image, and the point spread
function (PSF) [33] of the optical sensor system used for the
CR image is not considered, resulting in errors, especially at
the junction of two categories. Moreover, sudden or large-scale
changes between categories are also difficult to predict using
these methods.

To solve the above-mentioned problems, a fusion method
based on the frequency domain (FMBFD) is proposed. It exploits
the time-frequency relationship with respect to signal process-
ing. The HR image can be regarded as the convolution of the PSF
and the CR image in the spatial domain. Pointwise multiplication
with the PSF in the Fourier domain is equivalent to convolution
with the PSF in the spatial domain. However, the former process
is faster and we can also solve the problem of sudden change
better in frequency domain, for that product operation in the
frequency domain is simpler. Therefore, the proposed method
uses the frequency domain relationship between the CR image
and the HR image based on the PSF.

The contributions of this work are summarized as follows.
1) The proposed algorithm is less computational than other

unmixing-based algorithms.
Most unmixing-based algorithms require a sliding window

convolution operation. Since the proposed algorithm is imple-
mented in the frequency domain, it can transform the con-
volutional operation with large computation into the product
operation in the frequency domain with much less computation.
The ideal convolution window is the PSF which describes the
optical sensor system’s ability to resolve point sources. However,
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most unmixing-based algorithm use a simple rectangle window
to reduce the convolution computational, while the proposed
algorithm can adopt a precise PSF window without increasing
computational.

2) The real CR image information is fully retained.
Most unmixing-based algorithms are realized in the spatial

domain, they predict the reflect value of each category to ap-
proximate the real CR image, and then use the predicted reflect
value to reproduce the HR image under the assumption of no
sudden change. While our algorithm only reproduces the high
frequency part of the predicted HR image, the low frequency
part still uses that of real CR image. Because the low frequency
corresponding to the large-scale texture, the proposed algorithm
can preserve the information of the real CR image, especially
the sudden change of large-scale texture.

3) The temporal variation model of each category is more
accurate.

The temporal change of each category is divided into two
parts: the change in the mean value and the change in the vari-
ance within individual categories, which allows one to readily
determine the variance in the pixel reflectance of the individual
categories.

The rest of this article is organized as follows. Section II de-
scribes the traditional unmixing-based methods and the theoret-
ical basis of FMBFD. Section III shows the results of validation
tests performed to evaluate the effectiveness of FMBFD. These
include results of simulated images and real satellite images.
Finally, Section IV concludes this article.

II. ALGORITHM THEORY

A. Traditional Unmixing-Based Data Fusion

The traditional unmixing-based image fusion applies four
steps to solve the linear mixing model [1], as shown in Fig. 1.

First, the HR image is classified into unsupervised classes
using unsupervised method, such as K-means, e.g., five number
class (nc) values were used as 10, 20, 30, 40, and 60.

Second, a sliding window is applied in CR image covering
k × k pixels, the classification results in the first step are used to
get a proportion matrix, these matrices contain the proportions
of each of the nc classes that fall within each CR pixel.

Third, the spectral information of all classes is unmixed using
the proportion matrices and their corresponding CR radiance
values (each band is solved independently). Each pixel only
provides one equation so it is necessary that k × k is bigger
than nc, and then we could solve the equation set.

Finally, each CR pixel could be replaced by correspond-
ing unmixed HR pixels, and we could get the predict HR
image. This notation in third step should be interpreted as
follows:

Li,k = P k,nc × Si,k,nc (i = 1, 2, . . . , n) (1)

where Li,k denotes a k2 × 1 vector that contains the CR pixel
in band i; P k,nc represents a k2 × nc matrix that save the
proportion of each HR classes that fall inside each of the CR
pixel.Si,k,nc is what we want to get, and it is thenc× 1unknown
vector of unmixed spectral information for each class in band i.

We could solve this equation set using least mean square (LMS)
or others. Considering all the bands and windows, we can get
the final predict image whose relevant endmember is assigned
to each pixel at HR scale.

B. FMBFD

It is well-known that the frequency-domain equivalent of an
image can be obtained by applying the Fourier transform (FT).
The low-frequency part of the image represents the large-scale
outline, while its high-frequency part represents the small-scale
textures. The frequency-domain relationship between an HR
image and the corresponding CR image can be used to fuse them.
A frequency-domain fusion method based on the FT (FMBFD)
for the fusion of multiresolution images is proposed, with a
flowchart illustrated in Fig. 2.

1) Frequency Domain Decomposition Model for the HR Im-
age: First, the classification of the original HR image is per-
formed. For this, we use an unsupervised classification method
called the k-means clustering. Supervised methods such as the
support vector machine method can also be used for this purpose,
but it requires us to know the supervision information in advance;
k-means clustering is easier to get a result. Assume that there are
categories of the HR image. Thus, each category should have a
distribution. Hence, each category of the HR image will have a
mean reflectance value. The pixel reflectance for each category
can be described as the sum of the mean reflectance value
and the residual value, where the residual value is normalized
by the mean reflectance, which is calculated as given in (2).
Therefore, the dividend, which consists of the mean part and the
residual part, can be determined. The 2-D frequency-domain
equivalent of the mean and residual parts of the distribution
can be obtained using the FT. The distribution of the mean and
residual parts of each classification result can be represented as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fci (x, y) = 1, when C (x, y) = c

fci (x, y) = 0, when C (x, y) �= c

fcd (x, y) =
Rc(x,y)−R̄c

R̄c
, when C (x, y) = c

fcd (x, y) = 0, when C (x, y) �= c

fH (x, y) =
∑K

c=1 R̄c [fci (x, y) + fcd (x, y)]

(2)

where (x, y) denotes the row and column coordinates of the
image, Rc(x, y) is the reflectance of the pixel belonging to the
cth category at position (x, y) in the HR image, and R̄c represents
the mean value of Rc(x, y).

Furthermore, fci(x, y) is the category distribution function,
which is one when the pixel belongs to the cth category and zero
when the pixel does not belong to the cth category. fcd(x, y)
represents the residual part for the cth category and can be
obtained by subtracting the mean part fci(x, y) and subsequent
normalization using R̄c, fH(x, y) represents the HR image,
which can be expressed as the sum of the K categories’s
mean part and the residual part multiplied by their mean re-
flectance value. Fig. 3 is an example to illustrate the meaning
of (2).
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Fig. 2. Flow chart of FMBFD.

Fig. 3. Example for (2). (a) High resolution image. (b) Classfication map (K = 10). (c) Distribution of 1st class (f1i). (d) Residual part of 1st class (f1d).

The frequency-domain equivalent of the HR image can be
obtained using (3). Before performing the fusion procedure,
the CR image is resampled at the same spatial resolution
as that of the HR image using bilinear or cubic convolution
interpolation.

The frequency-domain relationship between the HR image
and each category distribution function is shown as follows:⎧⎪⎨

⎪⎩
Fci (kx, ky) = FT [fci (x, y)]

Fcd (kx, ky) = FT [fcd (x, y)]

FH (kx, ky)=
∑K

c=1 R̄c [Fci (kx, ky)+Fcd (kx, ky)]

(3)

where (kx, ky) is the wavenumber in the x- and y-directions in
the frequency domain. Furthermore, Fci(kx, ky) is the FT of
fci(x, y) while Fcd(kx, ky) is the FT of fcd(x, y)(FT [], i.e., the
FT operator, which transforms the spatial-domain image into
the frequency domain). FH(kx, ky) represents the FT of the HR
image, which can be expressed as the sum of the FTs of the K
categories’s mean part and the residual part multiplied by their
mean reflectance value.

2) Unmixing Method in the Frequency Domain: The PSF
describes the optical sensor system’s ability to resolve point
sources and PSF is usually completely determined by the imag-
ing system, and the entire image can be explained by obtaining
the optical parameters of the system. This process is usually

formulated by a convolution equation, it is representative of
the relationship between the reflectance of HR and CR images,
which can be represented as follows:

{
fpsf (x, y)⊗ fH (x, y) = fC (x, y)

Fpsf (kx, ky)⊗ FH (kx, ky) = FC (kx, ky)
(4)

where ⊗ is the convolution operator. The CR image can be
represented as the convolution of the PSF and the HR image in
the spatial domain or the product of the PSF and the HR image
in frequency domain. Here, Fpsf (kx, ky) is the PSF, which, as
stated earlier, describes the relationship between the HR and
CR images while fH(x, y) and fc(x, y) are the HR and CR
images, respectively. Furthermore, FH(kx, ky) and FC(kx, ky)
are the FTs of fH(x, y) and fc(x, y), respectively. Since the CR
image is resampled to be the same resolution as the HR image,
the frequency-domain ranges of the CR and the HR images
are the same. It is easier to determine the product of the PSF
and the HR image than to perform the convolution operation
in the spatial domain. Hence, the former is used to describe
the complex convolution relationship between the CR and HR
images.

Next, selecting the CR image at the time of prediction and
the HR image at the base time in the same area, the following
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equation is formulated:[
K∑
c=1

Fci (kx, ky) ·Bci +

∑K
c=1 Fcd (kx, ky) ·Bcd

(|kx| ≤ Ckx |ky| ≤ Cky)

]

· Fpsf (kx, ky) =
FC

p (kx, ky)

(|kx| ≤ Ckx |ky| ≤ Cky)
(5)

where FC
p(kx, ky) is the FT of the CR image at the time of

prediction, Bci is the mean reflectance of the cth category, and
Bcd is the scale factor which effects the residual part of the
reflectance of the cth category at the time of prediction.

Furthermore, (|kx| ≤ Ckx |ky| ≤ Cky) implies that the fre-
quency bin corresponds to the low-frequency part of the re-
sampled CR image which means this equation is solved in the
low-frequency to get Bci and Bcd for that CR image almost
only have low-frequency part, Ckx and Cky are thresholds
corresponding to the low-frequency area of the resampled CR
image, which can be calculated using the following equation:{

Ckx = 1
ρcx

Cky = 1
ρcy

(6)

where ρcx and ρcy are spatial resolutions of the CR image in the
x- and y-directions, respectively, before resampling. Equation
(5) implies that changes in the mean and residual parts of the
reflectance for each category could be different. For example,
during the growth of homologous crops, some could grow better
than others at the base time, and the growth situation may
remain the same at the time of prediction. However, the change
percentage of the pixel reflectance compared to the base time
would differ. The change in the variance of the pixel reflectance
can be estimated by computing the residual part of the reflectance
for each category. Both the change in the mean reflectance and
the variance between the different categories are determined.
The fusion process should reserve the variance between the
various categories, as well as the change in the mean pixel
reflectance of each category.

Finally, Bci and Bcd for each category are determined using
the LMS, as shown in (7). The low-frequency bins of the CR
image are used for the LMS calculation to determine reflectances
Bci and Bcd.

To balance the importance of the mean part in the LMS, an
undetermined weight factor, β, is introduced, since the variance
within each category is smaller than the variance between the
different categories. β is generally larger than 1, and can be
varied depending on the HR image.

Bci, β, Bcd = argmin
∑

|ky |≤Cky

∑
|kx|≤Ckx

∣∣∣∣∣
[

K∑
c=1

Fci (kx, ky)

·Bci · β +

K∑
c=1

Fcd (kx, ky) ·Bcd

]

× Fpsf (kx, ky)− FC
p (kx, ky)

∣∣∣∣∣
2

(7)

where β is the weight factor for striking a balance between the
mean part and the residual one. After determining Bci and Bcd

of each category and the balancing factor β in the low-frequency
part, the fusion image based on the fusion of the different
categories and the CR image at the time of prediction can be
represented using (8) and (9).

F p
fit (kx, ky) =

K∑
c=1

Fci (kx, ky) ·Bci · β

+

K∑
c=1

Fcd (kx, ky) ·Bcd. (8)

3) Generation of the Predicted HR Image: The predicted HR
image can be generated by the following equation:

fht
p (x, y) = IFT

{
F p
fit (kx, ky)

· (1− Fpsf (kx, ky)) + FC
p (kx, ky)

}
(9)

where F p
fit(kx, ky) is the fitted HR image in the frequency

domain which has both low-frequency and high-frequency part,
fht

p(x, y) is the predicted HR image, and IFT [] represents the
inverse FT (IFT) operator.

Generally, Fpsf (kx, ky) is a bell-shaped function. In the low-
frequency region, it is very close to 1 (i.e., |kx| ≤ Ckx and |ky| ≤
Cky), while in the high-frequency region it is very close to 0
(i.e., |kx| ≥ Ckx or |ky| ≥ Cky). Low frequency corresponds to
smooth variations and constitutes the base of an image while
high frequency presents the edge information which gives the
detailed information in the image. We add up the true CR image
and the high-part ofF p

fit(kx, ky) to get fht
p(x, y). Therefore, (7)

implies that the predicted result fht
p(x, y) includes the large-

scale textures in the CR image at the time of prediction and
the small-scale ones in the fitted HR image. Thus, if there are
sudden large-scale changes at the time of prediction, such as
a wildfire, deforestation, reforestation, or floods, they will be
captured within fht

p(x, y).
To compensate for the system error between the CR and

HR optical sensors, additional compensation is performed. The
compensation part is calculated by comparing the predicted
result and the HR image both at the base time, as shown in
the following equation:

Fcomp (kx, ky) = F b
h (kx, ky)− F b

ht (kx, ky) (10)

where F b
h(kx, ky) is the frequency-domain equivalent of the HR

image at the base time, F b
ht(kx, ky) is the frequency-domain

equivalent of the image predicted using (4) based on CR image
at the base time (here, the right side of (5) is not F p

c (kx, ky) but
the FT of the CR image at the base time), and Fcomp(kx, ky)
is the additional compensation in the frequency domain. The
compensation is performed in the frequency domain before IFT
as follows:

fp
hp (x, y) = IFT {F p

ht (kx, ky) + Fcomp (kx, ky)} (11)
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TABLE I
PARAMETERS USED FOR SIMULATED IMAGES

where fp
hp(x, y) is the predicted HR image after compensating

for the system error between different optical sensors.
If the predicted HR image exhibits the same band features

as the HR image, the compensation is necessary to reduce the
prediction error caused by different sensors. However, to obtain
a super-resolution image, one only needs to improve the spatial
resolution of the CR image, and does not need to recover the
band of the HR image which also does not exist. Therefore,
compensation is not needed in this case.

III. EVALUATION OF PROPOSED METHOD

A. Fusion of Simulated High Spatial and High Temporal
Images

1) Simulation Setup and the Evaluation Index: An HR image
with base time t0 and prediction time t1 were generated using
the simulation parameters listed in Table I.

The HR image contained two objects, a circle with a radius of
4000 m and a square with a side of 3500 m. Gaussian white noise
with a standard derivation of 30 was added to both generated
images. The reflectance of the circular object changed from 3500
to 1500 while that of the square object changed from 1500 to
2500 at t1. Next, a small square object was introduced within
the circular one in the HR image at the prediction time, t1; the
side of this new square was 1500 m and its reflectance was 800.
The resolution of the HR images was 30 m. The CR images at
t0 and t1 were obtained by convoluting the HR images at t0
and t1 with the PSF, which was a 2-D Gaussian function with a
standard deviation of 500 m. The resolution of the CR images
was 240 m. To determine the accuracy of the predictions for
each category using the proposed algorithm, a fluctuation with
a standard deviation of 400 was introduced in the reflectance of
each object in HR image at t0. The distribution pattern of the
fluctuation in the reflectance of objects at time t1 was the same
as that at t0; however, the standard deviation changed to 600.
The simulated HR image and CR image at t0, and HR image
and CR image at t1, are shown in Figs. 4 and 5, respectively.

By applying the proposed algorithm to the HR image at t0 and
the CR image at t1, the HR fusion image could be obtained.

Fig. 4. (a) Simulated HR image t0. (b) Simulated CR image at t0.

Fig. 5. (a) Simulated HR image at t1. (b) Simulated CR image at t1.

The correlation coefficient (CC), average absolute difference
(AAD) [34], and root mean square error (RMSE) between the
HR image and the HR fusion image were calculated to evaluate
the proposed algorithm and compare its performance with those
of other algorithms. In addition, the structure similarity (SSIM)
[35] index was used to assess the overall similarity between the
fusion images and the actual ones. The closer the RMSE and
AAD are to zero, the more similar the fusion images are to the
actual ones. Similarly, the closer the CC and SSIM were to one,
the more similar the fusion images are to the actual ones. The
expressions for calculating the AAD, RMSE, and SSIM are as
follows:

AAD = Δ
∣∣R̄ (x, y)

∣∣
RMSE =

√∑(
ΔR̄ (x, y)

)2
SSIM =

(2μxμy + C1) (2σXY + C2)

(μ2
X + μ2

Y + C1) (σX + σY + C2)
(12)

where ΔR(x, y) is the difference in the pixel reflectances of
the HR fusion image and the HR image at position (x, y) at the
time of prediction. Furthermore, μX and μY are the mean pixel
reflectances of the original HR image and the HR fusion image,
respectively; σX and σY are the variances of the original HR
image and the HR fusion image, respectively; and σXY is the
covariance between the HR image and the HR fusion image.
Finally, C1 and C2 are very small constants, which were used
to ensure that the fraction does not result in a singular value.

To highlight the advantages of the proposed algorithm, five
different simulations were performed using the algorithm, in the
five simulations, five different improvement parameters in the
method are considered as the following.
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Fig. 6. Fusion results. (a) Simulation A. (b) Simulation B. (c) Simulation C. (d) Simulation D. (e) Simulation E. (f) Fusion results for FSDAF.

Simulation A: Factors, including PSF, the low-frequency part
of CR image, the variance within each category, and compensa-
tion between HR and CR images were not considered.

Simulation B: The PSF was considered. However, the low-
frequency part of CR image was not considered, the variance
within each category was not considered, and compensation
between the HR and CR images was not performed.

Simulation C: The PSF was considered and so was the low-
frequency part of the CR image. However, the variance within
each category was not considered, and compensation between
the HR and CR images was not performed.

Simulation D: The PSF was considered along with the low-
frequency part of the CR image and the variance within each
category. However, compensation between the HR and CR
images was not performed.

Simulation E: The PSF was considered along with the low-
frequency part of the CR image and the variance within each
category. Furthermore, compensation was performed between
the HR and CR images.

Simulation E employed the entire FMBFD algorithm. In
addition, the performance of FMBFD was compared with that
of FSDAF, which is one of the results of a recent study about
unmixing-method, which used the same classification results
as FMBFD. It was to determine whether the classification
process affects fusion results. Fusion results and errors of
Simulation A ∼ E and FSDAF are shown in Figs. 6 and 7,
respectively.

2) Simulation Experiment Result and Analysis: FSDAF
mainly uses five steps to fuse MODIS images and Landsat
images. First, the Landsat image endmembers are extracted and

TABLE II
RESULTS OF TWO METHODS FOR SIMULATIONS A–E

the abundance is calculated. The temporal and spatial results are
predicted assuming that the type of ground features have not
changed, and then the residuals and distribution are calculated,
and the fusion result is finally obtained. There are similarities
with the FMBFD algorithm, so this article compares the two
algorithms through experiments. The absolute error between
the fusion image and the HR image at t1 is the statistic over
all pixels. The histogram of the errors for FMBFD and FDSAF
is shown in Fig. 8. It can be seen that FMBFD resulted mostly
in small errors, in contrast to FDSAF.

Figs. 6 and 7 show that the performance of FMBFD with
respect to predicting the shape, reflection, and large changes
was better than that of FSDAF. The results of the two methods
for simulations A–E were compared; these results are shown in
Table II. It is shown that the introduction of the PSF improved
the fusion performance slightly. On the other hand, the use of
the low-frequency part of the CR image significantly affected
the prediction results when the shape of the object was changed.
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Fig. 7. Fusion errors. (a) Simulation A. (b) Simulation B. (c) Simulation C. (d) Simulation D. (e) Simulation E. (f) Fusion error for FSDAF.

Fig. 8. Histogram of absolute error between predicted image and original HR
image for FMBFD and FSDAF.

Furthermore, whether compensation for the HR and CR im-
ages was performed or not also affected the prediction results.
FMBFD showed better performance than that of FSDAF during
simulation E, wherein the former was used in its complete form.

To highlight the difference between the two algorithms,
the simulation where a rectangular object was placed within
the circular one was performed, which was an enlargement of
the circular area in the upper left corner of Fig. 6.

TABLE III
COMPARISON OF PERFORMANCES OF FSDAF AND FMBFD

The CC, AAD, RMSE, and SSIM values corresponding to
the small areas were calculated, as shown in Table III. The use
of the low-frequency part of the CR image, as well as allowing
for compensation between the HR and CR images significantly
improved the prediction results, as shown in Figs. 9 and 10.

It can be seen that the greater the number of factors con-
sidered during the simulation, the better the performance of
the proposed algorithm was. The performance of simulation C,
during which the low-frequency part of the CR image at the time
of prediction was considered, was markedly better than that of
simulation B. Thus, the low-frequency part of the CR image at
the time of prediction allowed the sharp changes in the circular
object to be predicted. The evaluation indices for simulation
C were better than those for simulation B. Furthermore, the
proposed method exhibited even better performance during
simulation E, as reflected in the SSIM, AAD, RMSE, and CC
values. Fig. 9 shows the image predicted using FMBFD during
simulation E was more similar to the original HR image that the
one predicted using FSDAF.
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Fig. 9. Fusion result obtained using the proposed method for circular object for (a) simulation A, (b) simulation B, (c) simulation C, (d) simulation D, and
(e) simulation E. (f) Fusion result obtained using FSDAF. (g) Original HR image.

B. Fusion of Real Satellite Spatial and Temporal Images

1) Fusion Experiment for Landsat and Sentinel-2: To con-
firm the suitability of the proposed algorithm, a pair of real
satellite images was analyzed using the algorithm. A Landsat
thematic mapper (TM) image was fused with a Sentinel-2 image
because the resolution of TM images is 30 m whereas that of
Sentinel-2 images is 10 m.

The images corresponded to the Yellow River (Shanxi
province, China) and contain farmland, forest regions, hills,
and urban areas. It was used to evaluate the performance of
the FMBFD algorithm with respect to complex scenes. The
longitude and latitude of the center area were 34°54’2.405“E and
110°14’48.846”N. Furthermore, these images can be employed
to evaluate the algorithm’s performance for relatively large areas
as well as to test whether it is capable of fusing images with
different types of areas.

Since FSDAF needs a pair of HR and CR images at the
base time, TM and Sentinel-2 image corresponding to the same
time were used. The dates on which the TM images were taken
were February 24th, 2018 and September 3rd, 2018 (at approxi-
mately 12 o’clock, GMT+8), as shown in Figs. 11(a) and 12(a).

The corresponding Sentinel-2 images are shown in Figs. 11(b)
and 12(b), respectively.

The same classification results were used for both algorithms,
to eliminate the effect of the classification process. The number
of the categories was 10, and the classifier method used was k-
means clustering. The prediction results for the two algorithms
in the case of the Sentinel-2 image obtained on September 3rd,
2018 are shown in Fig. 12.

The areas within the red rectangle and the blue circle are
illustrated in Fig. 14 for details. Fig. 14(a) and (b) show the
prediction results for FSDAF and FMBFD, respectively, for the
area within the red rectangle in Fig. 13(a), while the correspond-
ing area in the real satellite image is shown in Fig. 14(c). It can
be seen that the FMBFD image shows more details and could
predict the shape of the area in the real satellite image with
greater accuracy. Similarly, Fig. 14(d) and (e) show the FSDAF
and FMBFD prediction results, respectively, for the area within
the blue circle in Fig. 12. In this case, FMBFD resulted in a
more accurate prediction of the object shape and reflectance
than FSDAF did.

The CC, AAD, RMSE, and SSIM values for the two images
predicted using the FMBFD and FSDAF algorithms are listed in
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Fig. 10. Histogram of absolute error between predicted image and original
HR image of circular object at for FMBFD and FSDAF.

Fig. 11. (a) TM image and (b) Sentinel-2 image at t0 on February 24, 2018.

Fig. 12. (a) TM image and (b) Sentinel-2 image at t1 on September 3, 2018.

Fig. 13. Comparison of images predicted at t1 using (a) FSDAF. (b) FMBFD.

Fig. 14. Comparison of magnified versions of images predicted by
(a), (d) FSDAF and (b), (e) FMBFD and (c), (f) original Sentinel-2 image on
September 3, 2018 (upper-row images show area within red rectangle in Fig. 13
while lower-row images show area within blue circle in Fig. 13).

TABLE IV
FUSION RESULTS USING LANDSAT AND SENTINEL-2

Table IV. The absolute value of the error between the predicted
image and the actual one for all four bands (i.e., NIR, R, G,
and B) was also determined; the result is shown in Fig. 15. It
can be seen from the histogram in the figure that the FMBFD
algorithm resulted in a greater number of smaller errors and
fewer larger errors than FSDAF did. Hence, FMBFD performed
better over all the bands, as shown in Table IV. Figs. 16–19 show
the scatter plots for predicted and actual values corresponding to
the satellite image for four bands. It can be seen that the values
predicted by FMBFD are closer to the actual values than those
predicted by FSDAF.

2) Fusion Experiment for the Scene With a Sudden Change:
In order to further compare the performance of FMBFD, and
test its performance when there is a sudden change, we choose
a better fusion algorithm ESTARFM which needs at least two
pairs of low- and high-resolution images on prior and posterior
dates and one CR image on the predicted date to compare with
FMBFD considering all the improvement point. It has a good
prediction effect when there are sudden or large changes due to
the prior and posterior information.

In this part, a Landsat-5 image was fused with an image
from Google map, their resolution is 30 and 2.5 m. The images
corresponding to an area that lies along A city in Shantou, China,
for it has a sudden change in a short time. The longitude and
latitude of the center of the imaged area were 116°31’8.25“E
and 23°16’32.13”N. We used two pairs of HR and CR images



5426 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 15. Distributions of absolute value of error between predicted image and
true satellite image for FMBFD and FSDAF. (a) Blue band. (b) Green band.
(c) Red band. (d) NIR band.

Fig. 16. Scatter plots of actual and predicted values for blue band (darker color
indicates higher density of points; line is 1:1 line). (a) FSDAF. (b) FMBFD.

Fig. 17. Scatter plots of actual and predicted values for green band (darker
color indicates higher density of points; line is 1:1 line). (a) FSDAF. (b) FMBFD.

at the base time. The prior time is January 7th, 2009, and the
posterior time is November 4th, 2012 (at approximately 12
o’clock, GMT+8), the corresponding HR image is shown in
Fig. 20(f) and (e) (which is also the HR image of FMBFD), we
can see there is a sudden change inside the red box. The predict
time is November 28th, 2009, the corresponding HR and CR

Fig. 18. Scatter plots of actual and predicted values for red band (darker color
indicates higher density of points; line is 1:1 line). (a) FSDAF. (b) FMBFD.

Fig. 19. Scatter plots of actual and predicted values for NIR band (darker color
indicates higher density of points; line is 1:1 line). (a) FSDAF. (b) FMBFD.

Fig. 20. Base time and fused image. (a) Predict time HR image on Novem-
ber 28, 2009. (b) Fused result used ESTARFM algorithm. (c) Fused result
used FMBFD algorithm. (d) Predict time CR image on November 28, 2009.
(e) Posterior HR image for ESTARFM on November 4,2012. (f) Prior HR image
for ESTARFM on January 7, 2009 (base time of FMBFD).

images are shown in Fig. 19(a) and (d), and the fusion result
using FMBFD and ESTARFM are shown in Fig. 20(b) and (c).

As we can see in Fig. 20(c), the FMBFD method which only
used one pair image Fig. 20(d) and (f) can predict a sudden
change shown in the red frame correctly as well as ESTARFM.

Then, we test the performance of FSDAF and LMGM using
the afore-mentioned image (base time image is Fig. 20(f)), and
can get the result as Fig. 21. The result is the same as that of the
previous experiment between FSDAF and FMBFD, as shown



LU et al.: FOURIER-TRANSFORM-BASED UNMIXING METHOD 5427

Fig. 21. Fusion results. (a) FSDAF. (b) LMGM.

TABLE V
FUSION RESULTS USING REAL SATELLITE IMAGES

in Fig. 21(a), the sudden buildings in the red box cannot be
predicted correctly, and the result is very close to the base time
HR image, because it only uses two prior image which is also
one of the disadvantages of FMBFD, but FMBFD can extract
information from the two images better, so it can have a better
result. Fusion result using FSDAF is worse than ESTARFM
and FMBFD. As shown in Fig. 21(b), LMGM is not able to
predict the sudden change, but it still has better results than the
original algorithm in the case of differences within categories.
LMGM uses unmixing method to estimate the growth rate of
each category. Meanwhile, it is simpler and more stable than
other algorithms, so its performance is a little worse than others.

Table V shows that FMBFD and ESTARFM perform almost
the same, even FMBFD can perform slightly better than ES-
TARFM in some band. Furthermore, FMBFD has an advantage
over EASTARFM. ESTARFM needs two pairs of low- and
high-resolution images and one low-resolution image, while
FMBFD only needs a pair of images before fusion and requires
less computation. During the above-mentioned fusion process, a
fused image that contains 337× 592 pixels was produced. Using
the base time image, FSDAF and LMGM perform relatively
worse than the other two algorithms, as shown in Table VI, as
they cannot predict the sudden change. However, they also have
good effect in some conditions. Though LMGM and FMBFD
have similar prior condition, FMBFD performs better.

3) Fusion Experiment for Landsat-8 and Modis: In order
to compare the performance and efficiency of the proposed
algorithm with other algorithms on the same public dataset, we
select the dataset provided by Guo [36], from which eight images
L1, L2, M1, M2 and L4, L5, M4 and M5 in the Balle area are
selected as two sets of test data. In the two set images, L1 and
M1 (L4 and M4) are the Landsat and MODIS images at base

TABLE VI
FUSION RESULTS USING REAL SATELLITE IMAGES

TABLE VII
FUSION RESULTS USING LANDSAT AND MODIS

TABLE VIII
COMPUTATIONAL EFFICIENCY COMPARISON

time, respectively, L2 and M2 (L5 and M5) are the Landsat and
MODIS images at predict time (L2/L5 are the label images for
validate the performance of each method).

Three recent new unmixing-based algorithm: RASDF [22],
VSDF [25], and Fit-FC [26] are selected as comparison methods,
whose parameters are the same as the default parameters in its
open source code. All methods were performed on a computer
with i7-8700 K (3.70 GHz) and 80 GB RAM. The VSDF
algorithm runs in Python, while other algorithms, including our
algorithm, all run in MATLAB 2022. The fusion results are given
in Figs. 22 and 23. In Figs. 22 and 23, the upper line is the
comparison between the combination of the fusion results of
near-red, green, and blue bands and the reference image, and
the bottom line is the comparison between the combination
of the fusion results of red, green, and blue bands and the
reference image. The CC, AAD, RMSE, and SSIM values of
each method were calculated in TableⅦ and the computational
efficiency of these methods is given in Table VIII. From the
visual effect, RASDF, VSDF, and our algorithm can maintain
relatively clear texture better, while Fit-FC loses some detail
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Fig. 22. Fusion results from L1, M1, M2.

Fig. 23. Fusion results from L4, M4, M5.

texture structure, which can also be reflected in the SSIM in
Table Ⅶ. In terms of spectral retention (corresponding to CC,
AAD, and RMSE in Table Ⅶ), the proposed algorithm is
indeed slightly worse than the other three algorithms, because
our algorithm is characterized by maintaining the truth value
of the CR image at the predicted time in the low-frequency
part of the frequency domain, however, the resolution of the
low-resolution image in this experiment is only 1/16 of that of
the HR image, so the frequency domain range that can maintain
the truth value is very small. Therefore, this experiment also
shows that our algorithm is slightly less applicable when the
resolution gap between the high- and low-resolution images is
too large. Table Ⅷ shows that our algorithm outperforms the
other three algorithms in terms of computational efficiency. The

calculation time of the proposed algorithm is less than 1/20
of the other algorithms, Therefore, compared with the other
three algorithms, the proposed algorithm greatly improves the
calculation efficiency at the cost of a small amount of spectral
retention errors.

IV. CONCLUSION

The fusion of spatial and temporal images is one way of
overcoming the problem of poor revisit encountered during
HR satellite imaging. However, the traditional unmixing-based
fusion methods determine the reflectance of each category as
the mean value and do not consider the variance within each
category. Moreover, these methods do not consider the PSF.
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Finally, some basic algorithm cannot account for sudden, large-
scale changes. Therefore, in this study, we developed a new
algorithm for the fusion of spatial and temporal satellite images,
i.e., FMBFD, which has the following advantages.

1) It is less computational and can employ precise PSF
which describes the relationship between HR and CR
images, because it is realized in frequency domain in
which the computationally intensive convolution opera-
tions are transformed to the product operation with less
computational.

2) It divides the pixel reflectance for each category into a
mean part and a residual part, and estimates the change
in the mean and residual part, respectively, which is more
precise for the variance among the homogeneous areas.

3) It combines the real CR image and the fitted HR image in
the frequency domain to retain the sharp changes within
categories.

Experiments over simulated images, real satellite ones, and
public dataset are carried out to demonstrate the performance of
the proposed approach.
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