
6354 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Leveraging Deep Learning for High-Resolution
Optical Satellite Imagery From Low-Cost

Small Satellite Platforms
Valentino Constantinou , Mark Hoffmann , Matthew Paterson , Ali Mezher , Brian Pak ,

Alexander Pertica , and Emily Milne

Abstract—The expansion of small satellite networks in earth’s
orbit has resulted in a plethora of earth optical imagery available to
the civil, defense, and commercial sectors. Small satellites (less than
1000 kg in mass) and their constellations can be delivered rapidly
and at low cost and are more difficult to target by adversaries—a
key consideration in the defense industry. Yet, small satellite size
constraints often result in reduced payload capacity, reduced power
capacity, or loss of redundancy. Traditionally, the cost of an optical
telescope on board a satellite scales at roughly the square of the
aperture, meaning that it costs four times as much to double the
resolution of the imaging hardware. However, deep learning has
shown considerable success in the areas of super-resolution and en-
hancing the pixel resolution of optical imagery. These deep learning
methods have the potential to provide optical resolution capabilities
rivaling larger satellites and their telescopes, while maintaining
the benefits of small satellites—smaller physical size (which lowers
launch vehicle costs and provides a basis for large constellations),
reduced manufacturing time, and lower manufacturing costs. By
providing low-cost small satellite platforms with the same capabil-
ities as larger satellites, the cost for high-resolution in-orbit optical
imagery is reduced alongside time to orbit. In this work, we detail
a deep-learning-based approach, which improves optical satellite
imagery to five times the original pixel-based resolution without
the need or expense of increasing the capabilities of the imager
through larger telescope apertures. The approach—demonstrated
on Terran Orbital’s GEOStare SV2 mission imagery—is generally
applicable to any optical satellite image and is agnostic to the
mission, satellite manufacturer, optical payload specifications, or
data source. This capability provides a basis for small satellite
missions and constellations—and their optical payloads—to rival
the native hardware-based resolutions available through larger
satellites with wider telescope apertures at a significantly reduced
cost.

Index Terms—Deep learning, deep neural networks (DNNs),
optical imagery, remote sensing, satellite, super-resolution (SR).

I. INTRODUCTION

THE advent of commercially available high-volume micro-
electronics has enabled the growth of small satellites in

the aerospace industry, particularly in low earth orbit (LEO).
Small satellites are generally considered those to be less than
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1000 kg in mass [1]. The hallmark of today’s modern small
satellites is the adoption of consumer technologies—combined
with rapid development and production—by small agile teams
more closely aligned with information technology industry man-
agement models [2]. Typically, small satellite design and man-
ufacturing teams exhibit highly innovative and motivated tech-
nical staff, good communication with teams in close proximity,
well-defined mission objectives, short time scales for delivery
and launch of operations, failure-resistant system architectures,
and an objective to design to cost [1].

Robert “Bob” Twiggs and Dr. Jordi Puig-Suari introduced the
small satellite CubeSat standard in 1999 [1], with Puig-Suari and
Scott MacGillivray later cofounding Tyvak Nanosystems—now
Terran Orbital—in 2011. Since its introduction, the CubeSat
has been the gold standard in small satellite design for both
research and commercial platforms. In 2013, the first com-
mercial CubeSats with propulsion and precision control were
introduced, followed by the first CubeSat constellation in 2015,
the first CubeSats for controlled orbit changes and rendezvous
in orbit in 2017, the first CubeSats leaving Earth orbit in 2018
(the MARCO CubeSats supporting the National Aeronautics
and Space Administration (NASA) Jet Propulsion Laboratory’s
InSight mission), the first CubeSat launch with a radar for
NASA Jet Propulsion Laboratory in 2018 (RainCube), and the
first in-orbit nanosatellite docking mission in 2022 (CPOD).
Since their introduction, CubeSats and their form factors have
become the predominant architecture for designing, developing,
engineering, and launching small satellites in earth orbit and
beyond.

Recently, small satellite constellations have been gaining
relevance in the defense and commercial sectors. The Space
Development Agency (SDA) is a United States Space Force
(USSF) unit tasked with deploying disruptive space technology
to LEO, geostationary equatorial orbit (GEO), and other space
environments. Military officials from the USSF and related
agencies have publicly touted the benefits of a globally dis-
tributed network of small satellites, with both the difficulty of
targeting and destroying a small satellite versus more tradi-
tional large satellite platforms. On April 5, 2023, SDA director
Derek Tournear stated “We’ll have hundreds and hundreds of
these satellites up there [with the Proliferated Warfighter Space
Architecture]. It will cost more to shoot down a single satellite
than it will cost to build that single satellite. We just completely
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Fig. 1. GEOStare SV2 satellite bus and payload. GEOStare SV2 is a 6U
cubesat about 36 cm tall and 120 cm long, containing two optical telescopes—V3
(wide field of view) and V4 (narrow field of view).

changed that value equation.” Within the United States defense
sector, there is an ever greater emphasis on constellations of
small satellites, which provide increased redundancy, reliability,
and operational stability compared to more traditional larger
satellite platforms. The United States Department of Defense’s
Operationally Responsive Space concept called for the rapid
development and launch of spacecraft to augment or replace
existing spacecraft, with the goals to develop new small satellites
using standardized buses and plug-and-play architectures to
dramatically reduce development times and costs [1]. In the
commercial sector, companies like SpaceX (with their Starlink
constellation) and Planet (with their constellation of “Doves”)
are proliferating thousands of satellites into earth orbit with
extensive spatiotemporal coverage. As of October 1, 2023, there
have been over 4200 SpaceX Starlink satellites, 150 Planet Dove
satellites, and 630 OneWeb satellites in LEO. Rivada Networks
plans a constellation of over 600 satellites for encrypted optical
communications in LEO [3].

Regardless of the payload or capability facilitated through
these constellations in earth orbit, the trend is clear—
constellations of small satellites provide reduced manufactur-
ing costs, reduced launch costs, greater redundancy, greater
resiliency against attack by adversaries, and a vastly improved
ability to cover all areas of the globe from earth orbit—the real
utility emerges through the formation of low-cost small satellite
constellations [1]. These satellite constellations also provide the
ability to upgrade the constellations over time with new bus or
payload capabilities, as demonstrated with SpaceX’s Starlink
V1, V1.5, and V2 satellites or the SDA’s Proliferated Warfighter
Space Architecture—each new version or tranche replacing
or augmenting existing satellites with upgraded platforms and
capabilities (Fig. 1).

Terran Orbital’s GEOStare SV2 satellite—developed together
with the Lawrence Livermore National Laboratory (LLNL)—
launched on May 15, 2021 on board a Space-X Falcon-9 launch
vehicle [4]. The nearly 36-cm-tall 120-cm-long GEOStare SV2
is the latest development of a collaboration between LLNL and
Terran Orbital to demonstrate the feasibility of using these small
systems for space domain awareness (monitoring and tracking
space debris), astronomical observation, and ground imaging.
In the first six months of operation, GEOStare SV2 captured
over 29 000 images of earth and space at a maximum 2-m
ground sampling distance (GSD). GEOStare SV2’s carries a

NVIDIA TX2i payload computer. The inclusion of an NVIDIA
graphical processing unit (GPU) onboard GEOStare SV2 pro-
vides an opportunity for edge computing of artificial intelligence
(AI) solutions from earth orbit, although there are cases where
machine and deep learning capabilities are best deployed “on
the ground” to limit the impact of in-orbit operations.

Small satellites, such as GEOStare SV2, are attractive to
many civil, defense, and commercial customers due to their
reduced cost, reduced assembly time, and easier integration with
launch vehicles due to their sizing and available fairing capacity.
However, small satellite platforms, such as GEOStare SV2, are
subject to various limitations, which reduce the capabilities of
onboard payloads. Tradeoffs are made between the size of the
satellite and the available resources that can be provided on board
the platform. In the case of GEOStare SV2, while its optical
imaging payloads represent an industry advancement, physical
sizing limitations result in reduced telescope apertures and thus
GSD. A major challenge of high-resolution imaging missions on
small spacecraft is the thermal stability on the imaging system
and satellite bus needed to provide sharp imagery [5].

AI approaches, such as deep neural networks (DNNs), present
an opportunity to “do more with less,” bringing capabilities
traditionally associated with large satellites and large-diameter
telescopes to small satellite platforms. By integrating DNN
capabilities, small satellite operators can offer data products
rivaling those offered by larger satellites and payloads at a
fraction of the hardware cost and time to orbit associated with
larger telescope diameters or satellites. Super-resolution (SR)
techniques find many applications across industries, including
satellite imagery [6]. SR is effectively a one-to-many inference
problem from a low-resolution space to a high-resolution space,
of which determining the correct solution is not trivial [7].
Nevertheless, the flexibility of DNNs and their capability to learn
highly nonlinear patterns has shown to attain excellent image
reconstruction accuracy compared to handcrafted models [8],
[9], [10]. More recently, single-image super resolution (SISR)
techniques have sought to learn implicit redundancy that is
present in data to recover missing high-resolution information
from a single low-resolution sample [7], [11]. A comprehensive
review of SISR techniques can be found in [12]. High-resolution
imagery exhibits greater texture detail necessary to separate
buildings from their backgrounds, a critical consideration in
producing high-quality building footprints [13], essential for ur-
ban planning, disaster response, and population estimation from
earth orbit [14], [15], [16]. SR helps to enhance the distinction
between backgrounds and buildings in the resulting images [17].

While the cost of an optical telescope on board a satellite
scales at roughly the square of the aperture, meaning it that
costs four times as much to double the resolution using hard-
ware alone (millions or tens of millions of USD), doing the
equivalent through SR using DNNs is achievable in hundreds
of thousands of dollars and at reduced time scales (months
versus years of development). Furthermore, these techniques can
be deployed using existing ground station infrastructure or by
using edge computing in-flight (on board the spacecraft) such as
with GEOStare SV2’s NVIDIA TX2i or on the ground using
on-premises or cloud computing infrastructure (on-demand),
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Fig. 2. Side-by-side comparison of iSAID-derived training data, with the low-
resolution input image (242 × 242 pixels) on the left and the high-resolution
target image (1210 × 1210 pixels) on the right.

offering greater flexibility in satellite payload offerings. Compu-
tationally intensive model training can be accomplished on the
ground, with fully trained and optimized models then uploaded
and deployed to the spacecraft for onboard processing of mission
data [18].

II. METHODS

In the subsequent sections, we detail our SISR image im-
provement methodology for optical satellite imagery of the earth
surface.

In summary, during both model training and inference, input
images are tiled into 64 square images. For model training, the
64 square images are kept as the high-resolution targets and
are resized to 1210 × 1210 pixels. Low-resolution versions of
the same 64 square images are used as the low-resolution inputs,
resized to 242×242 pixels (Fig. 2). Together, these input and tar-
get images comprise training data. This methodology leverages
a publicly available dataset for training the well-known ResNet
(34-layer) [19] architecture as a backbone for a U-Net [20]. After
inference, tiled sections of each image are stitched together to
result in a reconstructed high-resolution image.

We validate the performance of the model both quantitatively
and qualitatively. Using GEOStare SV2 optical satellite imagery
for inference, we upscale the pixel resolution of the satellite im-
agery by five times. Errors between the inferred high-resolution
image and the original image are illustrated (for both full im-
ages and tiles of images). Side-by-side comparisons are made
between the native-resolution GEOStare SV2 imagery and the
upscaled high-resolution versions in addition to the quantitative
evaluation.

A. Training Data

Large-scale datasets, such as ImageNet [21], PASCAL-
VOC [22], and MSCOCO [23], have enabled the training of
data-hungry DNNs, bringing unprecedented performance in
scene understanding tasks such as image classification [19],
[24], object detection [25], [26], and instance segmentation [27],
[28]. However, these datasets contain terrestrial natural scenes
where objects are appeared in an upward orientation and do
not transfer well to aerial imagery such as those from in-orbit
imaging satellites or unmanned aerial vehicles [29]. In aerial
imagery, objects occur in high density, large aspect ratios, and
with variation in scale, shape, and orientation [30].

A training dataset is created using publicly available large-
scale dataset for instance segmentation in aerial images

(iSAID) [30]. The images in the iSAID data are collected from
Google Earth, with most of the images captured by satellites
JL-1 (0.75-m GSD) and GF-2 (0.81-m GSD). The distinctive
characteristics of iSAID are the following: 1) large number
of images with high spatial resolution; 2) 15 important and
commonly occurring categories; 3) large number of instances
per category; 4) large count of labeled instances per image,
which might help in learning contextual information; 5) huge
object scale variation, containing small, medium, and large
objects, often within the same image; 6) imbalanced and uneven
distribution of objects with varying orientation within images,
depicting real-life aerial conditions; 7) several small size objects,
with ambiguous appearance, can only be resolved with contex-
tual reasoning; and 8) precise instance-level annotations carried
out by professional annotators, cross-checked and validated by
expert annotators complying with well-defined guidelines.

The iSAID data contain 937 images used for the valida-
tion of image segmentation models, which we repurposed for
training our SR optical satellite ground imagery model. Each
source image from the iSAID dataset is tiled into 64 square
images in both low-resolution input images (242 × 242 pixels)
and high-resolution target images (1210 × 1210), which are
five times the resolution of the input images, together creating
low-resolution and high-resolution pairs. Both sets thus contain
59 968 images (937 iSAID images tiled into 64 pieces). Together,
these two sets of images comprise the training data. By training
on the model on three-channel red–green–blue (RGB) images,
the resulting trained model can be applied to a wide variety of
input data for inference, including 2-D representations of syn-
thetic aperture radar, multispectral and hyperspectral imagery.
By training the model on imagery with a smaller GSD compared
to GEOStare SV2 [75 cm (JL-1) and 80 cm (GF-2) compared to
2 m (GEOStare SV2)], we provide and encode the model with
information regarding patterns and textures in optical satellite
imagery that is unavailable or hard to distinguish in the native
GEOStare SV2 imagery (and its resolution).

B. GEOStare SV2 V3 and V4 Optical Telescopes

The GEOStare SV2 spacecraft contains the GEOStare2
optical imaging payload. The payload holds two com-
pact Livermore-developed monolithic telescopes (MonoTeles),
along with associated sensors, cameras, and electronics. One
MonoTele has a high-resolution narrow field of view for earth
observation (V4); the other has a high-sensitivity wide field of
view (V3) for space domain awareness and astronomy applica-
tions. The MonoTeles are developed from a single monolithic
fused silica slab with reflective coatings on each end. This design
reduces the effects of vibration at launch and eliminates the need
for adjusting the sensors on-orbit.

C. GEOStare SV2 Optical Imagery

The images produced from the V3 and V4 telescopes are
1936 × 1216 and 3096 × 2080 pixels in resolution, respec-
tively, with a GSD of approximately 2 m for the V4 telescope
imagery and 10.4 m for the V3 telescope. All the GEOStare
SV2 images are black-and-white single-channel images and
exhibit various illumination conditions and viewing angles in
the satellite images due to the 53◦ inclined orbit, which is not
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Fig. 3. Image from GEOStare SV2’s V3 (wide field of view) telescope.

in sun-synchronous orbit (SSO). This orbit is not common in
commercial satellite imagery, which is predominantly produced
by satellites and telescopes in SSO. The satellite can be rapidly
retasked for different image locations and times to capture these
artifacts, supplemented by an extensive ground station network.
When considered under the National Imagery Interpretability
Rating Scale (NIIRS) [31], GEOStare SV2 imagery falls within
rating level 3—“It is possible to detect large area contour plough-
ing; individual houses in residential areas; trains or strings of
rolling stock (but not individual wagons); identify inland wa-
terways navigable by barges; distinguish between natural forest
and orchards.”

The GEOStare SV2 optical imagery from both the V3 and V4
telescopes are used to both quantitatively and qualitatively assess
the performance of the trained model. To assess the imagery
quantitatively, the native-resolution 242 × 242 tiled images
and the high-resolution 1210 × 1210 are directly compared
by resizing the latter to the native 242 × 242 pixel resolution.
More specifically, each 1210 × 1210 high-resolution image tile
is resized to the 242 × 242 pixel resolution inherent in the
native-resolution imagery. Each of these tiles is then compared
with the corresponding native-resolution tile, with the abso-
lute differences between each pixel calculated, illustrated, and
captured. In Fig. 8, the native-resolution (left), high-resolution
(center), and differences between the two (right) are illustrated
for one example set of tiles. The mean error per pixel is also
captured by averaging the absolute error across all of the native-
resolution and corresponding high-resolution image tiles, shown
and discussed in Fig. 10.

To assess the imagery qualitatively, we directly compare
cropped areas (i.e., “zoomed-in” areas) of both native- and high-
resolution GEOStare SV2 imagery against the NIIRS rating
level system across a wide set of examples, including urban city
centers, airports, ports, agricultural fields, natural landscapes,
and other geographic settings. Two examples from urban city
centers are illustrated and discussed in Section III.

D. Deep Learning Model Architecture

We employ an SISR method to reconstruct high-resolution op-
tical ground imagery from satellites from single low-resolution
inputs, without the need for a sequence of images. More specif-
ically, we utilize the well-known ResNet (34 layer) [19] archi-
tecture as a backbone for a U-Net. A U-Net is a convolutional

Fig. 4. Image from GEOStare SV2’s V4 (narrow field of view) telescope.

Fig. 5. Illustration of the U-Net architecture with a ResNet (34-layer) back-
bone, using a native-resolution (left) and high-resolution (right) image of Lower
Manhattan as an example.

Fig. 6. Training and validation loss curves of the SR optical imagery model
over 11 epochs of model training.

neural network (CNN) that was originally developed for image
segmentation at the Department of Computer Science, Univer-
sity of Freiburg. The architecture of U-Net models consists of
a contracting path and an expansive path, which gives it the
U-shaped architecture (Fig. 5). The contracting path is a typical
convolutional network that consists of repeated application of
convolutions, each followed by rectified linear unit activation
functions and a max-pooling operation. During the contraction,
the spatial information is reduced, while feature information
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Fig. 7. Side-by-side comparison of iSAID-derived training data, with the
low-resolution input image (242 × 242 pixels) on the left, the high-resolution
target image (1210 × 1210 pixels) in the center, and the high-resolution inferred
(predicted) image (1210 × 1210 pixels) on the right.

is increased. The expansive pathway combines the feature and
spatial information through a sequence of upconvolutions and
concatenations with high-resolution features from the contract-
ing path [20].

U-net architectures exhibit higher computational complexity
and cost compared with other model architectures commonly
used in SISR or segmentation applications. Due to the skip con-
nections present in the U-net architecture and the large number
of parameters, U-nets are more prone to overfitting and require
additional computational cost or time to train. However, the use
of skip connections allows U-nets to incorporate both high- and
low-level features from an input image, typically improving the
output from the trained models.

We train the U-Net model with the backbone of a residual
neural network, or ResNet, utilizing a ResNet (34-layer) encoder
and decoder (paramaters noted in Table III). ResNet models are
other CNNs made up of a series of residual blocks with skip
connections, differentiating ResNets from other CNNs [19].
Since CNNs can be substantially deeper, more accurate, and
more efficient to train if they contain shorter connections be-
tween layers close to the input and those close to the output,
ResNet architectures add cross connections between the layers
of the network allowing large sections of the network to be
skipped if needed. When using only a U-Net, predictions tend
to lack fine detail, but utilizing a ResNet backbone with cross
or skip connections can address this inherit limitation, resulting
in improved high-resolution imagery with the ability to capture
fine details necessary to improve the quality of optical ground
imagery.

E. Loss Function

We utilize the mean square error (MSE) to calculate the
difference between the pixels predicted by the SISR model and
the target images, defined as

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

where Yi and Ŷi are the target and predicted high-resolution
images of input image i and N is the number of training data
pairs. Other loss functions such as the mean absolute error or
binary accuracy have been implemented in related literature, but
were not explored in the course of this work.

F. Model Training Computing Resources

We utilized an Amazon Web Services (AWS) EC2 instance
for model training, specifically the g4dn.12xlarge instance type
with four NVIDIA Tesla T4 GPUs. Each NVIDIA Tesla T4
contains 2560 CUDA cores, 320 Turing Tensor Cores, and
16 GB of GDDR6 random access memory (RAM). We execute
and accelerate model training by distributing the batches across
each GPU, training four batches in parallel for each iteration in
each epoch. The Python [32] programming language was used,
Numpy [33], PyTorch [34], and FastAI [35] for model training
and inference, and the Matplotlib [36], Seaborn [37], and Pillow
libraries for visualization. Model training takes approximately
4.5 days using our training set derived from iSAID. Using our
AWS inference infrastructure, improving the resolution of a
GEOStare SV2 image takes approximately 7 min using only
the central processing unit.

III. RESULTS

A. Model Evaluation

The training and validation loss curves from model training
are shown in Fig. 6. Early stopping and learning rate reduction on
plateauing are implemented as part of the model training process.
Close examination of the model training and validation loss
curves shows a slight tendency toward overfitting after epoch
10. Future implementations of this capability could stand to
more aggressively implement early stopping or a reduction in the
learning rate as progress plateaus, further increasing modeling
accuracy and performance, at the expense of increased model
training times.

B. Quantitative Evaluation of High-Resolution Imagery

For quantitative evaluation of model performance, we eval-
uate the absolute error between each pixel across the native-
resolution inputs and the high-resolution model outputs. More
specifically, we evaluate the model on 250 randomly sam-
pled ground images from GEOStare SV2, resulting in 16 000
tiled images (242 × 242 pixels each for native resolution and
1210 × 1210 pixels each for high-resolution from the model
output). For each pair of native- and high-resolution imagery,
we resize the high-resolution 1210 × 1210 pixel images back to
the original 242 × 242 size and then calculate the absolute error
of each pixel between the native- and high-resolution images. A
result of this comparison is shown in Fig. 8. We then illustrate
the errors in the fully reconstructed images in addition to the
tiles, as shown in Fig. 9.

In addition, we calculate and illustrate the mean (average)
error across all the pixels for each tile to determine the dis-
tribution of errors across pixels in order to examine where in
each image tile the model exhibits the most error. Intuitively,
the model exhibits the greatest error at the borders of each tiled
image, where less information is present for image improvement
due to a decrease in the amount of neighboring pixels (shown in
Fig. 10).
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Fig. 8. 242 × 242 native pixel resolution image tile (left), a 1210 × 1210
high-resolution image tile (center), and errors (right) between the two image
tiles. Note that the greatest error manifests in this example surrounding complex
features, such as cloud boundaries. There is little to no error in the area within
the cloud itself.

Fig. 9. Reconstructed image with errors overlaid on top of the optical image.
Note that the greatest error manifests in the borders of the tiles and in complex
features, such as building boundaries or topographical changes. There is little
to no error in the area within less complex features such as the water surface in
the canals or accompanying lake.

C. Qualitative Comparison of Native- and High-Resolution
Imagery

In addition to a quantitative evaluation of the output imagery,
a qualitative assessment of the resulting reconstructed imagery
is performed as in [17]. A goal of our methodology is to produce
GEOStare SV2 imagery at NIIRS rating level 4 from the existing
rating level 3. In NIIRS rating level 4, “It is possible to identify
farm buildings as barns, silos or residences; detect basketball or
tennis courts in urban areas; identify individual tracks, rail pairs
and control towers; detect jeep trails through grassland.” In order
to assess whether NIIRS rating level 4 has been achieved, we
examine the high-resolution model outputs against the native-
resolution ground imagery from GEOStare SV2 at microscales
by cropping representative sections of each image.

We illustrate two examples from GEOStare SV2 imagery
from New York City in the United States and Kuala Lumpur
in Malaysia. The high-resolution improved image of New York
City with a bounding box over the cropped area is shown
in Fig. 11, with the microscale cropped section illustrating

Fig. 10. Heatmap of the mean (average) absolute errors across all of the tiled
images. With the exception of the tiled image boundaries, the error is (generally)
normally distributed across each image tile.

Fig. 11. Improved high-resolution optical satellite image of New York City,
including Lower Manhattan. The area indicated in the green box is expanded
and shown in Fig. 12.

lower Manhattan shown in Fig. 12. The comparison between
the native-resolution GEOStare SV2 image (left) and high-
resolution image (right) illustrates the improvements to the
source image made with the technique outlined in this article,
mainly: 1) additional clarity around building and wharf edges;
2) the improved ability to determine building characteristics such
as shape and height; and 3) an improved ability to determine
building footprints from adjacent roadways. Whereas the origi-
nal imagery proves difficult to identify building boundaries and
footprints and thus building types, the high-resolution imagery
allows viewers to better identify individual buildings and their
structures.

Similarly, we illustrate an example of a moving train in
Kuala Lumpur, Malaysia. The high-resolution improved image
of Kuala Lumpur with a bounding box over the cropped area
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Fig. 12. Lower Manhattan in New York City, with the native-resolution GEOStare SV2 image shown on the left and the high-resolution model result shown on
the right. Note the dramatically improved ability to interpret and estimate building footprints in the improved image.

TABLE I
GENERAL CLASSIFICATION OF SATELLITES BY MASS [1]

Fig. 13. Improved high-resolution optical satellite image of Kuala Lumpur,
Malaysia. The area indicated in the green box is expanded and shown in Fig. 14.

is shown in Fig. 13, with the microscale cropped section il-
lustrating the moving train shown in Fig. 14. The comparison
between the native-resolution GEOStare SV2 image (left) and

TABLE II
TECHNICAL SPECIFICATIONS OF THE V3 AND V4 TELESCOPES AND THE

IMAGERS

high-resolution image (right) illustrates the improvements to the
source image made with the technique outlined in this article,
mainly: 1) additional clarity around building footprints and
transportation networks; 2) improved clarity around moving ob-
jects in the image such as the train; and 3) an ability to determine
that the train contains two moving cars, shown with a small
dark “break” between each rail car. Whereas the train is more
difficult to identify in the original image, the high-resolution
image clearly shows the moving train.
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Fig. 14. Moving train captured in Kuala Lumpur, Malaysia, with the native-resolution GEOStare SV2 image shown on the left and the high-resolution model
result shown on the right. Note the dramatically improved ability; see building details and the moving train in the upscaled satellite image.

Fig. 15. Input images (top) and the results (bottom) of applying the SISR approach under various imaging conditions. (a) Dawn/dusk. (b) Mid-day.
(c) Morning/afternoon with partial cloud cover. (d) With noise from Bayer filtering. (e) Overexposure. (f) Underexposure. (g) Oblique angle imagery.

TABLE III
PARAMETERS OF THE MODEL USED IN THE EXPERIMENTS

D. Robustness to Imaging Variabilities

It is well known that multi- and hyperspectral data can suf-
fer from noise, degradation, and other variabilities introduced
through imaging [38]. With respect to three-channel optical
imaging, variabilities in the imaging process can be introduced
due to environmental conditions on board the satellite (the

thermal properties of the imager and satellite at the time of
capture), environmental conditions between the satellite and the
ground (weather or the satellite’s position relative to the sun), and
errant noise introduced through errors in onboard or ground data
processing. In Fig. 15, we highlight the effect of various imaging
variabilities on the results of our SISR approach. We can see from
the results in the figure that the SISR approach performs well
under various lighting conditions and other variabilities such as
noise from Bayer filtering present in the V4 telescope.

E. General Applicability

In order to assess the approach’s general applicability to
optical satellite ground imagery, we apply the trained model
to 30-m GSD imagery from Landsat 8 and 1-m GSD imagery
from satellite JL-1, as shown in Fig. 16. In both the cases, the
trained SISR model increases the pixel resolution of the input
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Fig. 16. Input images (top) and the results (bottom) of applying the SISR
approach on (a) 30-m GSD imagery from Landsat 8 and (b) 1-m GSD imagery
from satellite JL-1.

image, resulting in improved sharpness and clarity of features.
The scale of the increase in resolution is inversely proportional to
the resolution of the input image. While an increase in sharpness
is evident in the 1-m GSD example shown in Fig. 16(b), the
increase is slight compared to the increase seen with the 30-m
GSD image from Landsat 8 shown in Fig. 16(a).

IV. DISCUSSION

A. Evolution of Small Satellite Capability
Constellations of small satellites provide reduced manufac-

turing costs, reduced launch costs, greater redundancy, greater
resiliency against attack by adversaries, and a vastly improved
ability to cover all areas of the globe from earth orbit. On the
other hand, the reduced spacecraft size of small satellites results
in a tradeoff in payload capacity relative to larger spacecraft with
the same payload types and capabilities. By using ground-based
methodologies once data products from small satellites are
downlinked, small satellites can rival the capabilities of their
larger cousins while maintaining the aforementioned benefits in
costs, redundancy, and resiliency. Our capability demonstrated
in this work dramatically increases the commercial and defense
uses of small satellite optical ground imagery without any
modifications to the spacecraft, payload, or mission operations
procedures.

While only approximations can be made, a five times im-
provement in the pixel resolution of images from GEOStare
SV2 improves the GSD from the V4 telescope from 10.4 m
to approximately 40 cm. This capability represents an industry
advancement, allowing small satellite manufacturers and oper-
ators the ability to produce, launch, and operate single satellites

or constellations of small satellites that rival the capabilities of
larger satellites. Moreover, the capability can also be integrated
with larger satellites by using smaller, cheaper, and less power-
hungry optical imaging payloads, freeing up physical space and
resources for additional payloads or bus capabilities.

B. Capability Agnostic to Mission, Optical Payload, Data
Source, or Spacecraft

Our developed capability has the ability to take any input
image (tiled into square images 242 × 242 or less) and improve
it to five times the original resolution to 1210× 1210 pixels, irre-
spective of the mission, optical payload provider or type, the data
source (mission operations or an archive of existing imagery),
or spacecraft. The only requirements are that the images are:
1) three-channel RGB images and 2) 242 × 242 pixels or less
when split into square tiles. In addition, while performance is
lost as the size of the input image increases in size, our capability
has the ability to take larger image tiles as inputs and provide
high-resolution outputs up to the 1210 × 1210 pixel output
image tile size. Developing a capability to apply across data
sources, spacecraft, and optical imaging payloads dramatically
increases the relevance of the capability and resulting product,
as it can be applied across missions and across spacecraft, on
both internal mission operations data sources and other sources
such as NASA’s Landsat optical imagery.

In addition, the developed capability can also be deployed
through data reselling platforms for satellite imagery, improving
the resolution of their existing and acquired image catalogues.
The developed capability is a clear candidate for integration
with spacecraft, payload, and mission offerings. That said, the
developed SR capability also has significant utility through ap-
plication on existing catalogues of satellite imagery of the earth
surface, enhancing the defense, civil, and commercial readiness
and value of available optical satellite imagery.

C. Achieving NIIRS Rating Level 4

As previously discussed, the NIIRS rating level 4 dictates that
from aerial imagery “It is possible to identify farm buildings as
barns, silos or residences; detect basketball or tennis courts in
urban areas; identify individual tracks, rail pairs and control
towers; detect jeep trails through grassland.” As our goal is to
achieve NIIRS rating level 4, we examine the results from our
SISR approach against a set of images from both the V3 and V4
telescopes.

The V3 telescope provides a wide field of view with a 10.4-m
GSD at 544 km in altitude. Fig. 17 shows a microscale (“zoomed-
in”) section of a GEOStare SV2 image, which captures green-
houses among farmland in Saratov Oblast, Russia. The images in
the figure show a pronounced improvement between the native-
resolution GEOStare SV2 image (center) and the improved
resolution GEOStare SV2 image (right). Notably, the cluster of
greenhouses indicated in the figure were not discernable as single
or multiple buildings in the original GEOStare SV2 image,
whereas the image produced with our SISR technique allows
viewers to discern the structures as individual buildings. In
addition, landscape textures and features are easily interpretable
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Fig. 17. Google Earth (left) and improved resolution V3 telescope GEOStare SV2 (right) optical satellite images of greenhouses amongst farmland in Saratov
Oblast, Russia. The original native-resolution GEOStare SV2 image is shown in the center.

Fig. 18. Google Earth (left) and improved resolution V4 telescope GEOStare SV2 (right) optical satellite images of a tennis court adjacent to Beijing Capital
Airport, China. The original native-resolution GEOStare SV2 image is shown in the center.

in the SISR image, whereas they are difficult to interpret in the
native-resolution original GEOStare SV2 image.

The V4 telescope provides a narrow field of view with a
2-m GSD at 544 km in altitude. Fig. 18 shows a microscale
(“zoomed-in”) section of a GEOStare SV2 image, which cap-
tured a tennis court adjacent to Beijing Capital Airport in China.
The figure indicates a dramatic improvement between the im-
proved resolution GEOStare SV2 image (on the right) versus the
native-resolution image (in the center). Small buildings next to
the tennis courts are clearer in the improved resolution image,
and the borders of the courts’ playable area become more readily
apparent as well. Nevertheless, the tennis courts are not easily
identifiable without prior knowledge of the target area, possibly
due to the lack of line and edge clarity or due to a lack of a
color imager on GEOStare SV2, which would add additional
information for viewers of the resulting images. As such, while
the improved resolution image shows a large improvement when
compared with the native-resolution image, we believe we come
close to—but not quite achieving—NIIRS rating level 4 with the
V4 narrow-field-of-view telescope.

D. Future Work

There are several possible technical avenues to explore in or-
der to achieve NIIRS rating level 4 from GEOStare SV2 optical
satellite imagery and our SISR technique. The first is to increase

the target resolution from five times to eight times or more. Cur-
rently, this is not possible with the batch sizes and available com-
puting capabilities on AWS GovCloud, where the g4dn.12xlarge
is the instance type with the largest amount of RAM available per
GPU (16 GB). While the g5 instance types provide additional
GPU computing capabilities and RAM, they are only available
on AWS commercial services and not through GovCloud.

A second strategy is to utilize an alternative dataset instead of
iSAID, where the optical images in the dataset are captured by
satellites in orbit with a smaller GSD. A reduction in the GSD of
the training data will result in greater detail in texture, shading,
color, and other patterns in which to train a model, resulting in
improved SISR performance. While the iSAID dataset provides
satellite optical imagery at a GSD of 0.75 m with the JL-1
satellite, additional texture, edge, and pattern representations
can be captured by our SISR approach using commercial satellite
imagery with improved GSDs. In this respect, the target pixel
resolution improvement of five times can be maintained while
still improving the results of SISR.

Finally, additional SISR performance may be realized by
utilizing alternative loss functions from the MSE (L2 loss). More
recent work has indicated that gradient-based or gradient-guided
loss functions may provide more desirable results in SISR ap-
plications [39], [40]. More specifically, SISR models may fail
to recover sharp edges present in high-resolution imagery when
leveraging MSE as the training loss function.
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V. CONCLUSION

This work introduces the concept of leveraging SISR ap-
proaches to obtain high-resolution optical satellite imagery from
low-cost satellite platforms frequently leveraged in commercial
space. Traditionally, the cost of an optical telescope on board a
satellite scales at roughly the square of the aperture, meaning that
it costs four times as much to double the resolution of the imaging
hardware. However, we show that SISR deep learning techniques
can effectively improve the pixel resolution of an image by
five times while correspondingly improving the NIIRS rating
level, bringing low-cost satellites in closer competition with
larger satellites with more capable optical payloads and without
the expense of developing and constructing more capable tele-
scopes. By providing low-cost small satellite platforms with the
same capabilities as larger satellites, the cost for high-resolution
in-orbit optical imagery is reduced alongside time to orbit (small
satellites are built more quickly and typically launched more
quickly through having a variety of launch vehicle options avail-
able). Methods are detailed, alongside results on Terran Orbital’s
GEOStare SV2 satellite and satellites from other operators, such
as the NASA. We report the performance of the results and detail
areas of future work, which are likely to further improve the
results of our described approach.
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