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Abstract—With the advancements in space technology and the
development of lightweight synthetic aperture radar (SAR) satel-
lites by commercial companies, such as ICEYE, Capella Space and
Umbra, SAR images have become available on a wide scale. Ship
detection is a classic problem in the interpretation and analysis
of satellite images and has its significance both in maritime as
well as defense applications. In the case of SAR images, ship
detection becomes even more challenging due to the presence of
large-scale distortions as well as interclass similarity signature
problem. Moreover, the state-of-the-art (SOTA) object detection
models have weak generalization capability over SAR datasets.
To overcome these challenges, we propose a You Only Look Once
(YOLO)-based optimized ship detection model called YOLO-OSD.
Our optimized ship detector is based on a hybrid data-model
centric approach, which utilizes the statistical characteristics of the
datasets under observation and has an efficient model architecture.
We also carry out a detailed comparative analysis of our proposed
model with other SOTA deep learning models on three well-known
publicly available datasets. Our results show that the proposed
YOLO-OSD outperforms YOLO5, YOLO7, and RetinaNet on all
datasets under observation in terms of F1 score and mean average
precision. YOLO-OSD also has approximately 16% fewer network
parameters as compared with the original YOLO5. Moreover, our
proposed model is at least 37.7% faster than YOLO7 and 41.02%
faster than the YOLO8 model in terms of training time and thus
suitable for real-time satellite-based SAR ship detection.

Index Terms—Bounding boxes (B-Boxes), deep learning (DL),
multiresolution satellite images, ship detection, synthetic aperture
radar (SAR), you only look once (YOLO).

I. INTRODUCTION

S PACE technology has shown remarkable progress in the
past few decades from the manifestation of reusable launch

vehicles to the development of compact and small-scale satel-
lites. Satellite-based remote sensing has also received growing
attention due to the development of lightweight and less power
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Fig. 1. Palm Island Dubai, UAE. (a) Optical Satellite image (Maxar Technolo-
gies). (b) SAR Satellite image (Capella Space).

hungry satellites capable of taking high-resolution images of
Earth’s surface. With the launch of new firms, such as ICEYE,
Capella Space, and Umbra, the availability of high resolution
synthetic aperture radar (SAR) satellite images has increased
manifolds both in public and private sector domains. [1]. The
problem of object detection in satellite images has important
applications in civil as well as military domains. Small objects
including ships, cars, air crafts, etc., can be detected using
high resolution satellite imagery, whereas, satellite images with
relatively medium resolution can be used to detect relatively
bigger objects, such as airports, fields, and buildings [2], [3].

Among the remote sensing satellites, the SAR sensors also
known as active sensors work on the principle of radars. They
transmit electromagnetic waves and pick up the reflected waves
from the target object in order to form the shape of the object [4].
These operate in the microwave region of the electromagnetic
spectrum and therefore it is not possible to generate true color
red, green, and blue images in the case of SAR sensors. However,
SAR imaging is advantageous in the sense that it can penetrate
clouds and even capture images during nighttime. Due to this
capability, they are also called all weather, all time sensors [5].
Fig. 1 shows a visual comparison between electro-optical (cour-
tesy Maxar Technologies) and SAR (courtesy Capella Space)
satellite images of the same area.

Satellite-based ship detection has significant importance in
the maritime domain awareness and can assist in various ap-
plications including monitoring of illegal fishing activities,
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pirate threats, vessel traffic management along the coastlines
and identification of noncooperative ships with no automatic
identification system data [6], [7], [8]. SAR sensors are con-
sidered particularly useful for maritime applications due to
their all-weather and day–night imaging capability. Apart from
that they have wider swath coverage as compared with their
optical counterparts. This enables them to monitor large areas
of oceans and coastlines within shorter amounts of time [9],
[10]. Despite these benefits, there still remain various challenges
associated with SAR images, which makes satellite-based SAR
ship detection a relatively arduous task. These are summed up
below.

1) Involvement of deformed object boundaries due to various
distortions and uneven scattering phenomena.

2) For applications related to the maritime domain, SAR
images may involve complex backgrounds including sea
clutter, islands, harbors, and ports, which negatively affect
detection accuracy.

3) No specific color information is included in SAR images,
so details in different bands cannot be leveraged as is the
case in optical images.

4) The issues of interclass similarity signature i.e., two very
different objects may have similar reflectance patterns and
thus appear to be similar in a SAR image.

5) Most of the state-of-the-art (SOTA) object detection al-
gorithms are tailored for optical images and thus possess
weak generalization ability over SAR data.

6) Lack of publicly available, labeled SAR datasets as com-
pared with the optical datasets.

In this article, we propose an you only look once optimized
ship detection model named (YOLO-OSD) for multiresolution
SAR satellite images using a hybrid data-model centric ap-
proach. Our main contributions are as follows.

1) We carry out detailed statistical analysis of three pop-
ular open source SAR ship datasets including SSDD,
SAR-Ships, and iVision-MRSSD to perform anchor box
customization for ease of model training and achieving
better intersection over union (IoU) and mean average
precision (mAP) scores.

2) We optimize the network architecture of YOLO5 model
to significantly reduce the model network parame-
ters and training time while simultaneously improv-
ing the ship detection accuracy in satellite-based SAR
images.

3) We conduct extensive experiments, including detailed
comparative and cross-dataset validation analysis, to as-
sess the performance of our proposed YOLO-OSD ap-
proach. Our evaluations include quantitative and qualita-
tive comparisons with SOTA object detectors, including
YOLO5, YOLO7, YOLO8, and RetinanNet.

The rest of this article is organized as follows. Section II
includes a summary of past and recent works related to the
domain. Section III discusses the methodology of the pro-
posed YOLO-OSD approach including statistical analysis of the
datasets involved. Section IV describes the experimental setups
and details. Section V shows the quantitative and qualitative
results of the experiments. Section VI provides a discussion

on the results and analysis. Finally, Section VII concludes this
article, with current limitations and future research directions.

II. RELATED WORKS

Satellite-based SAR ship detection has been the focus of
researchers since the past two decades. Traditional approaches
for ship detection in SAR images are based on the constant
false alarm rate (C-FAR) algorithm [11], [12], [13], [14]. It
is an algorithm based on the statistical distribution of SAR
image pixels and uses an adaptive thresholding strategy based
on the false alarm rate. The thresholding mechanism employs
the fact that in a SAR image, ships are normally characterized
by the brightest pixels and other pixels can be treated either as
background, sea clutter or other land-based features. However,
the method heavily relies on predefined distributions to make
detections and becomes irrelevant with changing backgrounds
and imaging conditions, which is a frequently occurring case in
satellite-based SAR images. Hence, techniques based on C-FAR
algorithms generally have low detection performance especially
in complex, in-shore scenes. Recently, Zhang et al. [15] proposed
a novel ship detection method based on adaptive C-FAR for fully
polarized SAR images with better detection performance and
less false alarm rate as compared with previous methods.

A lot of work has also been carried out on autodetection of
objects including ships using deep learning (DL) techniques. In
the past decade, models based on convolutional neural networks
(CNNs) have become popular in the field of computer vision,
especially since the AlexNet [16] was proposed. Since then,
majority of the work has been related toward the development
of deeper and more complex neural network models in order
to attain better accuracy [17], [18]. With the advancements in
DL, various improved models have been proposed including
region-based R-CNN [19], visual geometry group (VGG) [20],
you only look once (YOLO) [21], fast R-CNN [22], single shot
detector SSD [23], mask R-CNN [24], RetinaNet [25], fully
convolutional one stage (FCOS) detector [26], YOLO-R [27],
and gate recurrent CNN (GR-CNN) [28]. These models can
be grouped into two broad categories, i.e., two-stage detectors
e.g., R-CNN and one-stage detectors, such as SSD and YOLO.
Table I enlists the popular models/algorithms used for object
detection/image classification and their corresponding proposed
years over the past decade.

Detailed works have also been carried out on SAR ship
detection based on the DL models listed in Table I. For example,
Fan et al. [29] studied ship detection in polarimetric SAR images
using a modified faster RCNN model. Similarly, the authors
in [30] and [31] performed SAR ship detection using modified
architectures of YOLO2 and YOLO5, respectively. Wu et al. [32]
carried out ship detection using a modified version of mask
R-CNN. Wang et al. [33] discussed the possibility of combining
SSD model with transfer learning for SAR ship detection. Xu
et al. [34] studied large scale ship detection in SAR images
using lite-YOLO5 model. Yang et al. [35] proposed a detection
model based on coordinate attention and enhanced receptive
fields and compared its performance with faster RCNN, SSD,
FCOS, RetinaNet, and YOLO models. Similarly, Cui et al. [36]
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TABLE I
POPULAR DL-BASED OBJECT DETECTORS IN THE PAST DECADE

proposed a model based on dense attention pyramid network
and also compared its performance with faster RCNN and SSD.
Comprehensive surveys have also been conducted on SAR ship
detection using DL techniques [37], [38].

More recent research has been focused on the development
of lightweight models with fewer layers and less network pa-
rameters to reduce the computational costs. For instance, Pang
et al. [39] proposed a lightweight model called YOLO5-MNE
by replacing the sigmoid linear unit (Silu) activation functions
with rectified linear unit (ReLu) activation functions and also
added a channel attention module to compensate for the loss
in accuracy. The authors performed experiments on SSDD and
AirSAR-Ship-1.0 datasets and compared the performance of
their proposed approach with YOLO4 and YOLO5 models
in terms of precision, network parameters, and GPU memory
utilized. Yan et al. [40] proposed LssDet to reduce the floating
point operations (FLOPs) and the number of network parameters
by introducing a cross sidelobe attention module as well as
a lightweight path aggregation feature pyramid network mod-
ule. They performed experiments on SSDD and Ls-SSDD-v1.0
datasets and performed comparative analysis between different
YOLO models in terms of average precision, network parame-
ters, and FLOPs. Yang et al. [41] discussed a soft quantization
approach to make the overall ship detection model small. The
authors proposed a split bidirectional feature pyramid network
to improve accuracy and a feature fusion module based on linear
transformation to reduce the network size. They also performed
extensive experiments on SSDD, SAR-Ships, and Air-SAR-Ship
datasets and analyzed the results in terms of precision, recall,
mAP, and network parameters. Similarly, Zhang and Zhang [42]
proposed a ship detection model with only 20 convolutional
layers for real-time SAR ship detection applications and per-
formed experiments on SSDD dataset for comparative analysis.
Yang et al. [43] proposed an algorithm/hardware co-design
framework for on-board SAR ship detection with a focus on

simultaneously increasing detection accuracy by increasing out-
put feature sizes while minimizing the need for computational
resources through implementation of less expensive operations.
They also performed experiments on the SSDD dataset using
evaluation metrics of average precision and network parameters.
Gao et al. [44] provided a comprehensive overview for on-board
processing of satellite images as well as information fusion
including current challenges and future prospects in the domain.

Other works have focused on developing models with better
feature extraction and integration strategies to improve the per-
formance of SAR ship detection in complex cases. For instance,
Zhao et al. [45] proposed a novel visual transformer-based net-
work for extraction of global features in the case of multisatellite
SAR images. Ai et al. [46] proposed a mechanism to extract low
level features based on modified C-FAR algorithm and fuse them
with high level features extracted from CNNs. Cui et al. [47]
proposed a spatial shuffle group enhance attention model to ex-
tract better semantic features and suppress unnecessary features.
Zhou et al. [48] proposed MSSDNet comprising modules for
multiscale feature extraction as well as adaptive feature fusion.
Wang et al. [49] also proposed a feature transformer module
for CNNs to extract global features from SAR ship images.
Similarly, Gao et al. [50] proposed a dualistic cascade CNN
comprising of basic geometric feature extraction network, and
polarization feature enhancement network for comprehensive
feature extraction and fusion.

Apart from that, anchor free ship detection models have also
been proposed in an effort to reduce the dependency of model
detection on the size of anchor boxes to reduce computational
cost [51], [52]. Similarly, researchers have also explored the pos-
sibility of optical to SAR transfer learning to augment ship de-
tection in SAR images. Bao et al. [53] proposed an optical-SAR
pretraining approach to transfer characteristics of optical images
to SAR images through common representation to improve
model learning. Gao et al. [54] also proposed a novel method
comprising of dense connection module and convolutional block
attention module for enhanced feature extraction in the case of
optical to SAR transfer learning for sparsely labeled datasets.

One of the major issues related to the applications of SAR
imagery is the sparse availability of public datasets as com-
pared with optical datasets. Majority of the traditional pre-
trained object detection models are trained on optical data or
simple camera images, which become less relevant in the case
of SAR images. Due to these reasons, researchers have also
published their own satellite-based SAR image datasets for ship
detection. Significant satellite-based SAR ship datasets include
SSDD [55], SAR-Ships dataset [56], AirSAR-Ship-1.0 [57],
HRSID [58], Ls-SSDD-v1.0 [59], SRSDD-v1.0 [60], and the
latest iVision-MRSSD [61], [62]. The SRSSD-v1.0 is based on
rotated bounding boxes (B-Boxes) whereas, rest of the datasets
comprise of regular upright B-Boxes. Table II provides a com-
parative analysis of the publicly available SAR ship datasets in
terms of various parameters including the number of images,
individual image size, number of sensors used and coverage of
imaging frequencies. From Table II, it can be inferred that the
latest iVision-MRSSD dataset is the most diverse in terms of
satellite sensors and frequency bands involved.
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Fig. 2. Categorization of B-Boxes with respect to area (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

TABLE II
COMPARISON OF PUBLICLY AVAILABLE SATELLITE BASED SAR SHIP DATASETS

III. MATERIALS AND METHODS

This section describes the main idea of the proposed YOLO-
OSD approach. Section II-A comprises detailed statistical anal-
ysis of the three SAR ship detection datasets under observation
for the generation of customized anchor boxes with respect to
each dataset. Section II-B discusses the proposed architectural
changes pertaining to YOLO-OSD and compares them with the
original YOLO5 architecture.

A. Custom Anchor Box Generation Strategy

We have taken into account three different datasets named
SSDD, SAR-Ships, and iVision-MRSSD to implement our pro-
posed strategy. The details of these datasets are already described
in Table II. The core idea of this strategy is to optimize the initial
anchor box sizes used by the SOTA object detection models
based on the inherent dataset distributions. Anchor boxes play a

vital role in object detection algorithms, such as YOLO and
RetinaNet. They represent a set of predefined B-Boxes with
different aspect ratios to facilitate object detection correspond-
ing to different sizes and dimensions. A careful and systematic
selection of anchor box sizes can allow the models to learn robust
features and better adapt to the diversities within the datasets. It
can also facilitate in the faster training process.

Initially, we extract the areas of the ship B-Boxes from labels
of each dataset and categorize them into small, medium and
large categories to visualize their distribution. Fig. 2 shows the
area-wise categorization of B-Boxes in SSDD, SAR-Ships, and
iVision-MRSSD, respectively. It can be seen that the proportion
of small B-Boxes (covering less area) in all the datasets is large
as compared with big B-Boxes.

Fig. 3 shows the point-wise distribution of bounding box areas
in each dataset. It can be seen that majority of the points are closer
to the x-axis again depicting a significant number of small ships.

To categorize the B-Boxes into a suitable number of clusters,
we perform Elbow analysis. It is a method to determine the
number of suitable clusters based on the dataset for a clustering
problem. Elbow analysis basically runs K-Means clustering on
the given dataset by setting different values of K i.e., the number
of clusters. In our case, the value of K for the Elbow analysis
ranged between 2 and 14. After that, it plots the sum of squared
differences of the data samples with their allotted cluster centers
also known as inertia. The point where the trend of the graph
changes is called the elbow point and the number of clusters
at that point are considered to be suitable for the dataset under
observation. Fig. 4 shows the plot of inertia with respect to the
number of possible clusters for each dataset. It can be seen that
all the plots follow a similar trend with a typical elbow like shape
being formed around 3 to 4 clusters. Looking at the trend in the
elbow plots, we determine 4 to be the suitable number of clusters
for all datasets.

After the Elbow analysis, we apply K-Means clustering with
K = 4 to form suitable clusters. Fig. 5 shows a visualization of
4 possible B-Box clusters for each dataset.

We further analyze the ship B-Boxes on the basis of their
width–height ratios. Fig. 6 depicts the width–height bounding
box plots of SSDD, SAR-Ships, and iVision-MRSSD, respec-
tively, with width on the x-axis and corresponding height plot-
ted on the y-axis. It can be seen that most of the points are
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Fig. 3. Point-wise distribution B-Boxes with respect to area (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

Fig. 4. Elbow plots of B-Boxes area values (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

Fig. 5. Output of K-Mean clustering on B-Box area values (K=4) (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

Fig. 6. Point-wise distribution of B-Box width–height (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.
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Fig. 7. Output of K-Means clustering (K = 4) on B-Box width–height values (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

Fig. 8. Output of K-Means clustering (K = 12) on B-Box width-height values (a) SSDD, (b) SAR-Ships, and (c) iVision-MRSSD.

TABLE III
SET OF FINAL ANCHOR BOX SIZES BASED ON DATA DISTRIBUTION

concentrated in the lower left corner of each plot indicating a
higher concentration of relatively small B-Boxes corresponding
to small ships. This is a crucial finding, which also influenced the
idea behind our proposed architectural changes in the YOLO5
backbone.

We again apply K-Mean clustering with K = 4 on the width–
height data of B-Boxes to determine the final clusters. The
argument behind this is that clusters based on width–height ratios
are a better representation of the data as compared with clusters
based on area. This is because detection performance is sensitive
to the widths and height ratios of B-Boxes and not just their area.
Fig. 7 shows a visualization of probable B-Box clusters for each

dataset in terms of width–height ratios for the three datasets
under observation.

An important thing to consider here is that, the original
YOLO5 model utilizes a total of 9 initial anchor box sizes,
3 for each scale pertaining to small, medium, and large scale
detections. Based on our findings, we propose 12 anchor boxes
i.e., 4 anchor boxes for each scale of detection. Fig. 8 shows the
outputs of K-Means clustering with K = 12.

Table III summarizes the final values of anchor box dimen-
sions achieved after minor adjustments with respect to all the
datasets. The default values for the original YOLO5 model are
also included for comparison purposes.
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Fig. 9. Network backbone of original YOLO5 model.

B. Network Architecture of the Proposed YOLO-OSD

This section focuses on the architectural aspects of the newly
proposed model. We propose an optimized SAR ship detector,
suitable for real-time ship detection in multiresolution SAR
satellite images by modifying the YOLO5 backbone to achieve
faster execution/training time as well as improve the model
performance in terms of evaluation metrics including precision,
recall, F-1 score, and mAP. The architectures of YOLO-based
object detectors are comprised of three primary parts including
the network backbone, neck, and head. The backbone compris-
ing of various convolutional layers is responsible for feature
extraction and learning. In YOLO5, the backbone is based on
cross stage partial network [63]. The neck of YOLO5 is based
on the path aggregation network [64], which involves a feature
pyramid network to enhance learning of the low-level features.
The YOLO5 head responsible for final detection results is based
on the principle of multiscale detection and uses three different
sizes of feature maps to detect small, medium, and large objects.
This is very important in our case as the sizes of ships vary
throughout the datasets from very small boats to large ships, as
described in the previous section. To develop an optimized SAR
ship detection model, we first reduce the number of repetitive
C3 modules in the YOLO5 backbone. C3 modules consist of
triple convolution operations and are computationally very ex-
pensive. Reducing the number of C3 modules has two immediate
effects: 1) it significantly reduces the overall number of network
parameters thus making the model lightweight and 2) it results in
increased size of feature maps because reducing the C3 modules
means reducing the number of convolution operations. The size
of intermediate feature maps and the number of convolution
layers have an inverse relationship with one another. This is due
to the fact that the convolution layers typically involve strided
and down-sampling operations to reduce the computational costs
but this also results in the reduction of spatial size of the feature
maps. In case of multiple layers of convolutions the spatial
size of the intermediate feature maps gets reduced too much,
therefore, features pertaining to small objects do not propagate
well through the network, effectively blocking the learning of

small objects. This in turn leads to increased false negatives in
the case of small objects [43], [47], [65]. This issue becomes
even more important in the case of ship detection, as detailed
anchor analysis of ship datasets in the previous section indicates
the presence of a large number of small ships. Fig. 9 shows the
typical structure of the YOLO5 model consisting of C-Bn-Si,
triple convolution (C3), and spatial pyramid pooling fast blocks.
C-Bn-Si stands for Convolution-2D, batch normalization, and
SiLU activation function, respectively. It can be seen in Fig. 9
that the C3 module is repeated a total of 21 times. Also, the
default number of anchors in YOLO5 is 9.

Apart from that, we also change the normal C3 blocks with the
triple cross-convolution (C3x) blocks. The C3 modules involve
triple convolutions with a concatenation function at the end. On
the other hand, the C3x module comprises of C3x. The basic idea
behind cross convolutions also termed as asymmetric or spatial
shuffle convolutions is that the normal 2-D convolutions are
decomposed into two 1-D convolutions. For instance, a regular
2-D convolution filter of size n × n is modularized into two
convolution filters of size 1 × n and n × 1, respectively. This
results in a significant decrease in the overall network param-
eters, hence making the model lightweight [66]. In our case,
the C3x modules involve 1 × 3 and 3 × 1 convolutions instead
of single 3 × 3 operations. These are also considered better
feature extractors as compared with the regular convolutions
when it comes to dealing with target objects oriented at varying
angles, which is indeed the case with ship detection [67]. Fig. 10
shows the comparison of C3 and C3x computation blocks,
respectively.

The modified backbone of YOLO-OSD is shown in Fig. 11.
It can be seen that we replaced the simple triple convolution
blocks with C3x blocks to enhance the feature extraction pro-
cess. Moreover, we reduced the number of triple convolution
blocks from 21 to 15. This effectively reduced the number of
network parameters by approximately 16% making the model
lightweight as compared with the original YOLO5 model with-
out compromising the detection performance. Table IV sum-
marizes the comparisons of various network attributes of the
original YOLO5 and the proposed YOLO-OSD model. It can
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Fig. 10. Structure of (a) C3 block and (b) C3-x block.

Fig. 11. Network backbone of modified YOLO-OSD model.

Fig. 12. (a)–(c) F-1, mAP@0.5 and mAP@0.95 graphs of all models trained on iVision-MRSSD, respectively.

be seen that the number of layers in the YOLO-OSD is reduced
to 326 as compared with 368 of the original YOLO5 model.
Consequently, the network parameters are also reduced signif-
icantly. Similarly, our model also requires fewer floating point
operations per second (GFLOPs).

IV. EXPERIMENTAL DESIGN AND SETUP

This section describes various experimental aspects of our
work. Specifically, Section III-A delineates the environmental
setup and Section III-B discusses various evaluation metrics
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TABLE IV
COMPARISON OF NETWORK ATTRIBUTES OF YOLO5 AND YOLO-OSD

used to assess the performance of different DL models on the
datasets under observation.

A. Environmental Setup

All the experiments including statistical analysis, model train-
ing, validation, and testing of the datasets were performed on
a local machine having Windows 10 Pro operating system,
Intel core-i7 CPU, 32 GB RAM, 2 TB HDD, and NVIDIA
RTX GeForce 2080 GPU with 8 GB graphics memory. All the
programming was done in Python language using the Anaconda
development environment. Moreover, a train: validation: test
set ratio of 70:20:10 was used throughout the experiments. For
SAR-Ships dataset, the training, validation, and test sets were
generated by randomly picking tiles in the proposed ratios. In the
case of iVision-MRSSD and SSDD datasets, they already con-
tained training, validation and test sets, so no further processing
was required. The batch size for SSDD and iVision-MRSSD was
set to 16, whereas for SAR-Ships, it was set to 32 image tiles
per batch. All the models were trained for 150 epochs.

B. Performance Evaluation Metrics

Following evaluation metrics were used to assess the perfor-
mance of SAR ship detection on various datasets involved.

1) Precision: Determines how many positively detected ships
are actually correct

Precision =
True Detections

True Detections + False Detections
. (1)

2) Recall: It is also termed as sensitivity of the model, deter-
mines that how many of the actual ships have been detected
correctly

Recall =
True Detections

True Detections + False Omissions
. (2)

3) F-1 Score: It merges the two metrics i.e., precision and
recall into a single metric. To achieve a high F-1 score,
both precision and recall need to be high

F-1 Score = 2× Precision × Recall
Precision + Recall

. (3)

4) mAP: It is the mean of average precisions of all classes,
where the average precision is simply the area under the
precision-r-ecall curve. In our case, we have only a single
class and hence N = 1

Mean Avg Precision =
1

N

∫ n

k=1

APk. (4)

V. RESULTS AND ANALYSIS

This section discusses the results of various models trained
on the three datasets under observation and analyzes their per-
formance, both quantitatively and qualitatively based on the
evaluation metrics. We trained eight models, i.e., two variants
each for the YOLO5, YOLO7, and YOLO8 object detectors, one
for RetinaNet and one for our proposed YOLO-OSD on all the
three datasets. A total of 24 models were trained. For the YOLO
models, one variant was trained from scratch without using
any pretrained weights, while the second variant was trained
using transfer learning with pretrained weights of the MS COCO
dataset. The MS COCO dataset [68] comprises of optical images
and contains 80 classes. It also includes a class labeled “boat.”
We did this to analyze the effect of transfer learning on the task
of ship detection in SAR images.

A. Performance Evaluation on iVision-MRSSD Dataset

Table V summarizes the results of YOLO5, 7, 8, RetinaNet,
and YOLO-OSD object detectors on the iVision-MRSSD dataset
in terms of various evaluation metrics. All the models were
trained for 150 epochs and a batch size of 16. It can be inferred
from Table V that the proposed YOLO-OSD outperforms all the
models in terms of training time, whereas, it also performs better
than YOLO5, YOLO7, and RetinaNet in terms of F1 score and
mAP. YOLO8 (pretrained) model has the overall best detection
performance and YOLO7 model shows the lowest performance
in terms of mAP scores. It can also be seen that the pretrained
models of YOLO7 and YOLO8 have slightly better performance
as compared with the models trained from scratch. Apart from
that the training time for RetinaNet model is the highest among
all models.

Similarly, Fig. 12(a)–(c) shows F1-Confidence curves,
mAP@0.5, and mAP@0.95 graphs of all the models with respect
to the number of training epochs on the iVision-MRSSD dataset.
The plots pertaining to YOLO8 in red color show highest F1 and
mAP values. Our proposed YOLO-OSD (brown color) is very
close second to YOLO8 on these values.

Fig. 13 shows the detection performance of various DL object
detectors on a small subset of iVision-MRSSD test set. B-Boxes
in blue color represent ground truths, whereas yellow, red,
cyan, and green colors represent detections from YOLO7, 5,
8, RetinaNet, and YOLO-OSD, respectively.

B. Performance Evaluation on SAR-Ships Dataset

We also trained all the YOLO variants and the RetinaNet
on the open source dataset named SAR-Ships for comparison
purposes. Table VI sums up the results of object detectors
on SAR-ships dataset. It can be seen from Table VI that the
YOLO8 (pretrained) model also outperforms other models on
the SAR-Ship dataset with our proposed model YOLO-OSD
also outperforming YOLO5, YOLO7, and RetinaNet. On the
other hand, the training time of YOLO-OSD is significantly less
as compared with all the other models.

Fig. 14(a)–(c) shows F1, mAP@0.5, and mAP@0.95 plots of
all models with respect to the number of training epochs on the
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Fig. 13. Detection results on iVision-MRSSD. (a) Raw images. (b) Ground truths. (c) Yolo5 detections. (d) Yolo7 detections. (e) Yolo8 detections. (f) RetinaNet
detections. (g) Yolo-OSD detections.
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TABLE V
PERFORMANCE COMPARISON OF YOLO VARIANTS ON IVISION-MRSSD DATASET

TABLE VI
PERFORMANCE COMPARISON OF YOLO VARIANTS ON SAR-SHIPS DATASET

SAR-Ships dataset. Again graphs of YOLO8 in red and purple
colors depict the highest values with our proposed YOLO-OSD
in brown color coming up very close second.

Fig. 15 shows the detection performance of various DL object
detectors on a small subset of the SAR-Ships test set. B-Boxes
in blue color represent ground truths, whereas yellow, red,
cyan, and green colors represent detections from YOLO7, 5,
8, RetinaNet, and YOLO-OSD models, respectively.

C. Performance Evaluation on SSDD Dataset

On a similar terms, we also trained the seven variants of YOLO
and one RetinaNet on the open source dataset named SSDD for
comparison purposes. Table VII summarizes the results on the
SSDD dataset. All the models were trained for 150 epochs.

Table VII also confirms the superiority of YOLO8 (pretrained)
model on the SSDD dataset as it gives best performance in terms
of all evaluation metrics when compared with other models. Our
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Fig. 14. (a)–(c) F-1, mAP@0.5, and mAP@0.95 graphs of all models trained on SAR-Ships, respectively.

TABLE VII
PERFORMANCE COMPARISON OF YOLO VARIANTS ON SSDD DATASET

YOLO-OSD also outperforms all the models in terms of training
time whereas it has better detection performance than YOLO5,
YOLO7, and RetinaNet in terms of F-1 score and mAP.

Similarly, Fig. 16(a)–(c) shows F1, mAP@0.5, and
mAP@0.95 plots of YOLO5, 7, 8, RetinaNet, and YOLO-OSD
models with respect to the number of training epochs on the
SSDD dataset. Similar trends can be seen in the performances,
as YOLO8 and the proposed YOLO-OSD outperform others on
SSDD as well.

Fig. 17 shows the detection performance of various DL object
detectors on a small subset of SSDD test set. B-Boxes in blue
color represent ground truths, whereas yellow, red, cyan, and
green colors represent detections from YOLO7, 5, 8, RetinaNet,
and YOLO-OSD models, respectively.

D. Ablation Study of the Proposed YOLO-OSD

This section aims to determine the performance im-
provements brought by each modification in the proposed

YOLO-OSD. As mentioned in the previous section, a total of
three improvements/modifications have been carried out in the
newly proposed approach. These include:

1) optimization of the initial anchor box sizes based on the
statistical analysis of the datasets,

2) reduction of the repetitive triple convolution (C3) modules
in the YOLO5 backbone, and

3) exchanging the C3 blocks with the C3x (C3x) modules.
We have carried out ablation experiments with respect to all

the three datasets under observation. Table VIII summarizes the
results of the ablation study. It can be seen from Table VIII
that the first rows pertaining to each dataset correspond to the
results of the unmodified YOLO5. The next three rows show
the effect of adding each individual modification as described
above. It can be inferred from the results of the ablation study that
reduction of C3 modules reduces the training time of the model
significantly with similar detection performance in case of the
MRSSD dataset, whereas the detection performance reduced
slightly for SAR-Ships and SSDD datasets. Following that the
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Fig. 15. Detection Results on SAR-Ships: (a) Raw images. (b) Ground truths. (c) Yolo5 detections. (d) Yolo7 detections. (e) Yolo8 detections. (f) RetinaNet
detections. (g) Yolo-OSD detections.
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Fig. 16. (a)–(c) F-1, mAP@0.5 and mAP@0.95 graphs of all models trained on SSDD, respectively.

TABLE VIII
SUMMARY OF ABLATION EXPERIMENTS RELATED TO THE PROPOSED YOLO-OSD MODEL

exchanging of C3 modules with C3x modules further reduces
the training time while minimally improving the detection per-
formance in the case of SAR-Ships and SSDD datasets. Finally,
the inclusion of optimized anchor boxes along with the other
modifications leads to best detection performance with respect
to all datasets with significant improvements in training times
as well, signifying the efficacy of our proposed approach.

E. Cross Validation Analysis

This section focuses on the verification and finding the ef-
fective combination of DL models and the datasets on unseen
data distributions. We performed cross dataset validation of all
the YOLO models on the three corresponding datasets under
observation. Effectively, each YOLO model trained on one
dataset was validated on the validation sets of the other two
datasets under observation. Table IX summarizes the results of
cross validation analysis.

It can be seen from Table IX that the YOLO5 model trained
on the iVision-MRSSD dataset performs comparatively better
when evaluated on the validation sets of SAR-Ships and SSDD
datasets. Similar trends can be seen in the case of YOLO7,
YOLO8, and YOLO-OSD models. On the other hand, models
trained on SAR-Ships and SSDD datasets have relatively low
F-1 scores and mAP values when evaluated on the validation
set of iVision-MRSSD. From these results, it can be concluded
that the iVision-MRSSD dataset is more diverse and complex
as compared with other datasets. This is also evident from the
fact that it comprises of data from six different satellite sensors
and covers a large range of spatial resolutions and imaging
frequencies. Therefore, models trained on the iVision-MRSSD
dataset learn features that generalize well on the unseen data with
varying distributions. Similarly, it can be seen that the YOLO-
OSD model, especially in combination with the iVision-MRSSD
dataset has a better F-1 score as compared with other models in
the cross validation results.
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Fig. 17. Detection Results on SSDD. (a) Raw images. (b) Ground truths. (c) Yolo5 detections. (d) Yolo7 detections. (e) Yolo8 detections. (f) RetinaNet detections.
(g) Yolo-OSD detections.
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TABLE IX
CROSS VALIDATION RESULTS OF YOLO5, 7, 8 AND YOLO-OSD MODELS

VI. DISCUSSION

From the different experiments described in the previous sec-
tion, it can be deduced that the YOLO-OSD has better detection
results on all the three datasets as compared with YOLO5,
YOLO7, and RetinaNet, whereas it has significantly improved
training times as compared to all other models. Both data-centric
and model-centric approaches contribute to the improvement of
results. The data-centric approach involves the customization of
initial anchor boxes based on the statistical analysis of the data
distributions, whereas, the model-centric approach focuses on
the optimization of YOLO5 backbone by replacing the C3 blocks
with C3x block and reducing the overall number of repetitive
blocks. This change in architecture reduced the number of layers
as well as the overall network parameters while facilitating the
learning of small targets by increasing the size of intermediate
feature maps.

In terms of detection accuracy, YOLO8 has better perfor-
mance as it is an anchor free algorithm but has significantly
large training times. Overall, the RetinaNet model has the lowest
performance in terms of almost all evaluation metrics. It also has
the highest training times on all datasets. This is due to the fact
that RetinaNet has a deeper and complex network architecture
based on ResNet and utilizes two subnetworks for classification
and regression as compared with the highly optimized YOLO
architectures. Due to its complex and large backbone, RetinaNet
requires more computational resources and training time to
achieve results comparable to the YOLO models. For the sake of
fair comparison and bench-marking, we had set the number of
training epochs for each model to be 150 in our experiments and
RetinaNet needs significantly large number of training epochs
to produce better results. Also the inference speed of RetinaNet
is less as compared with the YOLO models. Therefore, it can
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be suggested that it is not suitable for real-time ship detection
in SAR images. Furthermore, it can be seen from Figs. 13, 15,
and 17 that RetinaNet is not very robust against small targets
and hence has a significantly high number of false negatives
for small ships. This also explains the remarkably low recall
values of RetinaNet as compared with the other models. The
reason for high false negatives in case of RetinaNet is because
it uses a focal loss function, which is designed to address the
class imbalance problem by down-weighting the easy examples.
However, this also potentially, reduces the sensitivity of the
model to the hard examples, such as small ships in our case.
thus leading to low recall values. Apart from that, it is evident
from Tables V–VII that the pretrained versions of all models (on
MS COCO dataset) especially YOLO7, and YOLO8 perform
slightly better as compared with the models, which are trained
from scratch. This hints that certain features from the MS COCO
dataset are still relevant for the task of ship detection in SAR
satellite images and the initial weights trained on MS COCO
dataset somewhat slightly facilitate in better learning of the ships
in SAR datasets.

Moreover, the cross-validation analysis of all the models on
different datasets show that the newly proposed iVision-MRSSD
dataset can provide SOTA DL models with good generalization
capability due to its rich diversity in terms of satellite sensors,
spatial resolutions, imaging frequencies, and different scene
types. Also our proposed YOLO-OSD has a slightly better
capability of learning generalized features when trained on a
complex and diverse dataset, such as iVision-MRSSD.

The reason for choosing the three latest models of the YOLO
series instead of other object detection models to carry out
comparative analysis is that it has already been established in
previous studies that the YOLO models outperform others on
the task of ship detection in SAR satellite images [30]. The
authors in [32] and [41] compared the performance of YOLO3
and YOLO4 with Faster-RCNN, SSD512 and MobileNetV3
on different SAR ship datasets and showed that the YOLO4
outperforms other models in terms of the evaluation metrics. We
also trained the RetinaNet model using the Detectron2 library
and as expected, it under-performs on almost all evaluation
metrics when compared with the YOLO models. Moreover, the
decision for further optimization of YOLO5 model among other
YOLO models was taken because during the initial experiments,
it was evaluated that the YOLO5 due to its simpler and relatively
lightweight architecture had the least training times as compared
with YOLO7 and YOLO8, which is also evident from the results
summarized in Tables V–VII. Therefore, it was decided to
further optimize the YOLO5 model. The decision was taken to
support the case of real-time SAR ship detection without com-
promising the detection accuracy. Furthermore, since YOLO8 is
an anchor free model, the idea of anchor box adjustment could
not be incorporated into it.

VII. CONCLUSION

Ship detection in SAR satellite images poses various chal-
lenges including distorted ship boundaries, interclass similarity
issues and weak generalization capabilities of SOTA object
detection algorithms. To rectify some of these challenges, we

proposed an optimized ship detection model named YOLO-OSD
based on a hybrid data-model centric approach. The newly
proposed model has approximately 16% less network param-
eters as compared with YOLO5 and is approximately 40%
faster as compared with YOLO8 with comparable detection
performance. Moreover, the proposed YOLO-OSD outperforms
YOLO5, YOLO7, and RetinaNet in terms of F-1 score and
mAP on all three datasets included in the study. We further
analyzed the effect of transfer learning on the problem of
SAR ship detection and conclude that the pretrained models on
MS COCO dataset have slightly better detection performance
when compared with models that are trained from scratch by
assigning random weights. We also performed cross-validation
of models on all datasets under observation to determine that the
iVision-MRSSD dataset has rich diversity and in combination
with our proposed YOLO-OSD provides better generalization
capabilities over unseen data with different distributions. Our
current work is limited in the sense that it analyzes the results of
only one anchor-free model YOLO8. In future, we would like
to investigate the possibility of anchor-free optimized SAR ship
detection. Furthermore, we would also like to address the case of
ship detection using oriented B-Boxes, which can significantly
increase the IoU and mAP scores.
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