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Efficient Denoising of Multidimensional GPR Data
Based on Fast Dictionary Learning

Deshan Feng”, Li He ™, Xun Wang*“, Yougan Xiao

Abstract—Denoising plays a fundamental role in ground pen-
etrating radar (GPR) data processing and determines the effect
of anomaly extraction, inversion imaging, and other subsequent
processing. In recent years, the sparse dictionary representation
method k-singular value decomposition (K-SVD) based on K-
means, which can adaptively change the basis function according to
the data, has become a hotspot in the field of image denoising and
data reconstruction. Nevertheless, the SVD is a time-consuming
calculation, especially unacceptable in multidimensional problems;
we introduce a dictionary learning method based on the sequential
generalized K-means (SGK), where the dictionary atoms are up-
dated by the arithmetic average of several training signals instead
of a great deal of SVD calculation in K-SVD. We establish a 3-D
road simulation model and conduct finite-difference time-domain
forward numerical simulation to acquire 3-D GPR data. Through
three sets of experiments on 3-D numerical examples and 3-D field
data, the results show that both dictionary learning algorithms can
successfully remove random noise from GPR data even at a lower
input signal-to-noise ratio. The clutter interference in the random
medium forward data can be effectively eliminated simultaneously,
and both denoising methods exhibit promising applications in 3-D
field data. However, the SGK method solves the serious problem
of computational efficiency to a certain extent. The computational
acceleration ratio of SGK remains consistently above 7.5 that
of the K-SVD algorithm in multigroup experiments, with only a
marginal decline in denoising performance.

Index Terms—Dictionary learning, ground penetrating
radar (GPR), K-singular value decomposition (K-SVD), noise
attenuation, sparse representation, sequential generalized

K-means (SGK).
ROUND penetrating radar (GPR), as an efficient nonde-
structive exploration method, can quickly and intuitively
obtain the distribution of underground targets in actual explo-
ration. It has the advantages of high precision and high resolution
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and is often used in environmental, geological applications
[1], [2], [3] and engineering exploration [4], [S], [6], among
other fields. However, in field acquisition, due to the complex
distribution of underground media, environmental interference,
and other factors, the GPR data often contain strong back-
ground clutter and various random noises [7], [8]. Therefore,
to overcome the nonuniform and nonstationary characteristics
of the signals, effectively suppress the noises in the GPR echo
signals, and highlight the reflected wave, scholars have proposed
many denoising methods, which can be roughly divided into
four groups: those based on spatial filtering, transform domain,
subspace, and deep learning.

The spatial filtering method suppresses the random inter-
ference mainly from the point of the difference of spectrum
signature. Xiao and Liu [9] developed a multibandpass filtering,
which appears superior in the suppression of clutter interference
generated by periodic scatterers in GPR data. Kumlu and Erer
[10] presented a novel clutter removal method based on non-
local means, which can efficiently reconstruct GPR images but s
limited to low-level noise. Aiming at the nonstationarity of GPR
signals, Heetal. [11] proposed a self-guided filter combined with
edge information for the denoising process in real time. Fourier
transform and wavelet transform are first applied to random
clutter suppression and direct wave elimination of GPR data by
Starck et al. [12] but the memory consumption of this algorithm
is unsatisfactory [13]. To optimize the performance of wavelet
denoising, discrete wavelet transforms [14] and dual-tree com-
plex wavelet transform [15] have been applied to GPR data
denoising. In the multidimensional case, in order to compensate
for the finiteness of the direction of the wavelet transforms time
base, the multiscale geometric analysis method is introduced,
such as the typical Ridgelet transform [16], Shearlet transform
[17], [18], and Curvelet transform [19], [20].

Image denoising methods based on subspace mainly include
principal component analysis (PCA), singular value decom-
position (SVD), and independent component analysis. These
methods can be regarded as a dimension reduction algorithm.
Chen et al. [21] realized the adaptive clutter reduction of GPR
data by the PCA of ground clutter. Su et al. [22] proposed
a novel clutter suppression method based on principal com-
ponent Gaussian curvature decomposition. The complete en-
semble empirical mode decomposition (CEEMD) is used in
GPR signal processing with a higher spectral—spatial resolu-
tion [23]. There, the combination of the improved CEEMD
and the multiscale PCA overcomes the limitations of man-
ual mode selection [24]. A method based on the SVD of a
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window-length-optimized Hankel matrix [25] is applied to de-
noise the GPR raw data, and the denoising performance is im-
proved, compared with the traditional SVD method and wavelet
transform. Oliveira et al. [26] proposed a method to filter the
clutter reflection noise based on SVD for GPR data but the
level of automation is insufficient. Although these traditional
GPR image-denoising methods can suppress noise to a certain
extent, there are always some shortcomings. In the conventional
GPR data denoising processing, a set of fixed transformation
bases is mainly used, but there is still signal-noise aliasing after
denoising.

Soon afterward, dictionary learning methods that can adap-
tively change the basis function according to the characteristics
of data have been proposed and have a great achievement in
image denoising and reconstruction, medical imaging, and some
other fields [27], [28], [29]. The basic signals have enough
sparse representation on the dictionary, while the random noise
does not, the dictionary learning method can separate the noise
from the effective signals and achieve the purpose of denoising
[30], [31]. Constructing an applicable dictionary is an obbligato
part of sparse representation, it will affect the speed of sparse
computing and exist as the key that determines the quality of
sparse representation. The dictionary can be divided into fixed
dictionary and adaptive learning dictionary, such as commonly
used wavelet dictionary, discrete cosine transform (DCT) dictio-
nary, curvelet dictionary, and so on. Aharon et al. [32] proposed
the K-Singular value decomposition (K-SVD) dictionary based
on K-means clustering, which is the most representative and
widely used in adaptive learning dictionary algorithms. Shortly,
Elad and Aharon [33] realized image denoising through the
K-SVD dictionary and sparse representation.

Recently, with the development of artificial intelligence, deep
learning has been widely used in geophysical data processing
[34], [35] and interpretation. Luo et al. [36] proposed a multi-
scale convolutional autoencoder (MCAE) to fix the denoising
task of GPR data and used the data augmentation strategy
named Wasserstein generative adversarial network to increase
the training dataset of MCAE. A new data-driven method based
on conditional generative adversarial networks is used for clutter
suppression of GPR data by Ni et al. [37]. Sun et al. [38]
introduced the clutter removal neural network, which is trained
with large-scale mixed datasets. These networks have excellent
ability in data denoising but the research is limited to 2-D
datasets.

With the upgrading of hardware facilities, the demand for
3-D GPR technology has been gradually promoted, especially
in the fields of archaeological and heritage protection [39], [40],
[41] and urban road detection [42], [43], [44]. Efficient 3-D
GPR data acquisition brings massive data information, with the
multichannel data acquisition method of 3-D GPR bringing more
abundant and complex noise sources. At present, there are few
studies on the denoising processing of 3-D GPR data, so it is
urgent to further explore the efficient denoising algorithm of
3-D GPR data [45], [46].

The time cost of dataset construction and network training in
the denoising method based on deep learning is nonnegligible,
and the application scenarios are usually limited to 2-D. With
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the development of a sparse representation algorithm, the adap-
tive learning dictionary algorithm compared with fixed basis
transformation also shows a strong ability in geophysical data
processing. Many scholars achieved the 2-D/3-D seismic data
denoising [47], [48], [49] by efficient dictionary learning. Feng
et al.’s [50] research confirms the feasibility of the K-SVD
algorithm for Gaussian noise and clutter removal in 2-D GPR
data. However, the main disadvantage of the K-SVD is that it
needs to perform a multitude of SVD, as mentioned above, which
results in unacceptable computational efficiency, especially in
practical multidimensional problems. Aiming at this problem,
Sahoo and Makur [51] proposed a sequential generalized K-
means (SGK) algorithm and verified its high efficiency in image
denoising [52]. SGK algorithm also has wonderful performance
in multidimensional seismic signals denoising [49] and missing
trace reconstruction [53].

In this article, to evaluate the performance and efficiency of the
proposed SGK algorithm for complex multidimensional data,
three sets of experiments for 3-D GPR data were carried out.
Under the same computing resources, the calculation time and
denoising effect of the two methods are compared in each group
of experiments. The principles of K-SVD and SGK algorithm
are analyzed mathematically in Section II. Then, K-SVD and
SGK methods are used to suppress random noise and clutter
interference of 3-D GPR data, and the results are compared in
Sections III and IV. In Section V, we draw a conclusion that the
SGK algorithm is an efficient 3-D adaptive denoising method.

II. METHOD

Sparse representation is to represent a natural signal by linear
superposition of a set of basis vectors, which belongs to an
unsupervised algorithm [54]. The sparse representation of the
signals needs to achieve the two goals of sparse coding and
dictionary learning, and these two steps are calculated alternately
until the end of the iterative calculation [55].

A. Sparse Coding

In the sparse representation model, the observed data Y can
be expressed as

min || X||, s.t. Y = DX (1)

where X is the sparse coding coefficient, and || ||y is the Iy
norm, its value is the number of nonzero elements of a vector
in X. The sample set Y (NxM) is represented by M column
vectors y; (Nx 1). The dictionary matrix D (Nx K) is composed
of K signal-atoms for columns, d; (Nx1). It is assumed that
Y can be reconstructed by linear multiplying the dictionary
D and the sparse coefficient X. When K > N, D is called an
overcomplete dictionary, which leads to the unique solution of
the linear equation. To find the optimal solution X, we introduce
the constraints:

Vix? = argmin |Y — D"X||% s.t. Viljzill, < To ()

Ty is a constant, called sparsity constraint threshold. There
are two variables D and X to be optimized. In the sparse coding
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stage of dictionary learning, the main goal is to calculate the
sparse coefficients X based on a given signal Y and the fixed
dictionary D. However, the exact rigorous solution of sparsest
representations is an NP-hard problem [32], so we have to
choose the orthogonal Matching Pursuit (OMP) algorithm [56]
to calculate the approximate solution of sparse coefficients. In
the first sparse coding calculation, we use the DCT dictionary
in the fixed dictionary as the initial dictionary.

B. Dictionary Update via K-SVD

In the dictionary update stage, the K-SVD algorithm uses
a column-by-column update method, the sparse coefficient X
j is fixed, and any dictionary atom dj, is selected in order in
dictionary D; for update calculation. The calculation objective
function can be expressed as

L
Y -3 dyd
j=1

2

1Y — DX[3

F
2

=Y =Y da) | - diaf

= || Bk — dirh - 3

The kth row vector of X corresponding to d}, is x* .. The error
matrix generated by the fitting of the column vector d; except
d}, and its corresponding coefficient row vector x; is defined as
E};.. Now, our optimization problem can be modified into

min || By — dyay || - “
kT
We use the SVD algorithm to carry out the update process,
find the matrix dj, xx* 7 with the minimum distance from E and
the rank of 1 to obtain the optimal solution d. However, if Ej,
is directly decomposed by SVD, the updated x*; will be not
sparse, resulting in dj, unsatisfying the sparse condition, so we
define the index set wy = {i|1 <1i < M,x% (i) # 0}, and let
2, represent a matrix of size Nx |wy|, the number at (w(i), i) is
1, and the other positions are 0. By multiplying (4) by a nonzero
limiting factor {2y, the result is as follows:

I
F

At present, the new matrix E,f can be directly decomposed
by SVD

B =UxvT, (6)

The first column vector of the left singular matrix U is set as
dy, and the multiplication of the first column vector of the right
singular matrix V and the first singular value »(11) is taken
as x* . After getting x* p, update it to the original x* 7. So far,
the update of the kth column atom in the dictionary has been
completed. Next, we update D; column by column until the
last dictionary atom calculations are completed to form a new
dictionary D ;, and then the cycle is performed once to solve
Xin (2).
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C. Dictionary Update via SGK

K-SVD is widely used in sparse representation, but the ex-
istence of massive SVD calculations hinders its application in
complex multidimensional problems. Therefore, the SGK dic-
tionary learning algorithm is proposed to improve computational
efficiency. The objective function of SGK can be expressed as

Y,z = argmin ||V — D”XH% s.t.Vizi = e, 7

where e,, is the unit vector, p denotes the pth element of x;
that is 1, and the remaining elements are all 0. In terms of
constraints on the coefficient vector, the K-SVD algorithm uses
the sparsity constraint expressed in (2). The difference is that in
the SGK algorithm, the coefficient vector is the unit vector. The
constraint of this special structure means that for the calculation
of the optimal sparse coefficient, the number of sparse coding
calculations is reduced from p to 1, with a decrease in the sparse
coding process time. According to the derivation of (5), the
objective function is defined as

7 = || B - ®

different from the K-SVD algorithm, which uses SVD to min-
imize the objective function, the SGK algorithm chooses the
least square method to solve the problem. First, we calculate the
derivative of J with respect to dy, and set the result to O

21 _
ody,
solving (9) leads to

~2 (Bf - i) (k)" =0 ©)

-1
dy, = EFR (xﬁ)T(x%(x%)T) (10)

The above formula can further be expressed as

Ef ()" = [Ye = diay | («8)"
i#k
k\T i (kT
=Yr(eh) + ) dexk(ah) . (D
ik

The meaning of Yy is the same as Y in (3) but the selection set
wy, selects all the nonzero elements in x* 7, so its size is smaller
than Y. Since V;, ||x;]|o = 1, as constrained by (7), we can get
the formula
i (kT

Vi;ﬁka(IR) =0 (12)
where x*; is a smaller version of the row vector x* - and all of
its elements are 1, and Y5 (x*p)" can be written as the sum of
all column vectors of Y

YR(QJ%)T => v

1EWE

13)

supposing that there are N*,. nonzero elements in the row vector
x* s, then
k (kT _ ark
Th (Jc R) =N,

T

(14)
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according to formulas (13) and (14), (10) can be written as

ZiEwk Yi

de = =54

s)

Equation (15) is the updating formula of the kth atom in
dictionary D. In the process of dictionary updating, the SVD
operation with a huge amount of calculation shown in (6) is
replaced by the simple summation of training samples in the
SGK algorithm. Therefore, SGK has become a more efficient
sparse representation calculation method than K-SVD. Next,
we will use several experiments to verify the performance of the
two dictionary learning methods.

III. NUMERICAL EXPERIMENTS

Due to the environmental interference, the limitation of hard-
ware equipment and the inhomogeneity of the underground
medium, the GPR data not only includes the reflected wave of
the underground target but also various noise and interference
waves. Data with noise can be modeled as dn = d + n, where
dn denotes the noisy observed data, d is noise-free raw data,
and n represents the noises, respectively. We set up comparative
experiments on the results of denoising 3-D synthetic data and
field data. In the case of known original clean data, the data
noise level is quantified by signal-to-noise ratio (SNR). The
calculation formula is as follows:

SNR. = 10 1og10d— (16)

Larger SNR proves a lower noisy level. The normalized
mean-square error (NMSE) is selected to represent the denois-
ing performance. The smaller NMSE value represents a better
denoising result.

=1Lz (17)

where d represents the noisy data or processed data.

A. Random Noise in Homogeneous Medium

A simulated layered model with the region of 0.4 x 1.6 x
0.8 m based on real road structure is established as Fig. 1. In
the asphalt layer, cracks with a depth of 0.10 m, a width of
0.02 m, and a length of 0.4 m are set throughout the entire asphalt
layer. At the junction of the cement layer and the soil layer, due
to the subsidence of the soil layer, an irregular cavity with a
radius of about 0.04 m appears at the junction. The center of the
irregular cavity is located underground (1 m, 0.2 m, 0.35 m).
Both anomalous bodies are filled with air, that is, the relative
dielectric constant is set to 1, and the conductivity is set to 0.

The discrete mesh size is 40 x 160 x 80, with a mesh interval
of 0.01 m, and the 15-layer conductive perfectly matched layer
is used as the absorption boundary. The Ricker wavelet with
a main frequency of 900 MHz is placed on the surface as a
pulse source. The simulation time window is 12 ns, the sampling
interval is 0.01 ns, the transceiver distance is 0.08 m, and the
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(w A {Survey line

Air

0.8m

Fig. 1. 3-D road simulation model.

TABLE I
PARAMETER DISTRIBUTION OF ROAD MODEL

Media types ~ Thickness (m) &r o
Air 0.50 0
Asphalt 0.15 3
Cement 0.20 6 5
Soil 0.40 12 10

channel spacing is 0.02 m. A total of 74 channels of data are
recorded and 20 survey lines are laid in the Y-direction. The
forward method we choose is the finite-difference time-domain
algorithm. The forward result is obtained in Fig. 2(a). By adding
Gaussian noise with a mean value of 0 and a standard deviation
of 30 to the original data, the noise-added forward result is
shown in Fig. 2(d). The SNR of the noisy image obtained by (16)
is 18.11 dB. The Gaussian noises make the profile messy and
interfere with the subsequent processing and interpretation of the
data. For the purpose of testing the denoising effect, the K-SVD
and SGK denoising algorithms are used in the noise-added
forward data, respectively. The data size of the forward result of
the above-mentioned model is 20 x 74 x 1200, and the selected
atomic block size is 4 x 4 x 4, with a total of 64 atoms. The
moving step size of the 3-D atom block in each direction is
set to be 2. In this case, the size of the sample signal d is
64 x 194 076. The denoising results shown in Fig. 2(b) and
(c) illustrate that the noise and the effective wave are separated
perfectly, and the reflected wave in the profile is intact and
clear. Fig. 2(e) and (f) shows the random noises removed by
the two methods, respectively. And the parameter distribution
of the 3-D road simulation model is listed in Table 1. There are
some effectively reflected waves with the same arrival time as
the direct wave in the denoising residual but this hardly affects
the overall denoising effect of the algorithm.

The SNR of the noisy image is greatly improved by the two
algorithms, and the NMSE is reduced by an order of magnitude.
The calculation speed SGK is about eight times higher than that
of K-SVD in the case of ensuring the denoise effect, as given in
Table II. Observing the A-Scan data in Fig. 3, the waveform of
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Fig.2.

by K-SVD. (f) Noise removed by SGK.

TABLE II
COMPARISON OF DENOISING RESULTS OF THE K-SVD AND SGK (BOLD)
METHODS FOR HOMOGENEOUS MEDIUM MODEL

Time (s) SNR NMSE

Noisy data - 18.11 0.0155
K-SVD 455.15 24.19 0.0038
SGK 57.40 23.53 0.0041

the reflected wave after denoising by the K-SVD dictionary and
the SGK dictionary corresponds well to the original data, and the
data are basically on the same amplitude. It can be concluded
that the denoising effects of the two methods are prosperous
since the SGK algorithm updates the dictionary atoms by the
arithmetic means of the training signal, and the accuracy is
partially reduced compared with the K-SVD algorithm while
improving the calculation speed.

In the learning process, the atomic blocks overlap each other,
so the block-based representation is highly redundant. This
overlapping technique and highly redundant representation are
crucial to the denoising effect. Compared with the K-SVD
method, the main difference of SGK is the method of dictionary
updating. The dictionary after learning is reshaped into a 2-D
matrix with an atom size of 8 x 8, and each dictionary has a
total of 64 atoms. The first eight atoms of the three dictionaries
are taken as a 3-D example. Comparing Fig. 4(b) and (c) with
(a), the sparse coefficient distribution of the learning dictionary

X (m)

Y (m)

X (m)

3-D synthesis example of homogeneous media. (a) Clean data. (b) Denoised data by K-SVD. (c¢) Denoised data by SGK. (d) Noisy data. (e) Noise removed

L5 x10* (2)
——Clear
1+ I\‘ Noisy 1
no - K-SVD
st 4V e SGK A
[V pmmmmms pmmme e
0 [\ - :
N T
“\\ | b
-0.5r \\I, / [N D b
/ 1 A \\
1 ‘/ L L ‘n \\-x L \\ L
D = N
] 0o S 2 4 16 8 10+, 12
= // i " N
E K 1 \ \\
K4 i \ N
£ 'x10® (b) - \ (©) .
< 3
2

~

0 e SN \"\v-'-b

-1

-2

-3

2.5 3 3.5 4 4.5 5 6 7 8
Times /ns

Fig.3. (a) Overall situation. (b) Partial enlargement of data from 2.5 to 4.5 ns.
(c) Partial enlargement of data from 5 to 8 ns.

is not completely random but has a certain regular redundant
structure, and there is a strong local self-similarity. The atoms
of K-SVD are more structural; in contrast, the SGK algorithm
has the rules of updating the atoms to take the average number of
data, which makes the atomic structure messier and less regular.
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Fig. 4. 2-D and 3-D display and comparison of different dictionary atoms.
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To further explore the denoising performances of the two
methods and the speed improvement of the SGK algorithm,
the comparative experiments of the two methods at different
noise levels and under different size models are carried out.
To compare the calculation time fairly, each of the following
examples is repeated three times under the same computing,
and the three times average is taken as the final result.

The change of the output SNR with the different input SNR
resources is illustrated in Fig. 5 shows when the noise variance
is 10, the denoising effect of the K-SVD method and the SGK
method is almost the same. In other cases, the removal effect of
the K-SVD algorithm with random noise is slightly better than

Comparison of the SNR and time consumption of each denoising result by K-SVD and SGK methods with the increase of noise variance.

that of SGK. With the decrease in the input SNR, the output SNR
of both algorithms is maintained above 20 dB, which proves
the superiority of the dictionary learning denoising method in
a low SNR. In the meantime, for the data of the same size, the
calculation time of SGK is almost the same, while K-SVD has
a certain fluctuation. The SGK method is much faster than the
K-SVD algorithm under the same computing resources, and the
computational efficiency has been maintained at about 7.5x.
Table III lists the time-consuming comparison of the algorithm
under the same calculation conditions when processing data of
different scales. With the increase in data size, the calculation
speed of SGK is still about 7.5 x faster than K-SVD. Therefore,
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TABLE III
COMPARISON OF COMPUTATIONAL COST OF THE K-SVD AND SGK (BOLD)
METHODS FOR DIFFERENT DATA SIZES

Datasize 1200x75x20 1200x75x100 1200%x75%200
K-SVD 455.15 2480.28 4989.55
SGK 57.40 321.18 655.19

15

0.2 o 0.2 0
X (m) Y (m) X (m)

Y (m)

Fig. 6. Diagram of the road simulation model. (a) Homogeneous medium.
(b) Random medium.

the SGK algorithm has a great efficiency advantage in processing
massive 3-D GPR data.

B. Clutter Interference in Random Media

In the actual detection, because the underground material is
not evenly distributed, the electromagnetic wave propagates in
the medium with complex distribution, which will produce a lot
of scattering and diffraction so that there is substantial clutter
interference in the reflection profile, affecting the depth and
accuracy of exploration, influencing interpretation. Therefore,
we adapt an exponential elliptic autocorrelation function to
construct a random medium model to consider the performance
of dictionary learning for clutter removal, and the function
expression is

22 g2 22
¢ (x,y,2) = exp [\/(Cﬂ + I8 + 02)

where a, b, and c represent the autocorrelation length of the
medium in the x, y, and z directions, respectively. Fig. 6(b)
is a road simulation model of the random medium, in which
the autocorrelation length a = b = ¢ = 0.1 m, the variance is
0.1, the mean value is the background medium value, and the
other model parameters are consistent with the parameters of
the homogeneous medium model.

Fig. 7(c) is the forward section of the random medium model.
The clutter that affects the identification of effective signals is
removed by dictionary learning, and the homogeneous medium
forward data are used as the original noise-free data.

The selected atomic block size is 4 x 4 x 4, with a total of
64 atoms of two denoising algorithms. The moving step size
of the 3-D atom block in each direction is set to be 2. Fig. 7
shows that both dictionary denoising algorithms complete the
perfect separation of clutter and effective wave. It can be seen
intuitively from the comprehensive Fig. 8 and Table I'V that both

(18)
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TABLE IV
COMPARISON OF THE DENOISING RESULTS OF THE K-SVD AND SGK (BOLD)
METHODS FOR RANDOM MEDIUM MODEL

Algorithm  Time(s) SNR (dB) NMSE
Clean data - 19.72 0.0107
K-SVD 450.47 20.97 0.0080
SGK 60.19 20.53 0.0088

methods have a good suppression effect on clutter, and the SGK
algorithm improves the calculation speed by 7.5x compared
with the K-SVD algorithm while ensuring the denoising effect.

C. Field Data Experiment

The field data were acquired from the southwest side of the
water purification plant in the east district of Huangpu District,
Guangzhou City. The water engineering construction is laid
along the current Hongguang Road, and the new pipe jacking
length was 113 m. To find out whether there are road diseases
in the pipe jacking pipeline after the construction of the pipe
jacking project of the water conservancy project, and to eliminate
the potential safety hazard of ground collapse, the Italian 3-D
GPR (Stream X) is used to ascertain the underground situation.

The central frequency is 200 MHz, and the sampling time is
80 ns. Three wire harnesses with a length of 0.113 km are ar-
ranged to achieve full coverage measurement, and the detection
workload is 0.339 km. We selected the 3-D field GPR data with
a size of 512 x 400 x 14, as shown in Fig. 9(a), for denoising
experiments. It can be found that the underground medium is
unevenly distributed, the horizon information is rich, the clutter
reflection is excessive, and the high-frequency noise in the deep
is intense, which influences the processing and interpretation of
the effective wave.

The selected atomic block size is 4 x 4 x 4, a total of 125
atoms. The moving step size of the 3-D atom block in each
direction is set to be 2. Therefore, in this example, the size
of the sample signal d is 125 x 304 470. The comprehensive
Figs. 9 and 10 demonstrate that both dictionary learning methods
effectively eliminate random noise and clutter, resulting in a
significant improvement of the SNR. The fifth profile of the field
data is visually compared through a 2-D display to evaluate the
denoising results. The corresponding outcomes are illustrated
in Fig. 9(d)—(f) as well as in Fig. 10(c) and (d). The loss of
effective waves is negligible, and the denoising effects of the two
methods are almost the same. Moreover, the K-SVD algorithm
takes 1357.50 s, while the SGK only takes 167.74 s, and the
speed is increased by nearly eight times.

The 3-D GPR data can provide views in three directions: ver-
tical section, horizontal plane, and cross section. The acquired
data contain abundant information. To examine the changes in
the horizontal slices crucial for interpreting 3-D radar data after
denoising, we conducted C-Scan demonstrations. Four consec-
utive horizontal slices at different travel times are selected, as
shown in Fig. 11(a). By observing the results and residuals of
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denoising results.

the SGK algorithm denoising processing shown in Fig. 11(b)
and (c), it is evident that clutter interference in the reflection
profile is reduced, ensuring clear and continuous variations of
target hyperbolic reflected waves in the horizontal direction,
thus guaranteeing accurate subsequent GPR data interpretation.
Furthermore, we selected three continuous horizontal slices
near 63 ns, as shown in Fig. 11(d). The presence of deep
high-frequency noise obstructed the observation of variation
characteristics in reflected waves horizontally. In Fig. 11(e) and
(f), the reflection profile became complete and distinct with more
apparent trends in reflection wave changes observed. The signals
within residual data profiles exhibited discontinuity with low
amplitude consistent with noise characteristics.

In Fig. 12, the atomic representations of the two dictionaries
are highly redundant and contain a large amount of data structure
information. Using this as prior information to denoise the data
will enhance the completeness of the atom, making the sparse

representation more reasonable and accurate, thereby improving
the quality of the signal in the complex area. Observing the 3-D
display of the first 16 dictionary atoms, the structure information
of the K-SVD algorithm dictionary is more complex.

To observe the denoising results more intuitively, we selected
the A-scan at the 328th signal of the 10th profile and the spectrum
analysis is carried out by short-time Fourier transform (STFT).
As can be seen from Fig. 13, the denoising method effectively
suppresses the high-frequency oscillation interference in the
deep part, and the denoising result of the SGK algorithm is
smoother, which also leads to the loss of some effective signals.
The spectrum analysis results intuitively show that the central
emission frequency of the data acquisition is 200 MHz, and
the amplitude of the deep effective signals with high-frequency
noise is small. By analyzing the STFT results in Fig. 13(b)—(d),
we can figure out that both algorithms can effectively suppress
high-frequency noise; in contrast, the removal effect of K-SVD
on high-frequency noise is slightly inferior to the SGK, but the
damage of SGK to deep effective signals is more tremendous. In
general, both algorithms can effectively remove noise, and the
calculation speed of the SGK algorithm is about eight times that
of the K-SVD algorithm.

IV. DISCUSSION

The classical K-SVD dictionary learning method is limited
in its application to complex high-dimensional problems due
to the requirement of multiple SVD calculations. Therefore,
we propose the SGK efficient dictionary learning algorithm for
denoising 3-D GPR data. In this algorithm, called SGK, the
dictionary atoms are updated through the arithmetic mean of
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multiple training signals, which eliminates the need for numer-
ous time-consuming SVD calculations. Both dictionary learn-
ing algorithms demonstrate excellent performance in removing
random noise and clutter interference from 3-D GPR data.
Compared with the K-SVD algorithm, SGK achieves a more
than 7.5 x increase in calculation speed while slightly sacrificing
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Removed noise. (a) Noise removed by K-SVD. (b) Noise removed by SGK. (c) 2-D profile of the K-SVD noise. (d) 2-D profile of the SGK noise.

denoising effectiveness. Consequently, the fast dictionary learn-
ing algorithm SGK holds great potential for addressing high-
dimensional geophysical problems. When employing dictionary
learning algorithms, designing appropriate atoms is a crucial
factor that affects both denoising effectiveness and efficiency.
We take the 3-D forward data of the random medium as an
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example to discuss the parameter selection principle of the SGK
algorithm.

The SNR and NMSE of the synthetic data are 19.72 and
0.0107, respectively. To discuss the selection of parameters
such as the number, size, and step size of atoms in dictionary
learning, we conducted four sets of comparative experiments for
each parameter, and finally determined the optimal parameters.
Each group of experiments was repeated three times under
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C-Scan near 40 ns and 63 ns of the field data and its denoising results. (a) Field data. (b) Denoised data by SGK. (c) Noise removed by SGK. (d) Field

TABLE V
DENOISING RESULTS AND CALCULATION TIME OF DIFFERENT K (L=4, §=2)

k SNR NMSE Time (s)
49 20.44 0.0092 54.52
64 20.53 0.0080 60.19
100 20.26 0.0094 98.89
125 20.10 0.0098 123.71

identical conditions, and the average value from these repeti-
tions was considered as the final result. When discussing the
parameters, we solely focused on the proposed method; hence,
all aforementioned experiments were denoised using the SGK
algorithm. Based on the input 3-D GPR data’s dimensions, we
needed to select appropriate values for k (number of atoms), /
(size), s (moving step size), and other relevant parameters to
achieve optimal denoising effect. By employing a controlled
variable approach, three groups of experiments were designed
with their results presented in Tables V-VII. The optimum
results in the three groups of experiments were boldly labeled
respectively.

Currently, there is no established standard for selecting pa-
rameters such as the number and size of atoms. The selection
process primarily relies on the dimensions and structure of the
input data, guided by empirical values. From the aforementioned
experiments, it can be observed that when atoms are small
in number and size, the learning of data structures remains
incomplete, resulting in a higher presence of noise residues.
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of the denoised data using SGK.

TABLE VI
DENOISING RESULTS AND CALCULATION TIME OF DIFFERENT L (K=64, s=2)

/ SNR NMSE Time (s)

2 19.92 0.0102 64.26

3 18.54 0.0140 76.62

4 20.53 0.0080 60.19

5 12.92 0.0510 83.48
TABLE VII

DENOISING RESULTS AND CALCULATION TIME OF DIFFERENT S (K=64, L=4)

s SNR NMSE Time (s)
1 21.02 0.0079 513.78
2 20.53 0.0080 60.19
3 16.44 0.0227 25.15
4 10.57 0.0877 10.42

Conversely, if atoms are excessively large in number and size,
they may impair effective signal detection by reducing SNR
while significantly increasing computational time. In addition,
the step size for atomic movement exerts a substantial influence
on both calculation results and time; hence, parameter selection
should align with input data dimensions. The optimal parameters
vary for different input data, necessitating further investigation
into the integration of deep learning to enhance the automation

Comparison of field data denoising results. (a) A-scan comparison. (b) STFT of the filed data. (c) STFT of the denoised data using K-SVD. (d) STFT

of parameter selection and achieve true adaptability in dictionary
learning algorithms.

V. CONCLUSION

Aiming to address the issue of multidimensional GPR data
processing, three sets of data denoising experiments were con-
ducted, yielding the following conclusions.

1) The performance of both methods in eliminating random
noise is nearly identical, with K-SVD slightly outperform-
ing SGK. As the input SNR of the forward modeling
results decreases from 23 to 14 dB, the output SNR of the
two algorithms is maintained above 20 dB, demonstrating
that the dictionary learning denoising method excels at
low SNR conditions.

Both dictionary algorithms effectively leverage prior in-
formation from sample data and adaptively extract features
for removing random noise and clutter interference during
3-D GPR field data processing applications, which holds
significant practical implications.

In comparison, it can be observed that the denoising effect
achieved by the SGK dictionary algorithm is comparable
to that of K-SVD while maintaining an operation accel-
eration ratio exceeding 7.5x. Thus, the SGK dictionary
learning algorithm proves to be an efficient approach for
multidimensional data processing.

2)

3)
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