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Abstract—The work performed in this study evaluated the ap-
plication of generalized pretrained object detection models for
the identification and classification of tropical storm (TS) systems
through transfer learning. While the majority of literature focuses
on developing bespoke models for this application, these typically
require significantly more training data, compute resources, and
time to train the models due to the large number of parameters
the model has to tune to achieve similar results. These models
also required additional preprocessing steps, such as extracting
the storm from the image, and used a limited number of classes
to describe the intensity of the storms. The approach presented
here used considerably less data than the majority of other work
(2–10x fewer input images) and a larger number of classes. The
accuracies of the produced models trained on four different exper-
imental datasets (varying the amount of data and number of classes)
through this approach were 75%, 82%, 69%, and 89%. Overall,
the models produced promising results, performing approximately
equal to the bespoke models with scope to improve the performance
of the model.

Index Terms—Machine learning (ML), remote sensing, transfer
learning, tropical storm (TS).

I. INTRODUCTION

UNDERSTANDING the evolution of tropical storms (TS)
in a changing climate is important for climate adaptation

as these storms are some of the most extreme weather events and
have a huge socio-economic impact. Globally, there are about 86
TS per year based on the data for the last 43 years (1980–2022)
with an interannual variability of nine storms. During this period,
the maximum number of storms occurred in 2020 with 104
storms and the minimum in 2010 with 68 storms. The satellite
data archive that spans over more than four decades allows us
to produce a long-term TS dataset including classification of
storms and their intensity, which has applications, for example,
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in investigating climate trends such as the rapid intensification
of TSs in a warming climate [1].

The objective of this work was to create a system that could
accurately label TS contained in historical data of geostationary
weather satellites without external data sources, which may
be incomplete. The system could then process all historical
data from any satellite and determine if any TS are present
in any image and, if so, estimate the intensity. To minimize
the requirements for the model to be put into a production
environment, the aim was to use an approach that required the
minimal amount of preprocessing of the data, computational
power, and data possible. In the end, this system would enable
climate researchers to have a more complete set of image data
of TS so that they could perform their research more effectively.
It would also provide some insight into the TS data that is
potentially missing from the dataset containing the evolution
and track data for historical TS.

The work performed investigated the use of pretrained object
detection machine learning (ML) models for the classification
of TS by their intensity as recorded in historical data from
geostationary weather satellites. If the models developed in this
work performed with similar or better accuracy than those of
other approaches in the literature, it could allow these very
valuable models to be produced with significantly lower barriers
to entry in terms of the data, compute resources, and compute
time required to train them, which would enable faster iterations
to improve the current models and allow more people to be able
to train.

A. Background

Throughout the literature, there were generally two ap-
proaches taken. The first was to use the images and classify the
TS into individual classes based upon one of the established TS
intensity scales, and the second was to attempt to infer the wind
speed of the TS by approaching the problem as a regression
task. Due to the utilization of transfer learning implemented
in this research, only the literature that used classification was
investigated for the literature review. This is due to the fact that
pretrained models used for transfer learning require the new task
to also be a classification problem.

For the work performed using classification, Jiang and Tao [2]
achieved a classification accuracy of 97.12% and precision
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of 97.00% using a bespoke model predicting six classes.
13 200 cloud images were used and cropped to a resolution
of 512×512 pixels and containing only the TS. Zhou et al. [3]
trained a model predicting four classes achieving a 92.35%
accuracy, with approximately 3500 training samples and 600
test samples. While Gardoll and Boucher [4] achieved over
99% accuracy with their model, it was only performing binary
classification (TS or no TS), which limits the usefulness of the
model output and used 28 521 images. Zhang et al. [5] pre-
dicted three classes and their novel model architecture achieved
approximately 80% accuracy. Their dataset contained 19 451
TS images, which was increased to 36 957 after a number of
data augmentation processes were applied. Wang et al. [6] also
utilized data augmentation to increase their initial dataset from
6690 images to 22 746. The authors also used a bespoke model
containing predicting eight classes and achieved an accuracy
of 89% for their final system architecture. This was composed
of eight separate models, all performing binary classification
for one specific storm class and the model with the highest
confidence was used as the storm classification. Kar et al. [7]
used only three storm classes and their approach yielded a model
with 84% accuracy, although the number of images used was not
specified.

What sets apart the research described in this article from the
discussed pieces is that all of them focus on developing a novel
model architecture for a specific task, requiring significantly
more computing resources, time, and data to train the model.
In the models developed in the literature typically used fewer
classes for the TS intensity than the approach described in
this article, and they generally require the TS in the images
to be cropped such that the image solely contains the TS to be
classified, rather using the whole image. Using the whole image
is advantageous because if the model were to be applied in a near
real time setting, the location data for TS may not exist yet, which
would complicate the inference process as the system may not
be able to identify the TS in the image. Another advantage is that
fewer preprocessing steps yielding a pipeline is more efficient
and would result in less time to get a prediction from an image.

B. Novel Contributions

1) The application of off-the-shelf pretrained models on the
infrared channels of geostationary weather satellites.

2) Demonstrating minimal preprocessing of the data was
required when compared to methods employed in the
literature.

3) The use of the Dvorak intensity scale, while all other pieces
of literature used either RMSC Tokyo or Saffir-Simpson.

4) The implementation of the F1+rmse model performance
metric, which accounts for the fact that the classes are not
discrete, unlike classes in most classification tasks.

II. MATERIALS AND METHODS

A. Satellite Data

For this work, 1803 images from the JMA’s Geostationary
Meteorological Satellites (GMS) 1–4 were used, containing

Fig. 1. Examples of images used as input data. Each image is from a different
GMS Satellite and shows the consistency of the data across the different
generations of satellite.

4526 TS. These satellites were positioned at 140◦ East longi-
tude in geosynchronous orbit with an altitude of approximately
36 000 km above the equator in line with Japan and in operation
from 1977 until 2000 [8].

The data used consist of images taken every three hours for
the three same days of each month (15th, 16th, and 17th) from
1979 until 1995. The images used were all from the infrared
sensor, and as such, are single channel grey-scale images, as
seen in Fig. 1.

B. IBTrACS

To identify the TS in the images and determine their intensity,
the International Best Track Archive for Climate Stewardship
(IBTrACS) was used [9]. This is a tabular data file containing the
most complete global collection of tropical cyclones available.
The data include the TS names, coordinates, wind speeds, and
pressures every three hours for storms dating back to 1842. The
data are generated by combining TS track datasets from various
agencies across the world.

C. Intensity Scales

There are a number of different intensity scales used world-
wide for classifying the intensity of TS. The one most often
used Western Hemisphere is the Saffir–Simpson Hurricane Wind
Scale (SSHWS), developed by the National Hurricane Center
(NHC). This scale is typically used for TS in the Atlantic and the
Central and Eastern Pacific. For the Western Pacific, the RSMC
Tokyo scale is used. There are separate scales for the Northern
and South Western Indian Ocean, and one for Australia and Fiji.
The main issue with these disparate scales is that they all use
different wind speeds for different TS severity levels, and what
could be a Typhoon on the RSMC Tokyo scale could range from
a Category 1 to Category 3 on the SSHWS as can be seen in
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Fig. 2. Modified DCI scale from [11] to include RSMC Tokyo scale, showing
the relationship between wind speed, aAir pressure, and two different TS
classification systems.

Fig. 3. Common developmental patterns diagram showing typical TS shape
for different DCI T-numbers [12]. The cloud structures were used to aid in the
creation of the DCI scale.

Fig. 2. The scale selected in this project was the Dvorak Current
Intensity (DCI) for three reasons. First, it has a higher intensity
scale resolution (increasing from 1–8 in 0.5 steps) than other
hurricane intensity scales, therefore has the highest probability
that the classification would translate into other distinct intensity
levels on multiple other scales. Second, a storm’s intensity level
can be inferred from the DCI using wind speed or minimum
pressure, therefore, if one of the pieces of data is missing from
IBTrACS, the other can be used instead, where other scales only
use wind speed to derive the storm’s intensity class. Lastly,
the DCI was developed specifically using visible and infrared
satellite images [10]. Its classes also take into account the TS
structure based on the common development patterns chart in
Fig. 3. This was expected to increase the likelihood that the
model would be able to classify the storms with greater accuracy.

D. Machine Learning

Over the past decade, ML techniques, such as deep learning,
have repeatedly proven to excel at image-based tasks, partic-
ularly identifying and classifying objects within images. One
powerful technique that has been developed is called transfer

learning. This method significantly reduces the data, compute
resources, and time required to train a deep neural network. The
model has already been “pretrained” on hundreds of thousands,
if not millions, of RGB images containing a variety of objects
such as various animals, modes of transport, and every day
objects. The layers of the model have then learned to extract
a wide variety of features from images and can classify a wide
range of different objects within images. Transfer Learning takes
this model, locks the vast majority of the weights and only
requires the final few layers to be tuned to transform the very
generalized pretrained model to a specialized one for the desired
task.

One of the significant advantages of using transfer learning is
the ability to train a variety of different models with little effort.
Three different models were trained for each of the datasets
discussed in the next section. The models used for this work
were FasterRCNN Resnet50 V1, FasterRCNN Inception V2,
and SSD Resnet50 V1. The selected models were chosen for a
number of reasons. Although the first model has the lowest mean
average precision (mAP) for a model of its input resolution, and
one of the oldest pretrained models available, it is relatively
lighter in terms of computational requirements compared to the
other models. Therefore, it was faster to train and establish
a baseline model performance. Object detection models need
to perform two tasks. The first is to identify areas of interest
within an image and the second is to classify these areas of
interest into discrete categories. A model with a region proposal
network (RPN), performs this task in two steps, whereas other
architectures like single shot detectors (SSD), do this in one step
directly using a feature map. The second model was the same
architecture as the first but used a different classifier (Inception).
The final model was an SSD model, to evaluate the performance
difference between the two architectures for this task. The
models were pretrained on the Microsoft Common Objects In
Context (COCO) dataset, achieving a mAP of 31.0, 38.7, and
38.3, respectively [13]. While other models are available to use
at [13], some of which potentially could perform better than the
three selected, but they were too large to load into the memory
of the GPU used for this work.

E. Experimental Design

1) Data Preparation: The initial images were reshaped and
down-sampled from their native resolution of 2451×6686 pixels
to 1024×1024 pixels. This is because pretrained models have a
fixed input size corresponding to the original training data that
were used. This was the only processing that was performed on
the images.

The labels that identify the storms in the images were prepared
into individual XML files for each image in a specific format
called PASCAL VOC. This format contains meta-data, both
about the image (filename, path, directory) and the objects
contained in the image itself (object class, object location within
the image given by bounding box). 4,526 TS were found in the
IBTrACS dataset. For each TS, the center pixel of the system was
acquired and then approximate bounding boxes were created,
50 pixels in each direction from the center point (i.e., if the center
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Fig. 4. Images with possible storms missing in IBTrACS. Green boxes denote
the TS found in IBTrACS, Yellow boxes denote possible TS that were not
recorded in IBTrACS.

pixel was pixel 200, 200, the bounding box top left corner was
150, 150 and the bottom right was 250, 250).

After the files were generated, the data were validated to
ensure that the labels appeared to be correct. This was performed
manually using the open source software, LabelImg [14]. Some
minor modifications were made to some bounding boxes to
better encapsulate the TS structure within it. During this process,
it became apparent that IBTrACS is the most complete database
of storm systems publicly available, but far from perfect. There
were numerous examples of potential TS present in the images,
with no data present in IBTrACS. Examples can be seen in Fig. 4.

Similarly, there were bounding boxes that appeared to contain
no TS; however, the labels were present in multiple sequential
images. The authors believe this could be attributed to a com-
bination of the angle of the TS to the sensor (as they typically
occurred toward the extremity of the Earth disk) and relatively
light cloud structures. No labels were added or removed from
the dataset.

2) Experiments: Four experiments were conducted during
work. The first used all data and the full range of DCI levels.
The second reduced the number of DCI levels to whole integers,
rather than steps of 0.5. TS with a 0.5 intensity level were com-
bined into the lower whole integer class (i.e., a 3.5 TS became a
3.0 TS). The purpose of this experiment was to evaluate whether
the accuracy of the model increases with broader categories, as
the visual difference between TS of close intensity (e.g., 3.0
and 3.5) may not be significant enough to reliably differentiate
between them.

The third and fourth experiments had the same two groups
previously described, but the storms of intensity below 3.0 were
discarded from the dataset. These low-intensity TS account for
roughly half of the storm systems in the dataset, but are not pos-
ing significant danger to human life. The potential consequence
of the model performance is that it may correctly identify a TS

TABLE I
TABLE SHOWING THE NUMBER OF SAMPLES CONTAINED IN EACH OF THE

CLASSES FOR EACH EXPERIMENTAL DATASET

Fig. 5. Graph showing the number of samples contained in each of the classes
for each experimental dataset. The imbalance in the number of samples in each
class is clearly visible with many more lower intensity TS present compared to
higher intensity TS.

of intensity 2.0/2.5, but misclassify it as a 3.0 TS. A correctly
identified TS would be treated as an error and lead to a lower
accuracy. The number of TS per class and dataset can be seen
in Table I.

For the datasets using all of the storm systems, 2649 images
were used, containing 4526 TS. In the datasets with TS of inten-
sity greater than 3.0, 1803 images were used, which contained
2309 TS. The distribution of the classes for the datasets can be
seen in Fig. 5.

The most notable aspect of Fig. 5 is that there is a significant
imbalance toward the TS of weak intensity. Logically, this is
unsurprising, as TS of T-number 2.0 are far more common
than TS with T-number 6.0. The issue this presented is that an
imbalanced dataset can lead to ML models becoming biased in
their predictions toward labels with more samples in the training
data. In a structured data problem, such as numerical data in an
excel file, the solution is to evenly sample the data such that it
becomes balanced. However, this is not the common solution
for an object detection problem as it is more difficult due to
single images containing multiple, different TS with different
intensities. Instead, a specific loss function must be used such as
focal loss, which is a dynamically scaled cross entropy loss. This
down-weights the loss associated with individual classes as the
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confidence in predicting the classes increases. This allows the
model to learn each class equally, regardless of imbalances [15].
This was used for all models in this work. Finally, the datasets
were partitioned into three subsets: training, validation, and test
sets with an 80:10:10 split, respectively.

F. Model Performance Evaluation

To determine the model performance, accuracy, precision,
recall, and F1 score were used during training. These are defined
by the following:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

.

One challenge with using these metrics for this task is their
treatment of all classes as discrete and unrelated. However, in
this context, the classes are closely related, where the distance
between classes corresponds to a linear scale of different in-
tensities of a TS. Classes nearby each other (e.g., 2.5, 3.0, 3.5)
are more similar than those further apart (1.0, 3.0, 5.0). The
significance of misclassifying a TS as a neighboring class is less
than for classes far apart.

This is, in some respects, a regression problem as the classes
are a continuous number range with discrete increases. There-
fore, rmse was used to evaluate the quality of the different model
predictions and is defined in the following :

RMSE =

√
1

n
Σn

i=1

(
di − fi
σi

)2

.

RMSE is a commonly used metric for regression problems
as the distance between the true and predicted value is taken
into account, with larger errors contributing more than smaller
errors [16]. For other approaches that implemented classification
([2], [3], [4], [5], [6], [7]) and used TS intensity scales with
phrases for the class labels (e.g., Typhoon, Very Strong Typhoon,
Violent Typhoon), this type of analysis was not possible.

For the rmse to be calculated, the false positives and false neg-
atives needed to be accounted for. Initially, they were included
as belonging to class “0.0” for the true labels and predictions,
respectively. False negatives remained in the dataset with the
same values, the true value of the storm missed would be used
and 0.0 would be used for the predicted value. This reflected
the fact that the stronger the TS missed and would result in a
greater increase in rmse, as the more severe the intensity of the
TS not detected, the greater and more significant it is that the
model missed that TS. Due to the previously discussed concerns
regarding the completeness of IBTrACS, false positives were
treated as misclassifications of one class lower, such that they
are still represented in the rmse, but their impact on the rmse
is not substantial. As a higher rmse represents less quality

Fig. 6. Average and range performance of all models on validation datasets
with all TS (all data) and without lower intensity TS (reduced data). Models
without the lower intensity TS performed better than those with all TS.

predictions, a method was devised to combine rmse and F1 score
by multiplying the F1 score by the 1 – rmse. The higher this
value is, the higher quality the model outputs are. Formally, it
was calculated using the following:

F1&RMSE = F1 ∗ (1−RMSE).

This model performance metric would not have been possible
to implement without using the DCI scale as other intensity
scales are qualitative scales rather than numerical.

G. Transfer Learning Strategy and Model Training

The following procedure was used to perform transfer learn-
ing:

1) install Tensorflow object detection API;
2) annotate dataset as described in experimental design;
3) split datasets into training, validation, and test datasets;
4) transform datasets into TF records for data pipeline opti-

mization;
5) download and configure pretrained model;
6) model training and evaluation.
A more complete description of the process can be found

at [17]. The models were trained on a computer running Win-
dows 10 with an Intel i7-9700 K CPU @ 3.60 GHz, 64 GB
RAM, and an NVIDIA RTX 2070 Super GPU. The models were
trained until the performance of the model on the validation data
began to plateau to avoid overfitting, which was typically around
30 000 training steps.

III. RESULTS

The results of the model training on validation data are as
follows. Fig. 6 shows the average performance of all models on
each amount of data (all data or only storms of intensity 3.0 and
above) with the line, and the shaded area represents the spread
of the model performance. Fig. 7 shows performance of models
with different labels (half or whole intensity steps). These graphs
show that, overall, the reduced dataset and whole intensity steps
do perform better than all of the data and half intensity steps
on average, there is a significant overlap between the range of
performance for all models. While it is logical that less data
and fewer classes would make the classification task easier for



SENIOR-WILLIAMS et al.: CLASSIFICATION OF TROPICAL STORM SYSTEMS IN INFRARED GEOSTATIONARY WEATHER SATELLITE IMAGES 5239

TABLE II
TABLE SHOWING THE PERFORMANCE METRICS OF THE FRCNN INCEPTION MODEL ON THE VALIDATION DATA FOR EACH OF THE EXPERIMENTAL DATASETS

Fig. 7. Average and range performance of all model on validation datasets
with label intensity increases of 0.5 (half steps) and 1.0 (whole steps). Models
using labels with 1.0 intensity increases outperformed the models using labels
with 0.5 intensity increases.

Fig. 8. Average performance of all models on each of the different experimen-
tal validation datasets. The models using the simplest dataset (no low intensity
TS and labels with 1.0 intensity increases) performed the best.

the model to learn, it is clear that there was a large variation
between different models. Fig. 8 shows the amalgamated model
performance on the different experiment datasets. From this
figure, it is clear that the reduced dataset with whole intensity
step labels is the best-performing dataset overall. The reduced
dataset with half-intensity step labels and whole dataset with
whole intensity step labels produce similar results. The most
difficult dataset for the model to learn was the whole dataset
with half intensity step labels being the experiment with the
overall worst produced models.

From Fig. 9, it is clear that the FRCNN inception model is
the best performing, FRCNN ResNet 50 is the second best,
and SSD ResNet50 is the worst, with the lowest final mAP
and most variation between datasets. Taking this into account,
the remainder of the result evaluation will only consider the
FRCNN inception network, as even on the most difficult dataset,

Fig. 9. Average and range of performance for different models across all four
validation datasets. FRCNN inception model outpeformed both of the other
models with the worst FRCNN inception model still performing better than the
next best.

Fig. 10. Performance of the FRCNN inception model on each of the different
experiment validation datasets. The model trained on the simplest dataset (no
low intensity TS and 1.0 label increases) did perform the best, however there is
not a large difference between all the models.

it outperformed the next best model’s performance on the easiest
dataset.

Each model was evaluated on the test data, producing the
precision, recall and F1 scores as seen in Table II. The scores
provided are the weighted average, which takes into account the
imbalance of the labels in the datasets. Subsequently, the rmse
and F1 and rmse combined score were calculated.

The confusion matrices (see Figs. 11–14) were generated from
the results of the FRCNN inception model predictions on the
test data. As specified earlier, the 0.0 row and columns represent
false positives and false negatives in the actual and predicted
axis, respectively.

Finally, Table III shows the performance of the models trained
in this work compared to those found in the literature.
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TABLE III
TABLE COMPARING THE MODELS IN THE LITERATURE, WITH THE NUMBER OF IMAGES, NUMBER OF LABELS USED, AND ACCURACY, PRECISION, AND RECALL

WHERE AVAILABLE

Fig. 11. Confusion matrix of FRCNN inception model trained on all data
with 0.5 intensity step labels. Values are the classifications produced by the
model (predicted) compared to the corresponding label in the validation dataset
(actual).

Fig. 12. Confusion matrix of FRCNN inception model trained on all data
with 1.0 intensity step labels. Values are the classifications produced by the
model (predicted) compared to the corresponding label in the validation dataset
(actual).

IV. DISCUSSION

Before taking rmse into account, as was expected from Fig. 10,
the dataset that led to the model with the best classification per-
formance on the test set was the one with only the more intense
storms and whole intensity steps. The second-best performing
dataset contained all data and whole intensity steps, which also
is logical as having fewer classes, with a bigger visual difference
between them is likely to lead to a better performing model as its

Fig. 13. Confusion matrix of FRCNN inception model trained on reduced
data with 0.5 intensity step labels. Values are the classifications produced by the
model (predicted) compared to the corresponding label in the validation dataset
(actual). Classifications in the top row (0.0) likely to be false positives of lower
intensity TS that were excluded from the training data.

Fig. 14. Confusion matrix of FRCNN inception model trained on reduced
data with 1.0 intensity step labels. Values are the classifications produced by the
model (predicted) compared to the corresponding label in the validation dataset
(actual). Classifications in the top row (0.0) likely to be false positives of lower
intensity TS that were excluded from the training data.

task is easier. Interestingly, the third best model was trained on
all data and half-intensity steps, where it may have been expected
to be the model trained on reduced data and half-intensity steps.

RMSE was used as a method to evaluate the quality of the
predictions of the models, and these results suggest that the
model trained on all of the data and half integer steps actually
produced the highest quality results. This is likely due to the
fact that the misclassifications were less severe as the majority
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of them were in neighboring classes (±0.5 away from the true
class) rather than 1.0 in the models trained using whole integer
steps. The model trained on the reduced data and half integer
steps had the most false positives and false negatives (20 and 4,
respectively), which likely contributed to it attaining the highest
rmse.

One interesting, albeit expected, result of removing the lower
intensity storms was an increase in the number of false positives
produced by the models despite having roughly half the number
of data samples. This is visible in Figs. 13 and 14. The majority
of the false positives for models trained with the reduced datasets
were TS of intensity 3.0, which are likely to be TS of intensity 2.0
or 2.5 that were in images that also contained TS of intensity 3.0
or greater. The model did technically detect valid TS, however,
as they are outside of the range of TS intensities used for the
model they are false positives.

When comparing the confusion matrices of models trained on
half-intensity steps to whole intensity steps, the half-step trained
models made fewer misclassifications of comparable severity
than that of the model using whole intensity steps. Therefore,
while there are more misclassifications of storms using the half-
step intensity increases compared to the same sized datasets with
the different labels, the severity and potential consequences of
these misclassifications are much less.

The most surprising difference in model performance was the
disparity between the FRCNN Inception V2 model and the SSD
ResNet 50 model [13], they both reportedly have very similar
performance on the standard test dataset used a mAP of 38.7
and 38.3, respectively. As described in the ML section, there is
a fundamental difference between how these two models identify
different areas of interest within an image. The FRCNN models a
two stage approach where region proposal network first proposes
different regions and types of objects within those regions,
and then a separate component performs the classification and
bounding box calculations for those regions. Models, such as
SSD, use a feature map to do this in one single pass. The
difference in performance of these models could be explained by
the fact that the data used to train these models were 3 channel
RGB images. As the feature maps of 3 channel images have
significantly more variation than single channel images, and the
feature map used by the SSD models when applied to single
channel black and white images may not be varied enough for the
model to be able to identify the TS in the images accurately in a
single pass. As the FRCNN models have a dedicated component
specifically for this task, it is better able to interpret the image
and determine where the storms are located to classify them.
This would also explain why FRCNN ResNet 50 outperformed
the SSD ResNet 50 model, despite having a significantly worse
mAP on the test dataset (31.0 compared to 38.3).

Table III shows the difference between the models found in
the literature and the models produced in this research. The
difference in amount of data used to train the models ranged
from 1.55x to 13.95x when the FRCNN Inception models were
trained on all data and between 2.27x and 20.49x for the FRCNN
inception models trained on the reduced data. While only the
model in [6] was trained with more classes than any of the models
produced in this research (8 labels versus 7 labels), the model

accuracy was identical and Wang et al. [6] trained eight separate
binary classification models to achieve this performance and
needed 10x more data. While the best performing model in
the literature did outperform the models produced via transfer
learning, they also required the TS to be extracted from the
whole satellite image such that the input images to the model
only contained the storm to be classified. This may not be a
feasible approach if the models were to be used in a production
environment as the information to determine where a storm is
may not exist for this task to be performed.

With only eight samples available for the strongest storm
in the dataset (T-number 7.0), there were concerns regarding
whether the focal loss function would be able to deal with such
a significant imbalance. This class is accounts for only 0.17%
of the whole dataset. While the model was able to successfully
classify these storms in the validation data, a sample size of
only eight means that it is difficult to determine if this is truly
representative of model performance.

For ML models, the quality of the datasets used is the most
important contributor to model performance. There are a few
ways that the quality of these datasets could be improved.

1) With access to more image data from more complete GMS
satellite datasets, not just the 15th, 16th, and 17th of each
month, and from other geostationary weather satellites),
it would be possible to greatly improve the balance of the
dataset labels.

2) While this research demonstrated that it is possible to
attain good results with a limited dataset, increasing the
size of the data will likely increase the robustness of the
model, as a greater variety of TS could be included. This
would also alleviate a potential issue with current dataset
which is that due to the fact that there many images
that contain the same storm systems at different times
with little change in its structure or shape and this could
artificially enhance the model performance.

3) Limit the area of interest that TS can be labeled in to the
center of the Earth disk, excluding the areas are toward the
extremities. This is because toward the edge of the Earth
disk, the angle between the TS and the sensor is relatively
shallow and meaning that much of the distinguishing
structure of the TS is lost. By limiting the storms in the
image to those that are in the center of the frame, it is
ensured that the TS structure remains clearly visible in
the image. This should not be implemented as an image
preprocessing step by cropping the image, instead when
the labels are generated, TS that are positioned outside a
certain area would be excluded.

4) Incorporate data from additional satellites covering differ-
ent areas of the planet. This would not only increase the
size of the dataset, but would also include the TS excluded
in the previous suggestion while also better preserving the
distinguishing structure of these storms compared to the
current implementation which should increase the model’s
ability to classify them.

5) To reduce the number of false positives produced by the
models. As discussed in Section II-E, the data source used
to extract the storms from the images (IBTrACS) is not
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perfect, and there were a number of what appeared to be
TS systems that no data was found for. It is difficult to
determine whether these cloud systems were actually TS
or not. It is feasible that lower intensity storms that formed
and decayed solely over water were not recorded. One
potential solution with access to more data would be to
train a model on more recent data that there is a higher
degree of certainty about its completeness and then apply
the model to older data.

6) Of the models available in [13], generally, the higher the
input resolution of images, the higher the mAP. This is
not surprising as high resolution images contain more
information within them and this could be a relatively easy
method to increase performance.

Regarding improvements to the model, in Fig. 10 there is a
clear and significant spike in mAP at approximately 21 000–
22 000 steps and another smaller spike at approximately 25 000
steps for the model train on all data and half-intensity steps.
At these points the model outperforms all other models. After
training had completed, this model checkpoint had been over-
written and therefore this weight configuration was not usable.
Implementing a method to always retain the best performing
model checkpoint would eliminate this from occurring again.
Finally, the last method that could result in better performance
is to use a model with a higher base mAP. As the inference
is not time critical, the response time of the model is not
significantly important and therefore a model that takes longer
to perform inference on each image but is more accurate would
be worthwhile to investigate.

Regarding the novel contributions of this study, the outcomes
were as follows.

1) Despite the limited dataset size and significant reduction
in information in each image due to only having a single
channel compared to 3 in the training data, the model was
able to detect and classify storms successfully.

2) Using the image of the whole Earth disk, the model was
still able to correctly detect and classify the TS. This
method not only reduces the computational requirements
to prepare the data, but also shows the location of the TS
in situ on the Earth, which would give users of this model
better context as to the TS’s location.

3) The use of the Dvorak scale not only enabled us to have
greater resolution in the topical storm classes, but also al-
lowed for easier conversion between other intensity scales
and for the F1+RMSE metric to be developed.

4) The implementation of the F1+rmse model performance
metric resulted in a different model being identified as the
best-performing model when compared to using the F1
score as the performance metric.

One approach that was originally considered for this study was
the development of a model that utilizes the inherent temporal
aspect of the data. The potential advantage of this method would
be that incorporating the previous state of the TS over a number
of timesteps may enhance the predictive power of the model.
The authors decided that this is best suited to a piece of future
work as it would directly oppose the main benefits of the work
presented here.

V. CONCLUSION

The research performed in this study aimed to investigate
the implementation of generalized pretrained object detection
models to the task of the identification and classification of TS
systems. The model classification results were generally com-
parable with results found in the literature, however, the models
in this study used more classes (7 or 14 classes versus typically
5 or 6). Instead of developing a bespoke model for the task as
per the majority literature reviewed, three pretrained generalized
models were used to determine their ability to classify the TS
in the images. This approach is significantly faster to develop
a working model, required substantially less data (between 2x
and 10x), less compute resources and less time to train the
models.

Four different datasets were used to train the models to eval-
uate the impact that reducing the number of TS (by excluding
lower intensity storms) and reducing the number of classes had
on the model performance. While the model with the highest
precision, recall, and F1 score was trained on the dataset without
lower intensity storms and reduced number of classes, when
taking into account the quality of the predictions as measured
by rmse, it was only the third best model. This is because the
majority of misclassifications for each model were in neighbor-
ing classes, and the classes increased in whole integer steps,
rather than increases of 0.5, therefore, any misclassifications
were more severe than the models with half-integer steps, which
contributed to the higher rmse. When the rmse and F1 score
for the models were combined, the best-performing model was
the one trained on all of the data and the 0.5 intensity step
increases.

Overall, the models performed well considering the data used
were significantly different from the data the original models
were trained on. While bespoke models have been shown to
perform better than the models produced in this study, they also
have additional requirements for data preprocessing and when
used for classification, the number of classes are generally fewer
than the models produced here, meaning their output provides
less information. Bespoke models also require significantly
more data, compute requirements to train to produce a model
of high quality and required the input images to be cropped such
that they only contained the TS, which is unlikely to be a valid
approach if these models were to be implemented in a real world
environment. With additional images and higher quality labels
through some of the processes discussed, it may be possible to
increase the performance of these models to a comparable level
of the bespoke models while still requiring less data than other
methods.

To summarize, this study demonstrated that it is possible to
produce ML models that are comparable to the best performing
bespoke models in other literature, while requiring substantially
less training data and less expert knowledge in ML to implement,
making this approach significantly more accessible. This result,
combined with multiple potential methods to improve the perfor-
mance of these model, for classifying TS in decades of archived
data from all geostationary weather satellites. This could not
only be a valuable resource for climate scientists researching
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the genesis and decay of TS, but it may also improve the current
most complete dataset regarding the evolution and track of TS
systems.

ACKNOWLEDGMENT

The author would like to thank the members of the colleagues
at S&T for their valuable input.

REFERENCES

[1] K. Bhatia et al., “A potential explanation for the global increase in tropical
cyclone rapid intensification,” Nature Commun., vol. 13, no. 1, 2022,
Art. no. 6626, doi: 10.1038/s41467-022-34321-6.

[2] S. Jiang and L. Tao, “Classification and estimation of typhoon intensity
from geostationary meteorological satellite images based on deep learn-
ing,” Atmosphere, vol. 13, no. 7, 2022, Art. no. 1113. [Online]. Available:
https://www.mdpi.com/2073-4433/13/7/1113

[3] J. Zhou, J. Xiang, and S. Huang, “Classification and prediction of typhoon
levels by satellite cloud pictures through GC–LSTM deep learning model,”
Sensors, vol. 20, no. 18, 2020, Art. no. 5132. [Online]. Available: https:
//www.mdpi.com/1424-8220/20/18/5132

[4] S. Gardoll and O. Boucher, “Classification of tropical cyclone con-
taining images using a convolutional neural network: Performance and
sensitivity to the learning dataset,” EGUsphere, vol. 2022, pp. 1–29,
2022. [Online]. Available: https://egusphere.copernicus.org/preprints/
egusphere-2022-147/

[5] C.-J. Zhang, X.-J. Wang, L.-M. Ma, and X.-Q. Lu, “Tropical cyclone
intensity classification and estimation using infrared satellite images with
deep learning,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 2070–2086, 2021.

[6] C. Wang, G. Zheng, X. Li, Q. Xu, B. Liu, and J. Zhang, “Tropical
cyclone intensity estimation from geostationary satellite imagery using
deep convolutional neural networks,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–16, 2022.

[7] C. Kar, A. Kumar, and S. Banerjee, “Tropical cyclone intensity detection
by geometric features of cyclone images and multilayer perceptron,” SN
Appl. Sci., vol. 1, no. 9, 2019, Art. no. 1099.

[8] “Satellite: Himawari-1 (GMS-1) observing systems capability anal-
ysis and review tool,” 2023. Accessed: Feb. 22, 2023. [On-
line]. Available: https://space.oscar.wmo.int/satelliteprogrammes/view/
himawari_1st_generation_gms

[9] K. R. Knapp, M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J.
Neumann, “The international best track archive for climate stewardship
(ibtracs): Unifying tropical cyclone best track data,” Bull. Amer. Meteoro-
logical Soc., vol. 91, no. 3, pp. 363–376, 2010.

[10] C. Velden et al., “The dvorak tropical cyclone intensity estimation tech-
nique: A satellite-based method that has endured for over 30 years,” Bull.
Amer. Meteorological Soc., vol. 87, no. 9, pp. 1195–1210, 2006.

[11] “Dvorak current intensity chart wikipedia, wikimedia foundation, 29
Jul. 2019,” 2023. Accessed: Feb. 22, 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Dvorak_technique#Details_of_the_method

[12] “Dvorak common developmental patterns diagram wikipedia, wikimedia
foundation, 29 Jul. 2019,” 2023. Accessed: Feb. 22, 2023. [Online].
Available: https://en.wikipedia.org/wiki/Dvorak_technique#/media/File:
DvorakCDP1973.png

[13] “Tensorflow model zoo github.com,” 2023. Accessed: Feb. 22, 2023.
[Online]. Available: https://github.com/tensorflow/models/blob/master/
research/object_detection/g3doc/tf2_detection_zoo.md

[14] “LabelImg github.com,” 2023. Accessed: Feb. 24, 2023. [Online]. Avail-
able: https://github.com/heartexlabs/labelImg

[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2999–3007, doi: 10.1109/ICCV.2017.324.

[16] “What is root mean square error (RMSE) kaggle.com,” 2023. Accessed:
Feb. 22, 2023. [Online]. Available: https://www.kaggle.com/general/
215997

[17] J. Varghese, “Creating a custom object detector using transfer learning,”
Sep. 2020. [Online]. Available: https://medium.com/swlh/creating-your-
own-custom-object-detector-using-transfer-learning-f26918697889

Jacob Senior-Williams received the M.Sc. degree
in computational intelligence and robotics from the
University of Sheffield, Sheffield, U.K., in 2018.

Having worked as an AI Engineer with the Ad-
vanced Manufacturing Research Centre in Sheffield,
he relocated to The Netherlands in August 2020 and
is currently employed with S[&]T, Delft, The Nether-
lands, where he is a Senior Data Scientist focusing on
developing a wide range of applications that utilize
remote sensing data.

Frank Hogervorst received the M.Sc. degree in aerospace engineering from
the Technical University of Delft, Delft, The Netherlands, in 2018.

He has worked on various space applications gathering insights from remote
sensed data using AI. He has collaborated with environment inspection agencies
to make their way of working more efficient using space data. Currently, he is
working on detecting anomalous data from historical meteorological data for
improved climate analysis and investigates air pollution in urban areas.

Erwin Platen received the Ph.D. degree in astrophysics from the University of
Groningen, Groningen, The Netherlands, in 2009.

The Ph.D. study involved the structural analysis of empty regions within the
spatial distribution of matter within the Universe. Here, he developed novel
void-finding algorithms and nonlinear reconstruction methods to be able to
compare the observed spatial distribution with the simulated spatial distribution.
Currently, he is employed as a Scientific Software Engineer with S[&]T, Delft,
The Netherlands, where he is working on (science) data-processing projects,
related mostly to the reprocessing of archived satellite data, quality-control
monitoring of satellite data-processing, and on the testing and integration of
the Level-2 Processors for the Sentinel-5 Instrument.

Arie Kuijt received the M.Sc. degree in applied
physics from the Technical University of Delft
(TUD), Delft, The Netherlands, in 1993, and the
Graduation degree in pattern recognition and image
processing.

He is currently a Senior Project Manager with the
Dutch company Science and Technology (S[&]T),
Delft, The Netherlands, and leads various projects
such as Earth observation projects, service projects
for ESA Data, Innovation, and Science Cluster
(DISC) programs as well as high-tech and defence
projects.

Jacobus Onderwaater received the M.S. degree in experimental physics from
Utrecht University, Utrecht, The Netherlands, in 2012, and the Ph.D. degree in
high energy physics from TU Darmstadt, Darmstadt, Germany, in 2016.

Currently serving as the Copernicus Reprocessing Coordinator with EUMET-
SAT, Darmstadt, Germany, he oversees the production of improved data records
for Sentinel missions. In addition, he actively participates in diverse data record
initiatives, encompassing collaboration on satellite data with partner agencies.

https://dx.doi.org/10.1038/s41467-022-34321-6
https://www.mdpi.com/2073-4433/13/7/1113
https://www.mdpi.com/1424-8220/20/18/5132
https://www.mdpi.com/1424-8220/20/18/5132
https://egusphere.copernicus.org/preprints/egusphere-2022-147/
https://egusphere.copernicus.org/preprints/egusphere-2022-147/
https://space.oscar.wmo.int/satelliteprogrammes/view/himawari_1st_generation_gms
https://space.oscar.wmo.int/satelliteprogrammes/view/himawari_1st_generation_gms
https://en.wikipedia.org/wiki/Dvorak_technique#Details_of_the_method
https://en.wikipedia.org/wiki/Dvorak_technique#Details_of_the_method
https://en.wikipedia.org/wiki/Dvorak_technique#/media/File:DvorakCDP1973.png
https://en.wikipedia.org/wiki/Dvorak_technique#/media/File:DvorakCDP1973.png
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/heartexlabs/labelImg
https://dx.doi.org/10.1109/ICCV.2017.324
https://www.kaggle.com/general/215997
https://www.kaggle.com/general/215997
https://medium.com/swlh/creating-your-own-custom-object-detector-using-transfer-learning-f26918697889
https://medium.com/swlh/creating-your-own-custom-object-detector-using-transfer-learning-f26918697889


5244 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Roope Tervo received the Ph.D. degree in machine
learning from Aalto University, Espoo, Finland, in
2021 with a title “Machine Learning-Based Weather
Impact Forecasting.”

He is currently working with EUMETSAT, Darm-
stadt, Germany, as European Weather Cloud (EWC)
Service Coordinator and AI/ML expert.

Viju O. John received the M.S. degree in physics and
in atmospheric science from the Cochin University of
Science and Technology, Kochi, India, in 1998 and
2000, respectively, and the Ph.D. degree in physics
from the University of Bremen, Bremen, Germany,
in 2005.

He is currently a Climate Product Expert with
the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), Darmstadt,
Germany. His research interests include the remote
sensing of the Earth’s atmosphere, intercalibration of

satellite sensors, evaluation climate models using satellite observations, and
generation of climate data records of essential climate variables tailored for
climate monitoring and for assimilation in climate reanalyses.

Arata Okuyama received the B.S. and M.S. degrees
in applied physics from Hokkaido University, Sap-
poro, Japan, in 1997 and 1999, respectively.

He worked on on-orbit calibration of passive mi-
crowave radiometers and visible/infrared imagers. He
is currently a Scientific Officer for the Japan Meteoro-
logical Agency (JMA), Tokyo, Japan, involved with
preparation project of the next JMA geostationary
meteorological satellite, Himawari-10.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


