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PlanetScope Time Series Data Using
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Abstract—Accurate vegetation behavior forecasting is essential
for understanding the dynamics of plant life in the context of
climate change and other natural or human-induced disturbances.
Recurrent neural network (RNN) deep learning (DL) models repre-
sent a modern approach to predict vegetation behavior with a high
level of precision. In this article, we explore the potential of differ-
ent DL and more traditional methods to forecast the normalized
difference vegetation index (NDVI), which is directly related to the
state of vegetation and its dynamics. A time-series dataset consisting
of 70 NDVI images calculated from PlanetScope data from April
2017 to January 2023 was used. Initially, all selected methods were
evaluated and compared. From the six tested methods, simple RNN
(SRNN) proved to be the most accurate method for predicting
vegetation dynamics. The SRNN model results achieved a mean
RMSE of 0.051 when compared to the actual 2022 NDVI values.
The high accuracy was reflected in all five studied vegetation classes
characterizing the selected Mediterranean test area. The SRNN
method performs very well in most months, except in autumn where
it underestimates NDVI values. To get a thorough insight into the
results, we also compared them to the Sentinel-2 NDVI data and
climate data consisting of temperature and precipitation values. It
was found that most of the prediction differences were due to the
irregular variations in meteorological conditions during the year
analyzed. The predictive capabilities of RNNs are an effective tool
for forecasting vegetation dynamics but can be further improved
by incorporating climate data into the prediction process.

Index Terms—Climatic data, deep learning (DL), normalized
difference vegetation index (NDVI), satellite imagery, spatio-
temporal prediction, vegetation dynamics.

I. INTRODUCTION

IN THE face of ongoing climate change and rapid human
interventions, the necessity of monitoring vegetation dy-

namics is inevitable [1] and important for effective biodiversity
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management. Variations in spectral reflectance occur in vege-
tation phenology due to changing life cycle patterns, seasonal
shifts, and prevailing weather conditions. To study the intrinsic
characteristics of vegetation, it is necessary to consider the
spatio-temporal dynamics of the individual units that make up
the observed vegetation types.

The prediction of vegetation behavior consists of detecting
the state of vegetation by observing it from the same observation
point(s) over different periods and scales. In particular, the study
of seasonal phenology and productivity patterns has the potential
to be especially useful for identifying or forecasting such events
[2]. Remote sensing technology can comprehensively detect
and monitor vegetation dynamics using multitemporal remote
sensing observations.

With a wide variety of satellite data available today, the
analysis of time series of satellite images is currently one of
the most important trends in the study of vegetation. Time series
analysis has the potential to reveal long-term surface dynamics
based on the temporal profile of the data for a given pixel.
Time series data with higher temporal resolution provide a
more accurate representation of vegetation changes, including
seasonal variations, gradual shifts, and sudden, abrupt changes
and are often used to evaluate smaller/shorter-term changes [3].
Vegetation indices derived from satellite data are commonly
used to monitor vegetation, as they provide a high correla-
tion with vegetation growth. Of the myriad indices used for
vegetation analysis, the normalized difference vegetation index
(NDVI) is the best known and most commonly used, followed
by the enhanced vegetation index (EVI) and other specific
vegetation-related indices used in vegetation prediction research
[4], [5]. The NDVI is inversed by the ratio of near-infrared (NIR)
and red (R) reflectance [6] and its values range from −1 to
1, with higher values indicating greater photosynthetic activity.
Therefore, it is crucial for monitoring various global vegetation
dynamics over time [7]. The continuous change in NDVI over
time during plant growth provides the most intuitive information
for reconstruction purposes [8]. Clouds and poor atmospheric
conditions tend to lower the NDVI values [9] and cause sudden
drops in the time series, which we need to remove by smoothing
techniques [10].

Alterations in climatic factors have a considerable influence
on vegetation dynamics, with precipitation, solar radiation, and
temperature playing a central role in vegetation growth [11].
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In vegetation prediction studies, the combination of NDVI and
meteorological data is therefore the most commonly used dataset
[5]. In the work of [12], mean precipitation in July was the most
important improvement parameter for the predicting vegetation
of vegetation among many environmental variables tested.

In recent years, we have observed a paradigm shift in the pro-
cessing and analysis of images through the use of machine learn-
ing methods. Machine learning offers the potential for effective
and efficient classification of Earth observation images. One of
its main strengths lies in its ability to handle high-dimensional
data and accurately define classes with very complex features
[13]. In previous research, the prediction of vegetation behavior
has been performed using various machine-learning techniques
[5], [14], [15]. In particular, deep learning (DL), a branch of
cutting-edge machine learning techniques, has gained great
popularity as the method of choice for predicting vegetation
patterns from image data [1], [12], [16]. This is partly due to
recent developments in algorithms and increased computational
resources. In addition, the ability of DL to autonomously learn
and extract both linear and nonlinear hierarchical features from
data, facilitated by its multilayer architecture, has played a
significant role in its application for vegetation prediction [17].
DL models can provide very accurate classification results if
they have sufficiently large data sets and appropriate labeling.
Therefore, good reference (training) data is of great importance
when dealing with DL.

A widely used framework in the field of DL is a recurrent
neural network (RNN), which has been used for vegetation
monitoring and prediction for nearly a decade [18], [19], [20],
[21]. RNNs are well suited for tasks that require sequences, such
as time series prediction, natural language processing, machine
translation, voice recognition, image labeling, and others, as they
are capable of processing inputs of varying lengths [22]. Unlike
other deep networks, such as convolutional neural networks,
which typically lack connections between neurons within the
same layer, the RNN contains feedback loops in its hidden
layer to capture sequential information in the data [23], such
as satellite time series, to perform classification or prediction.
RNNs have the ability to use the information of previous in-
puts to generate the following outputs of the sequence. This
is done by feeding the results of a particular layer back into
the input layer to predict the output. But at the same time, the
computation can be very slow and struggle with the problem of
vanishing gradient. This problem occurs when the gradients used
to calculate the weight updates approach values close to zero,
making the network unable to acquire new weight information.
This problem becomes more pronounced as the depth of the
network increases. Therefore, a DL model has been developed
that effectively addresses the vanishing gradient issue, called
long short-term memory (LSTM) [24]. It has similarities with
a conventional RNN but differs in that each standard node
in the hidden layer is replaced by a memory cell [22]. The
most important feature of the LSTM is its cell state, which has
the ability to store information over large time intervals. This
attribute enhances the model’s efficacy in preserving long-term
patterns in data sequences [18]. In addition, the LSTM is superior
to the conventional RNN because it is better able to address the

problems that arise in backpropagation through time (BPTT). In
addition to a lower probability of experiencing vanishing gra-
dients, it also includes a “gradient clipping” method to prevent
explosive gradients during BPTT [18]. To predict vegetation
dynamics over large areas, [1] implemented an LSTM model
using moderate resolution imaging spectroradiometer (MODIS)
NDVI time series data and achieved high accuracy. More re-
cently, Ahmad et al. [18] used an optimized convolutional LSTM
to make NDVI predictions for soybean at multipixel field level,
also using MODIS time series data. The same type of dataset
and LSTM model was used to forecast vegetation health in
Kenya [25] and to predict Mediterranean vegetation on the Greek
island of Lesbos [26]. All mentioned authors found that LSTM
provides sufficiently accurate forecasts, especially in the context
of drought monitoring and vegetation forecasting. These results
emphasize the superior performance of LSTM compared to a
shallower neural network.

Another approach that effectively addresses the problem of
the vanishing gradient inherent in a standard RNN is the gated
recurrent unit (GRU) method [27], which can also handle multi-
variate time series image data. Compared to LSTM, GRU is
characterized by a smaller number of parameters and a rel-
atively simpler training process. Numerous researchers have
performed comparisons between GRU and LSTM [21], [28],
[29], and their findings consistently indicate that GRU can
achieve equivalent or even better learning outcomes than LSTM
in various applications. For example, in plant disease detection
and prediction, it has been shown to perform well when time
series data are included [30]. Zhang et al. [31] showed that the
GRU-based vegetation model has a high degree of accuracy in
simulating vegetation dynamics in arid and semi-arid regions.
In addition, the model proved to be adept at recognizing the
temporal characteristics of dynamic data by integrating static
information holistically. The findings of [32] also show that the
GRU model is a viable solution for predicting forest phenology.
It not only provides valuable insights into future forest growth
but also lays the foundation for the practical application of forest
phenological prediction. However, it should be noted that GRU
as a variant of RNN has its limitations. It focuses primarily on
retaining sequential information but does not examine the sig-
nificance of individual elements within sequences, and learning
GRU is very difficult for long sequences [33]. Nevertheless,
GRU has emerged as the preferred method for phenological
prediction due to its simple internal structure and relatively short
training time, as pointed out in [32].

This study addresses the performance of six different vegeta-
tion prediction methods: three RNNs [a Simple RNN (SRNN),
an LSTM and a GRU DL model], a simple 1D convolution
(Conv1D), and two more traditional methods [random forest
(RF) and autoregressive integrated moving average (ARIMA)]
using very high-resolution PlanetScope time series images be-
tween the years 2017 and 2023. PlanetScope satellites have the
ability to observe the Earth’s surface with a high combination
of temporal and spatial resolution and have rarely been used for
vegetation prediction. For our study, we evaluated the suitability
of the six mentioned models for vegetation prediction in a
Mediterranean area in Slovenia. We also evaluated the model
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Fig. 1. Study area is located in the south-western part of Slovenia. The small
test subset is marked with a red square.

predictions obtained from the PlanetScope images, by compar-
ing them with Sentinel-2 images and climate data (temperature
and precipitation), which served as proxies for climate patterns,
as these variables are directly related to vegetation activity.

The goals of this article are as follows.
1) To develop and evaluate DL and more traditional models

using high spatio-temporal resolution PlanetScope time
series data.

2) To identify and predict the behavior of five different veg-
etation classes in a Mediterranean area for the year 2022.

3) To correlate the results with other satellite data (Sentinel-
2) and climate data (temperature, precipitation).

The structure of this article is outlined as follows. Section II
provides an insight into the area of investigation, the materials
used for the task, and the methods used for model training and
testing. This section also provides a detailed explanation of the
RNN model. In Section III, we present the results of our models,
perform an evaluation, and compare them with the Sentinel-2
time series data. We also compare findings with the climate data.
Section IV is dedicated to a comprehensive discussion of the
results obtained. Finally, in Section V, we highlight possible
future trends that should be investigated.

II. DATA AND METHODS

A. Study Area and Data

We performed the analysis in the coastal region in the south-
western part of Slovenia (see Fig. 1). The region is relatively
flat, which means that the satellite images are not affected by
shadows caused by the terrain. The climate is Mediterranean,
characterized by an average annual temperature of 14.4 °C and
an average annual precipitation of 1056 mm per year. The vege-
tation types in the area include five main classes of land use/land
cover (LULC): forest, grassland, vineyards, olive groves, and
trees and bushes. To manage the computational complexity of
the models, our study focused on a smaller test area of 600 ×
600 m (40 000 PlanetScope image pixels). More than 70% of
the test area is covered by the five observed vegetation types.

1) Satellite Data: In this study, we used commercially avail-
able PlanetScope images with a spatial resolution of 3 m ob-
tained from the Planet data service platform [34]. PlanetScope
provides near-daily images of the Earth’s surface, which is par-
ticularly useful for areas that are frequently covered by clouds.

Fig. 2. Original PlanetScope satellite image taken on July 15th, 2022 (left)
and the vegetation classes contained in the reference data (right).

TABLE I
LULC CLASSES DEFINED IN OUR STUDY AREA IN PERCENT AND BY NUMBER

OF PIXELS

The data includes four reflectance bands (blue, green, red, and
NIR). We downloaded Level 3B PlanetScope images, meaning
that the images were already orthorectified and included geomet-
ric, radiometric, and atmospheric corrections [35]. The datasets
were acquired in geo-tiff format and projected to UTM Zone 33N
on the WGS 84 ellipsoid. We constructed a time series from April
2017 to January 2023, limiting to a single noncloudy image per
month. We calculated the NDVI for all 70 noncloudy images. To
compare the calculated results, we also used Sentinel-2 NDVI
data for the year 2022, which we obtained from the SentinelHub
repository [36].

2) In-Situ Data: The reference data used in the study for
training and validation are derived from the actual land use data
layer. These are vector formatted data from the Register of Ac-
tual Agricultural and Forestry Land Use (RABA), which is man-
aged and maintained by the Ministry of Agriculture, Forestry and
Food of the Republic of Slovenia. We used freely available data
from 2020 downloaded from the Ministry’s website [37]. The
data were cleaned to reduce false detections, and the reference
data were grouped into meaningful and most frequent LULC
classes according to their closest similarity. In addition, some
rare labels were merged into one of the five classes of interest.
We also set the minimum size of the areas that could still be
meaningfully identified in the analyzed Planet data to 100 m2.

We applied an inner buffer of one pixel to all polygons to avoid
erroneous calculations at the boundaries of the polygons. The
original satellite image and the distribution of vegetation class
labels over our study area are shown in Fig. 2. Table I shows the
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Fig. 3. Workflow of the proposed methodology.

Fig. 4. General structure of an SRNN network with an input, hidden layers,
output, and feedback loop.

proportion of LULC classes (forest, grassland, vineyard, olive
grove, and trees and bushes) used for the study.

3) Climatic Data: The monthly data set for total precipi-
tation (mm) and average temperature (°C) for our study area
for the period 2017–2023 was obtained from the Slovenian
Environment Agency (ARSO meteorological data archive). As
temperature and precipitation are important factors that directly
affect vegetation cycles, the dataset was used to compare with the
results obtained from satellite data to correlate and contextualize
the predicted results.

B. Methodology

The workflow consists of three basic steps: data preparation,
RNN training, and validation, where the first step is composed
of several substeps (see Fig. 3).

1) Data Preparation: To process the data more efficiently,
we have converted the time series into long sequences of a tabular
format data. This way, each pixel has its own row with informa-
tion about the band values, the NDVI, the X- and Y-coordinates,
the acquisition date and the vegetation type labeling, which we
obtained from the RABA layer. After formatting the data of
the complete time series in the same way, they were saved in a
parquet file. This file was then used to test the method.

Before using the input time series data in the neural networks,
we implemented a Savitzky-Golay temporal filter [38] on the
time series. The best fit was achieved with a 7th-degree polyno-
mial on a window of size 11.

2) RNN Training: The general structure of an RNN consists
of an input layer, various hidden and dense layers and the output
layer (see Fig. 4). The most important feature is the feedback
loop, which allows the RNN to “memorize” the information
during training.

The input layer takes the input data into the neural network
and then forwards it to the middle part, which usually consists
of several hidden layers, each with its own activation function,
weights, and biases. These are standardized so that each hidden
layer has the same parameters in all time steps. This reduces
the number of parameters to be learned and can lead to better
generalization. Instead of several hidden layers, a single hidden

layer is then created and run through as often as necessary in a
loop.

The RNN handles the input sequence by using a recurrent
hidden state, where the activation at each time step relies on the
previous time step’s activation, resulting in dynamic temporal
behavior [39].

Given a sequence x = (x1, x2, . . . , xi), where xi is the data
at the ith time step, the update of the recurrent hidden state ht is
implemented as follows:

ht = f (Wxt + Uht−1 + bh) . (1)

In this context, the equation involves the use of a nonlinear
activation function, referred to as f, which is typically chosen
from a linear activation function (usually sigmoid, tangent, or
rectified linear unit—ReLU). W and U represent the weights
associated with the inputs and hidden units in the recurrent layer,
and bh represents the bias associated with the recurrent layer. The
output y at time t is calculated as

yt = f (V ht + by) (2)

where V are the weights associated with the hidden units to the
output units, and by is the bias associated with the feedforward
layer.

Different types of RNNs can be used to predict data. The
simplest is the SRNN, while the LSTM uses memory cells
that are capable to store information for extended durations,
regulated by a set of gates. GRU, on the other hand, uses a
smaller set of gates without separate memory cells, representing
a somewhat less intricate architecture. In our study, an SRNN
with two blocks of 50 hidden units, one dense unit and a sequence
length of 10 was used to process time series. The activation
function was ReLU and the Adam optimizer was used in the
network.

The prediction was made separately for each pixel based on
the time sequence. Before processing, the input time series data
was split into two subsets that were used for training and testing
(validation). The testing subset helps to evaluate the neural
network’s performance when applied to new data. Since we had
70 time steps, 47 time steps (67.1% of the data) were used for
training and 23 time steps (32.9%) for testing. This left enough
data to predict the next 12 forecast steps (12 months of 2022).
Moreover, studies have shown that a 70:30 split of the data results
in a more robust evaluation of the network [20].

3) Validation: The validation was divided into two parts.
The first part analyzed the generated forecast NDVI rasters
and compared them with the NDVI calculated from the actual
PlanetScope images for the year 2022. In the second part, the
forecasted NDVI was compared with the actual Sentinel-2-based
NDVI data and the climatic (meteorological) data.

III. RESULTS

Before analyzing the results obtained, the reasons for choos-
ing SRNN as the main method for conducting the experiments
are outlined and explained. This is followed by an evaluation
of the data predicted by SRNN compared to the actual data. In
the last part, the predictions for PlanetScope satellite data are
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Fig. 5. Comparison among SRNN, LSTM, GRU, Conv1D, RF, and ARIMA models for a single typical forest pixel. The dashed line represents the separation
between the training (left) and test (right) data.

analyzed in comparison to the Sentinel-2 data and the behavior
of the time series data using external climate data is explained.

A. Comparison With Other RNN Methods

We used the SRNN network to predict the NDVI values in
the area we selected. This decision was based on the results
we obtained in predicting the NDVI on various pixels from five
different LULC classes using various machine-learning methods
and DL networks. Besides the three RNN networks (SRNN,
LSTM, and GRU) we also tested a simple convolution method—
Conv1D. Conv1D can be used for forecasting and is suitable
for processing one-dimensional sequences, such as time series
data, as it operates on a single spatial dimension. It is also faster
than the RNN networks. All four DL networks mentioned were
implemented with the same number of layers.

In addition, we tested two traditional models, which are still
widely used. The RF algorithm [40] has proven to be extremely

successful as a general-purpose classification and regression
method. The approach, which combines multiple random deci-
sion trees, has shown excellent performance on a large number
of variables. The other model is the ARIMA, which is very
popular for forecasting time series [41]. In the processing, we
used the upgraded model called SARIMAX, which describes
the seasonality and relations within the time series in a more
complex way.

Table II shows the comparative accuracies of the models
tested. The RMSEs obtained are the mean values of all RMSEs
calculated for each vegetation pixel in the test area.

Both the numbers and the visual representation (Fig. 5) show
that the SRNN achieved better results in our study than the other
methods. It accurately predicts the training data with an average
RMSE of 0.012 and is very good at predicting the NDVI data
with an RMSE of 0.051. The second-best result was obtained
with Conv1D, which was surprisingly close to the SRNN in
terms of accuracy and processing time. The results obtained with
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TABLE II
COMPARISON BETWEEN ACCURACIES OBTAINED WITH SRNN, LSTM, GRU,

CONV1D, RF, AND ARIMA

GRU are similar but slightly worse. The worst results on the test
data were achieved by LSTM, closely followed by the ARIMA
and RF methods. The average RMSE of the LSTM for the
predicted data is almost twice as large. The RF regressor appears
to have overfitted the train data, as the difference between train
and test RMSE was the largest. The poor results of ARIMA can
be attributed to the relatively short time series (small number
of observations) that led to occasional bad directions in the line
search and failed convergences.

B. Training and Accuracy Assessment

Next, we compared the predictions of the SRNN with the
actual NDVI data and analyzed them in more detail. The trained
neural network generated estimations for 12 time steps cor-
responding to all 12 months of the year 2022. These were
compared with the actual NDVI data calculated from satellite
images. The comparison provided valuable insights into both the
distribution of NDVI values and the performance of the RNN
network. Table III shows the monthly similarities and differences
between the predicted and actual NDVI values for all vegetation
pixels. The Pearson correlation coefficient (R), calculated from
all vegetation pixels within the test area, is significantly higher
from May to September, while the correlation is poorest in
November. As will be explained in Section III-C, the main reason
for these differences is directly related to the exceptional weather
in the observed year.

The other calculated parameter is the RMSE, which is also
calculated from all vegetation pixels within the test area and
shows significantly higher values from October to December.
The RMSE values are in general in line with the correlation
coefficient, however, they do not vary much from January to
September.

The same behavior can be observed in the monthly scatter
plots in Fig. 6. The correlation between predicted and actual
NDVI is very high in the summer months (over 0.95), while the
lowest correlation is found in the winter months (about 0.8).

Similar results, characterized by stronger correlations during
the summer months and weaker ones during the winter months,

TABLE III
COMPARISON BETWEEN PREDICTED AND ACTUAL NDVI MEASURED BY

PEARSON CORR. COEFFICIENT AND RMSE

have been reported in previous studies using other satellite time
series data sources, as can be seen in studies such as [1] or [26].

In addition to the monthly comparison for all pixels, we also
compared the predicted and actual NDVI for each vegetation
class. The results are presented in Fig. 7. The predicted values
show the expected behavior of the vegetation with two main
peaks at the beginning and in the second part of the summer,
with a small drop in dry July. On the other hand, the actual
NDVI values show an unusual pattern with the highest values in
October or November.

Of all classes, the forest class has the highest NDVI during
most of the year, as expected. For all classes, the two values
(predicted and actual) are very similar in the first part of the
year, but they differ in the second part of the year—the actual
values are higher.

Fig. 8 shows a spatial comparison illustrating the similarity
between the predicted and actual NDVI values for the 12 pre-
dicted months. The images reveal a high degree of consistency
between the actual and predicted NDVI values. The differences
are predominantly within 0.1 (yellow and light green) for most of
the study area for the entire year 2022, while higher differences
were found in some patches in March and April and especially
from October to December. These exceptions correlate strongly
with the RMSEs achieved (see Table III). In these months, the
differences are highest in the forest patches and some vineyard
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Fig. 6. Scatterplots for each month of the year 2022. On each scatterplot, the
x-axis shows the predicted NDVI values and the y-axis the actual NDVI values.

Fig. 7. Actual and predicted NDVI values obtained from PlanetScope data for
each class.

patches. One possible reason for this could be the variability
of temperature and precipitation between the training and test
years, which is analyzed in Section III-C.

C. Comparison With Sentinel-2 and Climatic Data

As mentioned in Section II-A, we calculated the NDVI from
the Sentinel-2 images of the year 2022 to obtain additional
validation data for our model. We compared these values with the
actual PlanetScope NDVI values and the NDVI values predicted

TABLE IV
CORRELATION BETWEEN PREDICTED PLANET DATA AND ACTUAL

SENTINEL-2 DATA

by SRNN for each of the five vegetation classes (see Fig. 9). In
addition, Fig. 10 shows the actual Sentinel-2 NDVI values for
each of the five vegetation classes together for each month of
2022.

As shown in Fig. 9, the NDVI values calculated from both
satellite data show similar values, except in July and August,
when the Sentinel-2 values are lower for all classes except for
forest class. When performing a correlation test, the analysis
showed a significant correlation between the predicted Planet
data values and the Sentinel-2 data for all vegetation classes
(see Table IV). The best correlation is for the forest class
(R = 0.84) and the worst for the trees and bushes class (R
= 0.69). On the other hand, the forest RMSE shows a more
scattered distribution.

We also examined the main climate parameters at the time
of our observation. Fig. 11 shows the average temperature and
precipitation for 2017–2021 as lines, while both climate data
for 2022 are shown as bars. September 2022 was extremely wet
(blue bar), preceded by four very hot and dry months (drier
than average). This could explain the high actual NDVI values
in autumn 2022, which led to a lower accuracy of the SRNN
model predictions. This finding suggests that meteorological
data should be added to the SRNN to enable a more accurate
forecast.

IV. DISCUSSION

The main objective of this study was to investigate the per-
formance of RNN models when applied to very high-resolution
data for the prediction of NDVI for different vegetation types.
As observed in numerous previous studies [35], training RNNs
to capture extended temporal dependencies can be challenging
due to the tendency of gradients to vanish. This is the result of
variations in gradient magnitudes and the fact that short-term
dependencies predominate over long-term dependencies. This
is especially true for long time-series data, as the long-term
dependencies become exponentially smaller with increasing
sequence length [39].

However, our PlanetScope dataset was relatively short. When
the sequence length is shorter, it is advisable to compare different
RNN architectures and to choose a simpler one—which is, if not
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Fig. 8. Spatial distribution of the differences between the forecasted and actual NDVI per month on the study area.

Fig. 9. Comparison of the actual Sentinel-2 NDVI and the actual and predicted PlanetScope NDVI for each vegetation class in the year 2022.

much better, at least faster. This was the main reason why we
initially tested different RNN approaches to predict vegetation
behavior with a high level of precision. At the same time,
however, we were acknowledged by the fact that deep neural
networks generally perform worse than traditional models on
small datasets [43]. In contrast to this finding, SRNNs in our
case still performed better than RF or even ARIMA, which are
among the best non-DL methods for time series forecasting.

Throughout the study, the same number of hidden layers was
used in each of the neural network models analyzed in order to
improve the comparability of the results. According to empirical
tests in which we used different configurations (number of layers
and their size), two hidden layers seemed to be the best archi-
tecture for GRU and LSTM, while for SRNN a single hidden
layer gave slightly better results. Nevertheless, the results do not

differ significantly between the different configurations of the
chosen model.

In the case of SRNN, high accuracy was achieved for all five
different Mediterranean vegetation classes analyzed for each
month. However, it was found that the results are not always
consistent within the class: in some patches, the difference
between the predictions and the actual values is substantially
higher than in others. This is particularly true for the vineyards
class, especially for the southernmost central plot (see Fig. 8).
It turned out that the patch in question had only recently been
planted with young vines, so the reflectance is composed of the
barren soil, the young vines and the grass growing between them.
Another anomaly was observed on a grassland patch where the
land use had been changed from grassland to arable land for
vegetable cultivation.
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Fig. 10. Actual NDVI from Sentinel-2 for each vegetation class.

Fig. 11. Comparison of the monthly precipitation (blue bars) and temperature
(yellow bars) for 2022 with the average precipitation (light blue line) and average
temperature (dark orange line) for 2017–2021.

Furthermore, the findings indicate that the SRNN method
exhibits superior performance during the summer months (e.g.,
the correlation in July is 0.97), while the correlation between the
actual and predicted NDVI values drops to 0.77 in the autumn
months (from October to December). To thoroughly analyze
the results, they were compared with the Sentinel-2 NDVI data
and climate data consisting of temperature and precipitation
values. The main difference between the two sensors lies in
the fact that PlanetScope images offer a higher temporal and
spatial resolution compared to the Sentinel-2 data, but a lower
radiometric resolution. Nevertheless, the PlanetScope data are
characterized by the fact that they recognize finer details on
the field scale [4]. A comparison of the predictions with the
actual data revealed that the Sentinel-2 data gave an average
correlation of 0.76 and performed similarly well to the Planet
data in the summer months while underestimating the NDVI
in the autumn months. The climate data revealed the cause of
these discrepancies—an extremely wet September after very
dry summer months, which led to above-average NDVI values
in the autumn months. As already observed in other studies
[12], we conclude here that the predictive capabilities of RNNs
are an effective tool for forecasting vegetation dynamics, but
can be further improved by incorporating climate data into the
forecasting process.

The NDVI forecasting was performed on the basis of indi-
vidual pixels. As a result, the resulting images look grainy and

discontinuous in some regions. To avoid this granularity, a more
complex architecture is required that also takes into account the
neighboring pixels. Some studies have already been conducted
using convolutional RNN-based DL architectures [18], but they
have not been extensively tested on different types of data.

To summarize, the procedure performed well in a Mediter-
ranean area in Slovenia. Further tests in other geographical
regions and other ecosystems are needed to gain a better un-
derstanding of the performance of the architecture used. It
should be noted that the study area was relatively flat and the
reflectance values were not affected by shadows. Predictions in
more hilly terrain could be difficult, especially when trying to
analyze values belonging to the same vegetation class but under
different illumination conditions. For the same reason, it would
be difficult to train a model on flat terrain and then use it to predict
vegetation dynamics in areas with complex illumination.

V. CONCLUSION

In this work, we performed an evaluation and comparison of
different approaches for the qualitative prediction of vegetation
dynamics using a relatively short time series of PlanetScope
data. These approaches included three RNNs (SRNN, a LSTM,
and a GRU), a Conv1D and two more traditional methods (RF
and ARIMA). Our dataset comprised 70 monthly PlanetScope
images, from which we derived NDVI values, spanning from
April 2017 to January 2023. Our experimental findings revealed
that in cases where short time series data and a limited num-
ber of parameters are employed, the SRNN exhibited superior
performance compared to the other RNN methods. In particular,
SRNN performed better in terms of convergence rate, processing
time, and overall prediction accuracy. Conv1D was surprisingly
close to SRNN in terms of accuracy and processing time, while
the traditional methods performed poorly, despite achieving the
fastest processing times. The poorer performance of LSTM,
GRU, and ARIMA can mainly be attributed to the relatively
short time series. The results obtained with the Sentinel-2 data
show comparable trends. However, the almost daily access to
Planet data could provide the opportunity to improve the forecast
accuracy and promote digital vegetation modeling [44].

The use of climate data for vegetation prediction in RNN
models is of utmost importance, as these environmental factors
directly influence the vegetation greenness. In our analysis, there
were some discrepancies in the predictions, especially in the au-
tumn months. Therefore, we included climate data (temperature
and precipitation) to understand the inconsistencies. It turned
out that most of the discrepancies in the predictions were due
to the irregular meteorological conditions in the analyzed year.
For this reason, we emphasize that vegetation forecasting models
should incorporate meteorological data to produce more accu-
rate predictions. However, our results show that DL methods
are a suitable tool for forecasting vegetation behavior when
high-resolution time series of satellite data are used.
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