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DB-RNN: An RNN for Precipitation
Nowcasting Deblurring

Zhifeng Ma , Hao Zhang , and Jie Liu, Fellow, IEEE

Abstract—Precipitation nowcasting based on artificial intelli-
gence has garnered widespread attention in the meteorological
and computer communities in recent years. While new models are
continuously proposed to refresh the forecasting performance, the
problem of gradual blurring of forecast maps as the forecast period
extends is still serious. Most models use the mean loss and the
recursive prediction structure [such as multiscale recurrent neural
network (MS-RNN)]. The mean loss always results in an average of
future states, visually appearing as a blur. The recursive prediction
method brings the accumulation of error (blur), causing the error
(blur) of long-term predictions to increase exponentially. In this
study, we add the adversarial loss and gradient loss to penalize the
network to ease the blur caused by the averaging loss, and we in-
troduce an additional deblurring network (composed of MS-RNN)
behind the forecasting network (composed of MS-RNN) to alleviate
the blur caused by the recursive structure, which reduces the
blur of the current frame and then recursively and incrementally
reduces the blur of subsequent frames. We name the proposed
model DB-RNN, which can slow down the error accumulation
and alleviate the blurring dilemma. Like MS-RNN, DB-RNN is
compatible with multiple recurrent neural network models, such
as ConvLSTM, TrajGRU, PredRNN, PredRNN++, MIM, Motion-
RNN, PrecipLSTM, etc. Experiments on two large radar datasets
named HKO-7 and DWD-12 indicate that DB-RNN’s predictions
are more accurate and clear than those from MS-RNN.

Index Terms—Deblurring, precipitation nowcasting, radar video
prediction, recurrent neural network (RNN).

I. INTRODUCTION

PRECIPITATION nowcasting refers to the high-resolution
forecasting of precipitation in the short term, with the
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exact duration definition varying between operational weather
centers [1]. It is widely used in traffic and transportation [2], [3],
agricultural planting and harvesting [4], [5], marine fishing [6],
[7], flight takeoff and landing [8], [9], etc. Precise and timely
forecasting will benefit human production and life. If the nec-
essary precautions are taken beforehand, loss of property and
life will be avoided. Knowing its importance, it has sparked
extensive research and discussion in the meteorological and
computer communities [10].

The operational weather and climate forecasting systems have
not fundamentally changed for almost 50 years [11]. This type
of traditional precipitation forecast, also known as numerical
weather prediction, relies on meticulous numerical simulations
of physical models to infer the evolution of the atmosphere.
Simulation-based systems are often impacted by initial condi-
tion fields and require a period of integration to initiate deduction
processes. This limitation leads to poor precipitation predictions
at 0–2 h lead time [12], [13]. Moreover, such systems are compu-
tationally expensive and are unable to provide small-scale fore-
casting [14]. In contrast, precipitation nowcasting based on radar
observations offers an alternative. The optical flow method [15]
is the mainstream solution for very short term precipitation
forecasting, which extrapolates by calculating the optical flow
field. Despite being computationally efficient, this method still
struggles with low accuracy in practical applications as it cannot
tackle intricate nonlinear transformations of precipitation [16],
[17].

Instead of explicitly incorporating prior physical equations,
deep learning methods implicitly learn potential meteorological
laws by training with massive samples [18], [19]. Although
such black box models have been widely criticized for their
lack of interpretability, data-driven models have outperformed
simulation-based models for both short-term [4], [20], [21] and
long-term meteorological prediction tasks [22], [23], [24], [25].
Deep learning models often regard precipitation nowcasting as
the radar video prediction issue [26]; they use various networks
to encode precipitation movement and decode precipitation
prediction [1]. Nevertheless, the earth system is chaotic, high
dimensional, and spatiotemporal [27], and it is a particularly
challenging task to obtain a robust precipitation representation
system. Since introducing a reasonable inductive bias [1] (prior
assumption) about the domain knowledge when designing a
neural network will reduce the training samples and training
difficulty, models [8], [16], [28], [29], [30], [31], [32] integrating
a convolutional neural network (CNN) and a recurrent neural
network (RNN) stand out among many competitors and are
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Fig. 1. Mean loss penalizes models for optimizing toward pixel averaging,
making predictions of MS-RNN blurry. Autoregression brings accumulation of
errors, causing predictions of MS-RNN increasingly blurry. DB-RNN introduces
the deblurring model and deblurring loss based on MS-RNN, which makes the
prediction of each frame of DB-RNN clearer. Despite the inherent autoregressive
error of RNN, the cumulative effect of frame-by-frame deblurring leads to
increasingly stronger deblurring capabilities of DB-RNN.

enduring. We call this type of model ConvRNN, which obeys
the Markov assumption like RNN and can simultaneously model
spatiotemporal patterns.

Radar videos are inherently uncertain and high dimensional.
Pixel-by-pixel changes in temporal and spatial dimensions be-
tween consecutive frames lead to exponential error accumulation
for long-term extrapolation [33] (see Fig. 1). Most models reduce
error and deal with uncertainty by averaging forecasts, which
leads to increasingly blurred forecasts. In other words, there are
two things that cause blur: one is the mean loss (L1 orL2) and the
other is autoregression (RNN). The former brings about blurry
forecasts, while the latter aggravates the phenomenon. In recent
years, these ConvRNN models have continued to innovate and
break through the forecast bottleneck, which alleviates the blur-
riness to a certain extent. However, the problem of progressively
blurred predictions still haunts most research.

We notice that there is a video deblurring task [34], [35],
[36] in the computer vision community, which, like the radar
video prediction task, is mainly concerned with the local spa-
tiotemporal dependence of the data. Despite the domain gap,
we believe that the ConvRNN networks for precipitation fore-
casting can also be used for precipitation deblurring. In this
article, we propose the deblurring RNN (DB-RNN) to alleviate
the autoregression symptom, which consists of two cascaded
ConvRNN networks, one for forecasting and one for deblurring.
For efficiency, we use a more advanced multiscale version
of ConvRNN called multiscale RNN (MS-RNN) [32], which
is compatible with many ConvRNNs. We train the two parts
sequentially by controlling the corresponding loss weights and
finally obtain a powerful end-to-end network for precipitation
nowcasting. In addition, we also introduce the gradient differ-
ence loss (GDL) [37] and adversarial loss [38] as regularization

terms; these constraints narrow the solution space of the neural
network, which is beneficial to ease the phenomenon that the
mean loss adapts to future uncertainty by making predictions
blur. DB-RNN can slow down the blur of each frame. Although
there is an inherent cumulative error of RNN, over time, the
deblurring effect is accumulated, and the deblurring capability
of DB-RNN is even more significant (see Fig. 1). To demonstrate
these, we conduct experiments on two huge radar datasets,
and the results show that DB-RNN greatly alleviates the blur
dilemma of predictions. Our contributions are summarized as
follows.

1) We propose a deblurring model named DB-RNN, which
consists of two cascaded MS-RNNs.

2) DB-RNN combines the forecasting module (FM) and the
deblurring module (DM) and can be trained end to end.

3) DB-RNN is compatible with previous ConvRNN mod-
els like MS-RNN, resulting in DB-ConvLSTM, DB-
TrajGRU, DB-PredRNN, DB-PredRNN++, DB-MIM,
DB-MotionRNN, and DB-PrecipLSTM. We use different
basic ConvRNNs to conduct experiments, and the results
prove that DB-RNN exceeds MS-RNN in clarity and
accuracy.

II. RELATED WORK

A. Radar Video Prediction Models

The majority of studies consider precipitation nowcasting as a
radar video prediction problem [39]. They use diverse architec-
tures to encode different inductive biases [1] (prior assumptions)
into deep networks. The basic network is either the CNN or
the RNN or the generative adversarial network (GAN) [38]
or the attention network. The combination of basic networks
will constitute a variety of networks. UNet [40] composed of
2-D (RainNet [41], Broad-UNet [42], [43], and SimVP [44]) or
3-D (STConvS2S [5]) convolutions is the simplest precipitation
prediction model. ConvRNN, which is composed of convolution
(default 2-D) and RNN, is the most effective precipitation pre-
diction model. Their origin is the ConvLSTM [16] proposed by
Shi et al. in 2015. Later, a large number of followers continue to
refresh the forecasting performance, for example, TrajGRU [8],
PredRNN [28], PredRNN++ [45], MIM [29], MotionRNN [31],
PrecipLSTM [30], MS-RNN [32], and MS-LSTM [26]. The
GAN [17], [19], [46], [47], [48] uses UNet or ConvRNN as
the generator and uses one or more discriminators with differ-
ent roles to play the minimax game. Through the adversarial
learning scheme, GAN-based models can get more realistic
and accurate extrapolation. The attention network originates
from the classic model named Transformer [49] in the natural
language processing domain and gradually spreads to the com-
puter vision domain [50]. Recently, Transformer variants have
also begun to emerge in the precipitation nowcasting domain,
such as Rainformer [51], Earthformer [27], MIMO-VP [52],
and LPT-QPN [53]. The research in this article is mainly
carried out on the basis of various ConvRNNs because their
network designs introduce reasonable spatiotemporal inductive
biases.
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B. Video Deblurring Models

Generally, video deblurring networks are similar to video pre-
diction networks [34]. Their design all consider the spatiotem-
poral characteristics of the data and employ a codec structure,
where the encoder is used to extract image features and the de-
coder is used to reconstruct the image. Specifically, part of video
deblurring networks [54], [55] uses UNet with 2-D convolutions
to learn spatiotemporal dependencies, and they use multiple
adjacent frames as input and predict the high-resolution target
of the centering frame; part of video deblurring networks [56],
[57], [58] directly uses UNet with 3-D convolutions to capture
spatial and temporal features, which also use multiple frames
to deblur one frame; part of video deblurring networks chooses
to use the RNN [59], [60], [61] or the RNN composed of the
CNN [62], [63], [64] to capture spatial and temporal changes.
In addition to using multiple context frames to deblur the target
frame, they also use a single frame as input like ConvRNNs for
video prediction since the temporal relation has been implicitly
encoded into the recurrent network. Besides, the GAN is also
considered to boost them to generate more realistic images that
are more in line with human vision [54], [65], [66]. Recently,
many Transformer variants [67], [68], [69] have also emerged
in the video deblurring domain. It should be pointed out that
ConvLSTM is widely used in video deblurring networks [70],
[71], but other ConvRNNs (ConvLSTM variants) have not been
adopted for video deblurring.

III. PRELIMINARIES

A. Formulation of the Precipitation Nowcasting Problem

In general, given a radar video clip, if we split it into two parts,
where the former constitutes the historical sequence, while the
latter constitutes the future sequence, then the precipitation now-
casting problem is to predict the maximum possible future se-
quence given the historical sequence. In detail, if Xt ∈ R

c×h×w

is used to represent the radar frame collected at time t, where
c, h, and w represent the channel, height, and width, respec-
tively, X = {X0, . . ., Xm−1} is used to represent the historical
sequence, and Y = {Xm, . . ., Xm+n−1} is used to represent the
future sequence, then the problem can be formulated as

Ŷ ∗ = argmax
Y

P (Y |X) (1)

where Ŷ ∗ is the most probable predicted sequence.

B. MS-RNN

Existing ConvRNN models (ConvLSTM [16], TrajGRU [8],
PredRNN [28], PredRNN++ [45], MIM [29], MotionRNN [31],
and PrecipLSTM [30]) are either getting wider or deeper. Al-
though they gain stronger forecasting capabilities, they will
consume huge memory and computing resources. MS-RNN [32]
proposes to adopt a multiscale architecture to improve these
ConvRNN models, which will make them have less memory and
computing requirements but stronger spatiotemporal modeling
capabilities while keeping the number of parameters constant.
Specifically, MS-RNN reintegrates these increasingly complex

tensor flows and embeds the UNet [40] structure into ConvRNN
(RNN for short from now on). DB-RNN employs MS-RNN as
the basic module; thus, it is compatible with multiple ConvRNN
models as MS-RNN, obtaining DB-ConvLSTM, DB-TrajGRU,
DB-PredRNN, DB-PredRNN++, DB-MIM, DB-MotionRNN,
and DB-PrecipLSTM. This study adopts the superior model
MS-PrecipLSTM as a representation to describe DB-RNN.
Fig. 2(a) exhibits the architecture of MS-PrecipLSTM from a
spatiotemporal or multistep perspective, while Fig. 2(b) exhibits
the architecture of MS-PrecipLSTM from a spatial or one-step
perspective.

IV. METHOD

Due to the high dimensionality and inherent uncertainty of
natural radar videos, forecasting from models rapidly degrades
over time as uncertainty grows, converging to an average of the
possible future outcome, visually represented as blurriness [33].
Most models struggle with blurry predictions. The radar video
prediction (precipitation nowcasting) problem remains a great
challenge.

Given that the computer vision community treats forecasting
and deblurring separately, an intuitive idea is to train a deblurring
network after training a forecasting network to combat blur [see
Fig. 3(a)]. The final prediction can be obtained by inputting
the output of the forecasting network to the deblurring network
during inference. However, both training and inference of this
approach require two steps, and it requires saving the training
output of the forecasting network for the training of the deblur-
ring network, which is tedious and time consuming.

In this article, we propose an end-to-end (DB-RNN, which
can handle forecasting and deblurring tasks simultaneously [see
Fig. 3(b)], which avoids the drawbacks of staged training. DB-
RNN consists of two cascaded MS-RNNs with skip connections
between their encoders and decoders to fuse same-scale features.
DB-RNN has two outputs: one for penalizing the forecasting
network and one for penalizing the deblurring network (see
Section IV-B). The introduction of the DM results in DB-RNN
having the ability to deblur frame by frame. Due to the cumula-
tive effect of autoregression, the deblurring effect of DB-RNN
grows over time, which partially makes up for the shortcomings
of autoregressive error accumulation in MS-RNN.

During the training process, the purpose of gradually training
the two networks is achieved by controlling the weights of the
two losses. At the beginning of training, the loss weight of the
forecasting network is 1, and the loss weight of the deblurring
network is 0.01. At this time, the forecasting network is trained,
while the deblurring network is initialization. At the middle
of training, the loss weight of the forecasting network is 0.5,
and the loss weight of the deblurring network is 0.5. At this
time, the forecasting and deblurring networks are trained jointly.
At the end of the training, the loss weight of the forecasting
network is 0.01, and the loss weight of the deblurring network
is 1. At this time, the deblurring network is trained, while the
forecasting network is activated to avoid degradation. Since the
two networks are trained jointly rather than separately, skip
connections are introduced between them. Experiments show
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Fig. 2. Architecture of MS-PrecipLSTM [32]. (a) Spatiotemporal or multistep perspective. (b) Spatial or one-step perspective. MS-PrecipLSTM uses six layers
(l) of RNN units to form the codec structure. The symbol t in the figure represents time. The hidden state Hl

t and the memory state M l
t propagate along the vertical

(spatial) and zigzag (spatiotemporal) directions, respectively. The hidden states of different scales of the encoder, such as H0
t and H1

t , propagate along the curve
(spatial) direction. The memory list propagates along the horizontal (temporal) direction, which is [Hl

t, C
l
t,MSl

t,MTl
t], where Cl

t , MSl
t, and MTl

t denote the
cell state, meteorological spatial state, and meteorological temporal state, respectively. Downsampling and upsampling operations are performed by max-pooling
(P2×2) and bilinear interpolation (B2×2), respectively.

Fig. 3. Two different training strategies for the forecasting task and the deblurring task. (a) Staged training strategy. (b) End-to-end training strategy.

that the end-to-end training strategy of DB-RNN is superior to
the staged training strategy (see Section V-G). We will cover the
specifics of DB-RNN in the following subsection.

A. DB-RNN

Generally, during one-step prediction, the input of the FM is
the true radar map Xt (0 ≤ t ≤ m− 1) or the deblurred radar

map ˆ̂
Xt (m ≤ t ≤ m+ n− 2), and the output of the FM is the

forecasted radar map X̂t+1. The input of the DM is the forecasted
radar map X̂t+1, and the output of DM is the deblurred radar

map ˆ̂
Xt+1. Furthermore, we also introduce multiple shortcuts

between FM and DM to fuse the same-scale features of the
two networks, which can make them interact to jointly combat
blurring. Thus, the input of DM also contains the layer output
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tensor of FM. These can be formulated as

X̂t+1 = FM(Xt/
ˆ̂
Xt)

ˆ̂
Xt+1 = DM(X̂t+1, (FMout)H , (FMout)M ) (2)

where (·)out signifies output tensors of “·,” while (·)H and (·)M
signifies the hidden state H l

t and memory state M l
t of “·,”

respectively.
In detail, the forecasting encoder (FE) and the forecasting

decoder (FD) of FM all employ three RNN blocks (FEi and
FDi, i = 0, 1, 2). FE adopts the 2× 2 max-pooling (P2×2, (·)↓)
to construct multiscale features. With the stacking of layers, the
shape of the radar feature map evolves as c̃× h× w → c̃× h

2 ×
w
2 → c̃× h

4 × w
4 , where c̃ denotes the embedding dimension.

The formulation of FE is

FEout
0 = FE0(Xt/

ˆ̂
Xt)

FEout
1 = FE1((FEout

0 )
↓
)

FEout
2 = FE2((FEout

1 )
↓
). (3)

On the contrary, FD uses2× 2bilinear interpolation (B2×2, (·)↑)
to construct multiscale features. With the stacking of layers,
the shape of the radar feature map evolves as c̃× w

4 × w
4 →

c̃× h
2 × w

2 → c̃× h× w. Moreover, FD also accepts skip con-
nections from FE. The formulation of FD is

FDout
2 = FD2(FEout

2 )

FDout
1 = FD1(((FDout

2 )H)
↑
+ (FEout

1 )H , ((FDout
2 )M )

↑
)

FDout
0 = FD0(((FDout

1 )H)
↑
+ (FEout

0 )H , ((FDout
1 )M )

↑
)

X̂t+1 = (FDout
0 )H . (4)

In detail, the deblurring encoder (DE) and the deblurring
decoder (DD) of DM all employ three RNN blocks too (DEi and
DDi, i = 0, 1, 2). Unlike FE, DE also accepts skip connections
from FD, but they are similar overall. According to (3), we can
get

DEout
0 = DE0(X̂t+1 + (FDout

0 )H , (FDout
0 )M )

DEout
1 = DE1(((DEout

0 )H̃)
↓
+ (FDout

1 )H , ((DEout
0 )M̃ )

↓
)

DEout
2 = DE2(((DEout

1 )H̃)
↓
+ (FDout

2 )H , ((DEout
1 )M̃ )

↓
) (5)

where (·)H̃ signifies the hidden state H̃ l
t of “·,” while (·)M̃

signifies the memory state M̃ l
t of “·.”

In addition to skip connections from DE, DD also accepts skip
connections from FE as input. DD is formulated as

DDout
2 = DD2((DEout

2 )H̃ + (FEout
2 )H , (DEout

2 )M̃ )

DDout
1 = DD1(((DDout

2 )H̃)
↑
+ (DEout

1 )H̃ + (FEout
1 )H ,

((DDout
2 )M̃ )

↑
)

DDout
0 = DD0(((DDout

1 )H̃)
↑
+ (DEout

0 )H̃ + (FEout
0 )H ,

((DDout
1 )M̃ )

↑
)

ˆ̂
Xt+1 = (DDout

0 )H̃ . (6)

B. Loss Function

Essentially, two MS-RNNs form the DB-RNN: one for precip-
itation forecasting and other for precipitation deblurring. Both
the subnetworks need to be penalized to perform gradient up-
dates to optimize corresponding parameters. Specifically, both
the networks employ the L1 + L2 pixel loss, which is superior
to employL1 orL2 alone [32]. Furthermore, we also add regular
terms employing the GDL [37] and adversarial loss [38] to
obtain more clear predictions, which partly reduce the mean
blur. Finally, the weighted union of these losses results in the
overall loss

Lfor =

∑m+n−1
t=1 (|Xt − X̂t|+ |Xt − X̂t|2)

m+ n− 1

Ldeb =

∑m+n−1
t=1 (|Xt − ˆ̂

Xt|+ |Xt − ˆ̂
Xt|

2

)

m+ n− 1

Lgdl =

∑m+n−1
t=1

∑h−2
i=0

∑w−2
j=0 (||Xi+1,j

t −Xi,j
t | − | ˆ̂Xi+1,j

t

− ˆ̂
Xi,j

t ||+ ||Xi,j+1
t −Xi,j

t | − | ˆ̂Xi,j+1
t − ˆ̂

Xi,j
t ||)

m+ n− 1

Ladv =

∑m+n−1
t=1 BCE(D(

ˆ̂
Xt),Real)

m+ n− 1

Lall = λ1Lfor + λ2Ldeb + λ3Lgdl + λ4Ladv (7)

where Lfor, Ldeb, Lgdl, Ladv, and Lall denote loss of forecasting,
loss of deblurring, loss of GDL, loss of adversary, and loss of
overall, respectively; λ1, λ2, λ3, and λ4 are loss weights of Lfor,
Ldeb, Lgdl, and Ladv respectively; D is the discriminator; and
BCE represents binary cross entropy.

λ1 decreases linearly from 1 to 0.01 while λ2 increases
linearly from 0.01 to 1 in the first 20 epochs, and λ1 main-
tains as 0.01 while λ2 maintains as 1 in the remaining train-
ing epochs. The reason is that we want to start with mainly
training the forecasting network (λ1 = 1) while appropriately
activating the deblurring network (λ2 = 0.01), then gradually
transition to mainly training the deblurring network (λ2 = 1)
while avoiding completely degradation of the forecasting net-
work (λ1 = 0.01), and finally train both networks to work
together. λ3 and λ4 remain unchanged throughout the train-
ing process, which is set to 0.001 and 1, respectively. Ladv

is made of the BCE loss function, and we want to trick the

discriminator (D) into recognizing the deblurred frame ( ˆ̂Xt)
generated by the generator (DB-RNN) as real (1), at which Ladv

takes the minimum value (0). Like the generator, the param-
eters of the discriminator are updated during each mini-batch
gradient descent process, but with a separate optimizer and loss
function

LD = BCE(D(Xt),Real) + BCE(D(
ˆ̂
Xt),Fake) (8)

where fake is equal to 0. The discriminator is trained to distin-
guish real from fake (LD ↓,Lall ↑), which forces the generator to
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TABLE I
DETAILS OF DISCRIMINATORS

TABLE II
PARAMETER SETTINGS OF LAYERS IN TABLE I

generate more realistic frames (LD ↑, Lall ↓), which then causes
the discriminator to update (LD ↓, Lall ↑), and so on. Through
the adversarial training of ebb and flow, the two reach the Nash
equilibrium [72], and the training ends.

The discriminator is composed of a convolutional encoder and
a linear decoder (see Table I). Given that base RNNs used by
DB-RNN have different parameters [32], that is, generators have
different parameters, we equip models with three discriminators
with different parameters, 0.012M for DB-ConvLSTM and DB-
TrajGRU, 0.017M for DB-PredRNN and DB-PredRNN++, and
0.027M for DB-MIM, DB-MotionRNN, and DB-PrecipLSTM,
which is achieved by changing input or output channels of layers
(see Table II).

V. EXPERIMENTS

A. Datasets

We conduct experiments with the HKO-7 [8] and DWD-
12 [41] datasets, where the former is collected by one Doppler
radar, while the latter is collected by 17 Doppler radars. HKO-7
has seven years of data from 2009 to 2015, covering an area
of 512×512 km2 centered in Hong Kong. The temporal res-
olution of the dataset is 6 min, and the spatial resolution is
1.07 km. We only employ data from rainy days, that is, 812 days
for training, 50 days for validation, and 131 days for testing.
DWD-12 has 12 years of data from 2006 to 2017, covering an
area of 900×900 km2 across the entire Germany. The temporal
resolution of the dataset is 5 min, and the spatial resolution is
1 km. We use data from 2006 to 2013 for training, data from
2014 to 2015 for validation, and data from 2016 to 2017 for
testing.

The conversion relationship between the image pixel value
(P : 0–255) and the radar reflectivity intensity (dBZ: 0–60) for

both the datasets is

P =
⌊
255× dBZ

60

⌋
. (9)

The conversion relations between the radar reflectivity intensity
(dBZ: 0–60) and rainfall intensity (R: mm/h) for the HKO-7 and
DWD-12 datasets are

dBZ = 10× lg (58.53×R1.56)

dBZ = 10× lg (256×R1.42) (10)

respectively.

B. Implementation Details

We apply the same experimental setup to all models. The
kernel size and hidden channel of RNN are 3×3 and 24, respec-
tively. MS-RNN is stacked with six layers of RNN. We use the
Adam optimizer [73] with an initial learning rate of 0.0003. The
batch size is 4. We interpolate radar maps to 160×160 for quick
verification. We sample frames every two frames for HKO-7
and five frames for DWD-12, which increases the difficulty
of nowcasting. The task of the model is to predict five future
frames based on five historical frames. We train MS-RNN for
25 epochs and DB-RNN for 50 epochs using the NVIDIA A100
GPU. All leaky ReLU layers in discriminators use a negative
slope of 0.01. There is nothing to set up for sigmoid layers. The
specific parameter settings of other layers in Table I are shown in
Table II.

C. Metrics

We evaluate models using the critical success index (CSI) [8]
and the Heidke skill score (HSS) [8] at different rainfall intensity
thresholds (0.5, 2, 5, 10, and 30 mm/h). First, we convert pixel
values of predicted or real images to 0 or 1 by the threshold τ .
In detail, we employ (9) and (10) to transform the pixel value
(P ) to rainfall R. If R ≥ τ , P will be 1; otherwise, P will be
0. Second, we can count TP (prediction = 1, truth = 1), FN
(prediction = 0, truth = 1), FP (prediction = 1, truth = 0),
and TN (prediction = 0, truth = 0), separately. Finally, CSI,
HSS, and POD are calculated as (TP/(TP + FN + FP)),
((TP × TN − FN × FP)/((TP + FN)(FN + TN) + (TP + FP)
(FP + TN))), and (TP/(TP + FN)) respectively. In addition,
the balanced mean squared error (B-MSE) [8] and balanced
mean absolute error (B-MAE) [8] are also used to eliminate
the interference of the long tail distribution of precipitation to
focus on heavy rains.

D. Quantitative Experiments

We use seven basic RNN models to quantitatively compare
the performance of MS-RNN and DB-RNN, which are Con-
vLSTM [16], TrajGRU [8], PredRNN [28], PredRNN++ [45],
MIM [29], MotionRNN [31], and PrecipLSTM [30]. It should
be pointed out that Hong Kong has a subtropical monsoon
climate with different levels of precipitation, while Germany
has a temperate maritime climate with mostly light rain and less
heavy rain. Therefore, thresholds 0.5, 2, 5, 10, and 30 mm/h are
used when measuring HKO-7, while only thresholds 0.5, 2, and
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TABLE III
QUANTITATIVE COMPARISON ON HKO-7

TABLE IV
QUANTITATIVE COMPARISON ON DWD-12

5 mm/h are used when measuring DWD-12. Tables III and IV
show quantitative comparison experiments on the HKO-7 and
DWD-12 datasets, respectively.

Overall, all DB-RNNs outperform MS-RNNs on all metrics
on the HKO-7 dataset, and all DB-RNNs outperform MS-RNNs
on all metrics on the DWD-12 dataset except for the B-MSE
indicator. Specifically, we have the following.

1) For the HKO-7 dataset, compared with MS-ConvLSTM,
the CSI-0.5, CSI-2, CSI-5, CSI-10, and CSI-30 of DB-
ConvLSTM increase by 1.6%, 1.8%, 3.3%, 6.6%, and
20.9%, respectively, while the B-MSE and B-MAE of
DB-ConvLSTM decrease by 6.3% and 4.7%, respectively.

2) For the DWD-12 dataset, compared with MS-
PrecipLSTM, the HSS-0.5, HSS-2, and HSS-5 of
DB-PrecipLSTM increase by 2.1%, 7.3%, and 17.4%,

respectively, while the B-MAE of DB-PrecipLSTM
decreases by 1.8%. Obviously, we can get the same
conclusion as on HKO-7: the greater the precipitation
level, the more the DB-RNN improves. In other words,
DB-RNN cares more about heavier rain, which is more
harmful.

3) Fig. 4 also proves this point. Fig. 4 exhibits the framewise
CSI and HSS metrics at different thresholds on the HKO-7
dataset. Over time (horizontal axis), the performance of
both MS-RNN and DB-RNN declines significantly, that
is, it becomes increasingly blurry. However, DB-RNN
alleviates this tendency, thanks to the introduction of the
deblurring network and deblurring loss. In addition, it can
also be seen from Fig. 4 that the deblurring effect of DB-
RNN increases with time steps, especially for higher levels
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Fig. 4. Comparison of framewise CSI and HSS at different rainfall thresholds on HKO-7. CSI-τ and HSS-τ are shorts for CSI (R ≥ τ ) and HSS (R ≥ τ ),
respectively, which mean nowcasting skill scores at threshold τ mm/h. For layout convenience, we omit the HSS-2 indicator. (a) CSI-0.5. (b) CSI-2. (c) CSI-5.
(d) CSI-10. (e) CSI-30. (f) HSS-0.5. (g) HSS-5. (h) HSS-10. (i) HSS-30.
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of precipitation, which echoes Fig. 1, that is, deblurring is
accumulated.

E. Qualitative Experiments

Qualitative experiments are similar to quantitative experi-
ments. Seven basic RNN models are also used to compare MS-
RNN and DB-RNN, namely, ConvLSTM [16], TrajGRU [8],
PredRNN [28], PredRNN++ [45], MIM [29], MotionRNN [31],
and PrecipLSTM [30]. We select a total of six precipitation cases
to compare them: two from the HKO-7 dataset (see Fig. 5) and
four from the DWD-12 dataset (see Figs. 6 and 7).

Overall, DB-RNN’s predictions are clearer and more accurate
than MS-RNN’s, and DB-RNN pays more attention to heavier
rain than MS-RNN. Furthermore, the gap between DB-RNN
and MS-RNN is not large at the beginning, and the predictions
of both are not very vague. However, as time goes by, the gap
between the two begins to appear, especially the prediction of
the last frame, that is, the gradual blurring trend of DB-RNN
is not as fast as that of MS-RNN. This again demonstrates the
deblurring accumulation ability of DB-RNN, echoing Figs. 1
and 4.

Specifically, we have the following.
1) Fig. 5(a) shows a process of sparse precipitation moving

eastward, and Fig. 5(b) shows a process of dense precip-
itation moving eastward. By comparing the last frame
(t = 9) predicted by MS-RNN and DB-RNN, we can
conclude that DB-RNN has the ability to deblur, predict
more accurately, and pay more attention to heavy rain
(yellow and red pixels).

2) Fig. 6(a) shows a process of increasing precipitation mov-
ing northward, and Fig. 6(b) shows a process of decreasing
precipitation moving eastward. The case in Fig. 6(a) is
extremely difficult. The model needs to infer changes
for the unknown five frames (t = 5, . . ., 9) from the
known two frames (t = 3, 4) with significant precipitation.
MS-ConvLSTM, MS-TrajGRU, and DB-PredRNN++ be-
lieve that precipitation will dissipate, DB-TrajGRU and
DB-PredRNN believe that precipitation will maintain,
while DB-ConvLSTM, MS-PredRNN, MS-PredRNN++,
MS-MIM, DB-MIM, MS-MotionRNN, DB-MotionRNN,
MS-PrecipLSTM, and DB-PrecipLSTM believe that pre-
cipitation will expand. In general, the predictions of most
DB-RNNs are clearer than MS-RNNs’, and most DB-
RNNs believe that precipitation will remain or expand,
among which the prediction of DB-PrecipLSTM is the
clearest and most accurate. In comparison, the example
in Fig. 6(b) is much simpler. The model needs to infer
changes for the unknown five frames (t = 5, . . ., 9) from
the known five frames (t = 0, . . ., 4) with significant pre-
cipitation. DB-RNN still outperforms MS-RNN in terms
of clarity and accuracy, indicating that DB-RNN can cap-
ture not only the birth but also the death of precipitation;

3) Fig. 7(a) shows a process of the narrow precipitation
band moving eastward, and Fig. 7(b) shows a process
of the broad precipitation cluster spreading eastward. By
comparing the last frame (t = 9) predicted by MS-RNN

TABLE V
COMPLEXITIES OF MS-RNN AND DB-RNN ON HKO-7

and DB-RNN, we can get the same conclusion as before:
DB-RNN resists blur, predicts more accurately, and pays
more attention to heavier rain (yellow pixels).

F. Analysis of Complexity and Scalability

We choose ConvLSTM, PredRNN, and MIM as the basic
RNNs to compare the various complexities of MS-RNN and
DB-RNN. Table V shows the comparison on HKO-7. The pa-
rameter complexity, computational complexity (FLOPs), space
complexity (memory), and time complexity of DB-RNN are
approximately two times, two times, two times, and four times
that of MS-RNN, respectively. DB-RNN uses two MS-RNNs
in sequence, and these increases are not surprising. Although
DB-RNN consumes more computing resources, the perfor-
mance of DB-RNN is stronger than MS-RNN with almost
the same parameters, such as DB-ConvLSTM is stronger than
MS-PredRNN, and DB-PredRNN is stronger than MS-MIM
(see Tables III and IV). The most fatal problem when training
neural networks is video memory. Improperly designed neural
networks may lead to the exhaustion of video memory. Thanks
to the multiscale design of MS-RNN, DB-RNN takes up less
video memory and is still within the tolerance of normal video
memory. Finally, the training time of DB-RNN has increased
excessively, which should be the result of the introduction of
adversarial training. Although the training time is extended, the
benefits in exchange are stronger performance and reduced blur
effects.

This article only uses seven basic RNN models to ver-
ify the advantages of DB-RNN, namely, ConvLSTM [16],
TrajGRU [8], PredRNN [28], PredRNN++ [45], MIM [29],
MotionRNN [31], and PrecipLSTM [30]. In practice, there
are many variants of ConvLSTM. Thanks to the scalability
and compatibility of MS-RNN, DB-RNN is compatible with
most convolutional RNN models, such as SA-ConvLSTM [74],
MoDeRNN [75], CMS-LSTM [76], PredRNN-V2 [77], MK-
LSTM [26], etc. Due to space limitations, this article no longer
performs corresponding experiments.

G. Comparison With Staged Training Models

We use ConvLSTM [16] and PredRNN [28] as base models to
compare the performance of MS-RNN [32], staged training MS-
RNN (MS-RNN-S), and DB-RNN. The experimental results are
shown in Table VI. Overall, DB-RNN outperforms MS-RNN-S,
while MS-RNN-S outperforms MS-RNN. We can conclude that
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Fig. 5. Cases study of instantaneous precipitation starting at 2012-01-24 17:54:00 UTC+8 (left) and 2013-03-30 06:54:00 UTC+8 (right) of Hong Kong. The
first row is known historical frames, the second row is unknown future frames, and the other rows are predicted frames. (a) Process of sparse precipitation moving
eastward. (b) Process of dense precipitation moving eastward.
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Fig. 6. Cases study of instantaneous precipitation starting at 2016-02-22 09:35:00 UTC+1 (left) and 2016-02-25 17:50:00 UTC+1 (right) of Germany. The first
row is known historical frames, the second row is unknown future frames, and the other rows are predicted frames. (a) Process of increasing precipitation moving
northward. (b) Process of decreasing precipitation moving eastward.
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Fig. 7. Cases study of instantaneous precipitation starting at 2017-06-22 08:15:00 UTC+1 (left) and 2017-07-12 10:05:00 UTC+1 (right) of Germany. The first
row is known historical frames, the second row is unknown future frames, and the other rows are predicted frames. (a) Process of the narrow precipitation band
moving eastward. (b) Process of the broad precipitation cluster spreading eastward.
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TABLE VI
COMPARISON WITH STAGED TRAINING MODELS ON HKO-7

TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART MODELS ON HKO-7

the introduction of the deblurring network does improve the
performance of MS-RNN (reduction of blur), and the end-to-end
training strategy is better than the staged training strategy. The
skip connections we introduce between the forecasting network
and the deblurring network and our unique training method
that enables the two networks to cooperate are the fundamental
reasons why DB-RNN is superior to MS-RNN-S. Furthermore,
when experimenting with MS-RNN-S, its tedious and time-
consuming training and testing give us a headache.

H. Comparison With State-of-The-Art Models

We compare DB-RNN with four recent state-of-the-art
models (Table VII). They adopt different architectures, among
which Earthformer [27] and LPT-QPN [53] are attention
(abbreviated as Atten) models, SimVP [44] is a convolutional
model, and MS-LSTM [26] is a recursive model. We enlist
a model with the worst performance, DB-ConvLSTM, and a
model with the strongest performance, DB-PrecipLSTM. In
terms of parameters, DB-ConvLSTM has the least, SimVP
has the most, and other models are in the middle. In terms of
performance, DB-PrecipLSTM is the strongest, Earthformer
is the weakest, and other models are in the middle. It is worth
noting that DB-ConvLSTM uses the smallest parameters to
obtain the second-best performance and DB-PrecipLSTM uses
the third-smallest parameters to obtain the best performance. In
short, DB-RNN mostly outperforms all historical state-of-the-art
models in terms of parameters and performance.

I. Exploration of Long Term Forecasts

To explore the performance of MS-RNN and DB-RNN for
long-term forecasting, we conduct experiments on HKO-7. We
use PrecipLSTM as the base RNN model and use HSS-10
and POD-10 as indicators. To save training time and training

Fig. 8. Comparison of long-term prediction performance of MS-RNN and
DB-RNN on HKO-7. The horizontal axis represents the forecast lead time in
hours. (a) HSS-10. (b) POD-10.

TABLE VIII
ABLATION STUDY ON HKO-7

resources, we reuse the weights of models from previous exper-
iments (see Section V-B). Specifically, we use fixed and trained
models (MS-PrecipLSTM and DB-PrecipLSTM) to perform
forecast tasks with different lead times, which is easily achieved
through multiple recursions.

We have both MS-PrecipLSTM and DB-PrecipLSTM per-
form 1–7 h forecasts (see Fig. 8). The performance of both drops
sharply in the initial stage and then slows down, which is some-
what similar to Fig. 4. However, the performance degradation of
DB-PrecipLSTM is slower than that of MS-PrecipLSTM, which
becomes more obvious as the lead time increases, which is con-
sistent with the analysis of Fig. 4. Although the autoregressive
structure of DB-RNN accumulates error (blur), deblurring is also
accumulated. Nonetheless, the performance of DB-RNN is not
optimistic in the long term, which may be caused by the use of
only a single radar source and the lack of physical constraints.
The introduction of multimodal data and physical constraints
may alleviate this situation in the future.

J. Ablation Studies

To demonstrate the role of each component in our proposed
DB-RNN, we sequentially add the deblurring loss (Ldeb), GDL
(Lgdl), and adversarial loss (Ladv) to MS-RNN (Lfor). We use
PrecipLSTM [30] as the basic model and perform experiments
on the HKO-7 dataset. The results in Table VIII show that these
components all play a positive role, among which the introduc-
tion of the deblurring loss has the largest improvement, the in-
troduction of adversarial loss has the intermediate improvement,
and the introduction of GDL has the smallest improvement.
In addition, to verify the effectiveness of the dynamic weight
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setting during the training process of DB-RNN, we fix λ1 and
λ2 in (7) to 1 during training (row 2 of Table VIII). The results
show that the dynamic loss weight strategy (row 3 of Table VIII)
is slightly better than the static loss weight strategy. This suggests
that it might be better to split the network into forecasting and
deblurring parts and let them focus on their roles during training.

VI. DISCUSSION

In the context of computer vision, precipitation nowcasting
belongs to the subtask of weather forecasting, and weather
forecasting belongs to the subtask of video prediction. They
all belong to spatiotemporal prediction tasks, and most of the
models in these domains are common. In addition, DB-RNN has
opened up the connection with video deblurring. Therefore, we
can infer that DB-RNN can also be extended to these domains. In
this section, we mainly discuss applications and corresponding
limitations of DB-RNN in different domains.

A. Weather Forecasting

1) This article only conducts experiments on two precipita-
tion datasets with different climates: one with a subtrop-
ical monsoon climate and one with a temperate maritime
climate. We believe that DB-RNN is capable of handling
data from other climates. Different climate types bring
different distributions of precipitation levels, but from
the experiments of DB-RNN on HKO-7, we can see that
DB-RNN performs well whether it is light rain, moderate
rain, or heavy rain. Therefore, as long as the data are
sufficient, DB-RNN can still perform well.

2) Although temperature, pressure, and wind speed do not
change much in the short term [39], the blur problem in
the forecast of these meteorological elements still exists,
and DB-RNN can also be used to deal with these types of
blur.

3) Recently, data-driven large meteorological models have
emerged endlessly, such as FourCastNet [23], Swin-
VRNN [78], Pangu-Weather [21], and ClimaX [79], etc.
They learn underlying meteorological laws from massive
historical climate data of Earth, which makes them excel-
lent at modeling long-term climate dynamics, even beating
traditional numerical models. However, the training data
they use have low temporal and spatial resolutions, which
makes it difficult to perform short-term high-resolution
forecasting tasks, such as precipitation nowcasting. In
short, we believe that small models, such as DB-RNN,
are more suitable for short-term local weather forecast-
ing, while data-driven large models are more suitable
for long-term global weather forecasting. In operational
weather forecasting scenarios, DB-RNN can be used as
a supplement to numerical forecasting and large model
forecasting systems.

B. Video Prediction and Video Deblurring

1) In addition to weather forecasting, there are also some
other spatiotemporal prediction tasks, such as traffic flow
prediction, robot movement prediction, human movement

prediction, etc. Accurate predictions will benefit human
life. To cope with future uncertainties, models in these
domains also choose fuzzy predictions to minimize losses.
That is, the blur problem is a recognized thorny problem
in the video prediction domain. For models using RNN
structures in the video prediction domain, the introduction
of the deblurring network of DB-RNN is applicable. For
models using non-RNN structures in the video prediction
domain, the introduction of deblurring loss of DB-RNN
is applicable. While these bring benefits, they introduce
additional computational costs, and a tradeoff between
performance and cost needs to be considered.

2) Similar to video prediction tasks, models in the video
deblurring domain also have various architectures. For
video deblurring models using RNN structures or RNN-
like structures, the deblurring network design of DB-RNN
is worth learning from. This may not apply to video
deblurring models with non-RNN structures, but the ad-
versarial and gradient regularization loss terms should
play a corresponding deblurring role. We believe that
DB-RNN can also perform well on deblurring datasets
such as MC-Blur [80] and RWBI [81], which we leave to
future work.

VII. CONCLUSION AND FUTURE WORK

This article explores the introduction of the deblurring net-
work and deblurring loss into the forecasting network and
proposes the DB-RNN. Both the forecasting network and the
deblurring network are composed of the advanced multiscale
model MS-RNN. The deblurring loss has three parts, one of
which comes from the deblurring network, and the other two
parts consist of the GDL and adversarial loss. In addition, we in-
troduce additional skip connections between the two MS-RNNs
and design a progressive training strategy to make them work
together. We perform quantitative and qualitative comparative
experiments on two large-scale radar datasets called HKO-7
and DWD-12 respectively, and the results demonstrate that the
predictions of DB-RNN are clearer, more accurate, and more
focused on heavier rain than MS-RNN. In addition, we analyze
the complexity and scalability of DB-RNN, compare it with his-
torical state-of-the-art models and staged training models, and
explore its application for long-term predictions. All the results
demonstrate the superiority of DB-RNN. Next, ablation experi-
ments demonstrate the effectiveness of the three-part deblurring
design. Finally, we discuss the applications and limitations of
DB-RNN in other domains.

Autoregression is a double-edged sword, which can lead to the
accumulation of errors and the accumulation of deblurring. We
flexibly employ the advantages of autoregression to cover up its
disadvantages. Recently, some nonautoregressive models, such
as SimVP and MIMO-VP, have begun to appear. They adopt an
end-to-end approach instead of a recursive approach. Although
this does not lead to error accumulation, it may cause train-
ing difficulties because the network design does not take time
dependence into account. In conclusion, the tradeoff between
autoregressive and nonautoregressive models requires further
research.
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Since the MSE (or MAE) loss always leads to the average
of the future state, the GAN models choose to add adversarial
regular terms to the loss function to combat ambiguity. In ad-
dition, some models also introduce regular terms such as GDL,
structural similarity, and perceptual loss in the loss function. The
regular term limits the size of the neural network solution space,
making it easier for the model to obtain approximate solutions.
DB-RNN also draws on this principle. Whether there are better
reconstruction losses to replace the MSE (or MAE) and whether
there are more powerful regularization terms are questions worth
exploring in the future.

REFERENCES

[1] J. Thuemmel et al., “Inductive biases in deep learning models for weather
prediction,” 2023, arXiv:2304.04664.

[2] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proc. AAAI Conf. Artif. Intell.,
2017, pp. 1655–1661.

[3] Z. Xu, Y. Wang, M. Long, and J. Wang, “PredCNN: Predictive learning
with cascade convolutions,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 2940–2947.

[4] C. K. Sønderby et al., “MetNet: A neural weather model for precipitation
forecasting,” 2020, arXiv:2003.12140.

[5] R. Castro, Y. M. Souto, E. Ogasawara, F. Porto, and E. Bezerra,
“STConvS2S: Spatiotemporal convolutional sequence to sequence net-
work for weather forecasting,” Neurocomputing, vol. 426, pp. 285–298,
2021.

[6] F. Chirigati, “Accurate short-term precipitation prediction,” Nature Com-
put. Sci., vol. 1, no. 11, pp. 709–709, 2021.

[7] C. J. Gamboa-Villafruela, J. C. Fernández-Alvarez, M. Márquez-Mijares,
A. Pérez-Alarcón, and A. J. Batista-Leyva, “Convolutional LSTM archi-
tecture for precipitation nowcasting using satellite data,” Environ. Sci.
Proc., vol. 8, no. 1, 2021, Art. no. 33.

[8] X. Shi et al., “Deep learning for precipitation nowcasting: A benchmark
and a new model,” in Proc. Conf. Neural Inf. Process. Syst., 2017, pp. 5622–
5632.

[9] Q.-K. Tran and S.-k. Song, “Multi-channel weather radar echo extrapola-
tion with convolutional recurrent neural networks,” Remote Sens., vol. 11,
no. 19, 2019, Art. no. 2303.

[10] M. R. Ehsani, A. Zarei, H. V. Gupta, K. Barnard, E. Lyons, and A.
Behrangi, “NowCasting-Nets: Representation learning to mitigate latency
gap of satellite precipitation products using convolutional and recurrent
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 4706021.

[11] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, and
N. Carvalhais, “Deep learning and process understanding for data-driven
earth system science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019.

[12] Q. Yan, F. Ji, K. Miao, Q. Wu, Y. Xia, and T. Li, “Convolutional residual-
attention: A deep learning approach for precipitation nowcasting,” Adv.
Meteorol., vol. 2020, pp. 1–12, 2020.

[13] Z. Ma, H. Zhang, and J. Liu, “Focal frame loss: A simple but effective loss
for precipitation nowcasting,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 6781–6788, 2022.

[14] C. Luo, X. Li, and Y. Ye, “PFST-LSTM: A spatiotemporal LSTM model
with pseudoflow prediction for precipitation nowcasting,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 843–857, 2020.

[15] L. Sevilla-Lara, Y. Liao, F. Güney, V. Jampani, A. Geiger, and M. J.
Black, “On the integration of optical flow and action recognition,” in Proc.
German Conf. Pattern Recognit., 2018, pp. 281–297.

[16] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. -k. Wong, and W.-c. Woo,
“Convolutional LSTM network: A machine learning approach for pre-
cipitation nowcasting,” in Proc. Conf. Neural Inf. Process. Syst., 2015,
pp. 802–810.

[17] L. Tian, X. Li, Y. Ye, P. Xie, and Y. Li, “A generative adversarial gated
recurrent unit model for precipitation nowcasting,” IEEE Geosci. Remote
Sens. Lett., vol. 17, no. 4, pp. 601–605, Apr. 2020.

[18] L. Han, Y. Zhao, H. Chen, and V. Chandrasekar, “Advancing radar now-
casting through deep transfer learning,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2021, Art. no. 4100609.

[19] S. Ravuri et al., “Skilful precipitation nowcasting using deep generative
models of radar,” Nature, vol. 597, no. 7878, pp. 672–677, 2021.

[20] F. Zhang, X. Wang, and J. Guan, “A novel multi-input multi-output
recurrent neural network based on multimodal fusion and spatiotemporal
prediction for 0–4 hour precipitation nowcasting,” Atmosphere, vol. 12,
no. 12, 2021, Art. no. 1596.

[21] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate
medium-range global weather forecasting with 3D neural networks,”
Nature, vol. 619, no. 7970, pp. 533–538, 2023.

[22] L. Espeholt et al., “Deep learning for twelve hour precipitation forecasts,”
Nature Commun., vol. 13, no. 1, pp. 1–10, 2022.

[23] J. Pathak et al., “FourcastNet: A global data-driven high-resolution weather
model using adaptive fourier neural operators,” 2022, arXiv:2202.11214.

[24] R. Lam et al., “Learning skillful medium-range global weather fore-
casting,” Science, vol. 382, no. 6677, pp. 1416–1421, 2023. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.adi2336

[25] K. Chen et al., “FengWu: Pushing the skillful global medium-range
weather forecast beyond 10 days lead,” 2023, arXiv:2304.02948.

[26] Z. Ma, H. Zhang, and J. Liu, “MS-LSTM: Exploring spatiotemporal mul-
tiscale representations in video prediction domain,” Appl. Soft Comput.,
vol. 147, 2023, Art. no. 110731.

[27] Z. Gao et al., “Earthformer: Exploring space-time transformers for earth
system forecasting,” in Proc. Conf. Neural Inf. Process. Syst., 2022,
pp. 25390–25403.

[28] Y. Wang, M. Long, J. Wang, Z. Gao, and P. S. Yu, “PredRNN: Recurrent
neural networks for predictive learning using spatiotemporal LSTMs,” in
Proc. Conf. Neural Inf. Process. Syst., 2017, pp. 879–888.

[29] Y. Wang, J. Zhang, H. Zhu, M. Long, J. Wang, and P. S. Yu, “Memory
in memory: A predictive neural network for learning higher-order non-
stationarity from spatiotemporal dynamics,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 9154–9162.

[30] Z. Ma, H. Zhang, and J. Liu, “PrecipLSTM: A meteorological spatiotem-
poral LSTM for precipitation nowcasting,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 4109108.

[31] H. Wu, Z. Yao, J. Wang, and M. Long, “MotionRNN: A flexible model
for video prediction with spacetime-varying motions,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 15435–15444.

[32] Z. Ma, H. Zhang, and J. Liu, “MS-RNN: A flexible multi-scale framework
for spatiotemporal predictive learning,” 2022, arXiv:2206.03010.

[33] S. Oprea et al., “A review on deep learning techniques for video
prediction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 6,
pp. 2806–2826, Jun. 2022.

[34] K. Zhang et al., “Deep image deblurring: A survey,” Int. J. Comput. Vis.,
vol. 130, no. 9, pp. 2103–2130, 2022.

[35] H. Liu et al., “Video super-resolution based on deep learning: A compre-
hensive survey,” Artif. Intell. Rev., vol. 55, no. 8, pp. 5981–6035, 2022.

[36] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3365–3387, Oct. 2021.

[37] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction
beyond mean square error,” in Proc. Int. Conf. Learn. Represent., 2016.

[38] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[39] Z. Ma, H. Zhang, and J. Liu, “MM-RNN: A multimodal RNN for pre-
cipitation nowcasting,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 4101914.

[40] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervention, 2015, pp. 234–241.

[41] G. Ayzel, T. Scheffer, and M. Heistermann, “RainNet v1.0: A convolutional
neural network for radar-based precipitation nowcasting,” Geosci. Model
Develop., vol. 13, no. 6, pp. 2631–2644, 2020.

[42] J. G. Fernández and S. Mehrkanoon, “Broad-UNet: Multi-scale feature
learning for nowcasting tasks,” Neural Netw., vol. 144, pp. 419–427,
2021.

[43] L. Han, H. Liang, H. Chen, W. Zhang, and Y. Ge, “Convective precipitation
nowcasting using U-Net model,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2021, Art. no. 4103508.

[44] Z. Gao, C. Tan, L. Wu, and S. Z. Li, “SimVP: Simpler yet better video
prediction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 3170–3180.

[45] Y. Wang, Z. Gao, M. Long, J. Wang, and S. Y. Philip, “PredRNN++:
Towards a resolution of the deep-in-time dilemma in spatiotempo-
ral predictive learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5123–5132.

[46] C. Zhang, X. Yang, Y. Tang, and W. Zhang, “Learning to generate radar
image sequences using two-stage generative adversarial networks,” IEEE
Geosci. Remote Sens. Lett., vol. 17, no. 3, pp. 401–405, Mar. 2020.

https://www.science.org/doi/abs/10.1126/science.adi2336


MA et al.: DB-RNN: AN RNN FOR PRECIPITATION NOWCASTING DEBLURRING 5041

[47] Y. Kim and S. Hong, “Very short-term rainfall prediction using ground
radar observations and conditional generative adversarial networks,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2021, Art. no. 4104308.

[48] C. Luo, X. Li, Y. Ye, S. Feng, and M. K. Ng, “Experimental study on
generative adversarial network for precipitation nowcasting,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5114220.

[49] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 6000–6010.

[50] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Represent., 2020 .

[51] C. Bai, F. Sun, J. Zhang, Y. Song, and S. Chen, “Rainformer: Features
extraction balanced network for radar-based precipitation nowcasting,”
IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 4023305.

[52] S. Ning et al., “MIMO is all you need: A strong multi-in-multi-out baseline
for video prediction,” in Proc. AAAI Conf. Artif. Intell., vol. 37, no. 2, 2023,
pp. 1975–1983.

[53] D. Li et al., “LPT-QPN: A lightweight physics-informed transformer for
quantitative precipitation nowcasting,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, 2023, Art. no. 4107119.

[54] A. Lucas, S. Lopez-Tapia, R. Molina, and A. K. Katsaggelos, “Generative
adversarial networks and perceptual losses for video super-resolution,”
IEEE Trans. Image Process., vol. 28, no. 7, pp. 3312–3327, Jul. 2019.

[55] W. Li, X. Tao, T. Guo, L. Qi, J. Lu, and J. Jia, “MuCAN: Multi-
correspondence aggregation network for video super-resolution,” in Proc.
Eur. Conf. Comput. Vis., 2020, pp. 335–351.

[56] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, “Deep video super-resolution
network using dynamic upsampling filters without explicit motion com-
pensation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3224–3232.

[57] Z. He, D. He, X. Li, and J. Xu, “Unsupervised video satellite super-
resolution by using only a single video,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, 2020, Art. no. 6000905.

[58] X. Ying, L. Wang, Y. Wang, W. Sheng, W. An, and Y. Guo, “Deformable
3D convolution for video super-resolution,” IEEE Signal Process. Lett.,
vol. 27, pp. 1500–1504, 2020.

[59] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, “Detail-revealing deep video
super-resolution,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 4472–
4480.

[60] J.-Y. Lin, Y.-C. Chang, and W. H. Hsu, “Efficient and phase-aware video
super-resolution for cardiac MRI,” in Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Intervention, 2020, pp. 66–76.

[61] W. Sun, J. Sun, Y. Zhu, and Y. Zhang, “Video super-resolution via
dense non-local spatial-temporal convolutional network,” Neurocomput-
ing, vol. 403, pp. 1–12, 2020.

[62] D. Li, Y. Liu, and Z. Wang, “Video super-resolution using non-
simultaneous fully recurrent convolutional network,” IEEE Trans. Image
Process., vol. 28, no. 3, pp. 1342–1355, Mar. 2019.

[63] T. Isobe, X. Jia, S. Gu, S. Li, S. Wang, and Q. Tian, “Video super-resolution
with recurrent structure-detail network,” in Proc. Eur. Conf. Comput. Vis.,
2020, pp. 645–660.

[64] C. Zhu et al., “Deep recurrent neural network with multi-scale bi-
directional propagation for video deblurring,” in Proc. AAAI Conf. Artif.
Intell., 2022, pp. 3598–3607.

[65] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4681–4690.

[66] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “DeblurGAN-v2: Deblurring
(orders-of-magnitude) faster and better,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 8878–8887.

[67] M. Cao, Y. Fan, Y. Zhang, J. Wang, and Y. Yang, “VDTR: Video deblurring
with transformer,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 1,
pp. 160–171, Jan. 2023.

[68] J. Liang et al., “Recurrent video restoration transformer with guided
deformable attention,” in Proc. Conf. Neural Inf. Process. Syst., 2022,
pp. 378–393.

[69] H. Zhang, H. Xie, and H. Yao, “Spatio-temporal deformable attention
network for video deblurring,” in Proc. Eur. Conf. Comput. Vis., 2022,
pp. 581–596.

[70] J. Guo and H. Chao, “Building an end-to-end spatial-temporal convo-
lutional network for video super-resolution,” in Proc. AAAI Conf. Artif.
Intell., 2017, pp. 4053–4060.

[71] X. Zhu, Z. Li, X.-Y. Zhang, C. Li, Y. Liu, and Z. Xue, “Residual invertible
spatio-temporal network for video super-resolution,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 5981–5988.

[72] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge,
MA, USA: MIT Press, 1994.

[73] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015.

[74] Z. Lin, M. Li, Z. Zheng, Y. Cheng, and C. Yuan, “Self-attention convLSTM
for spatiotemporal prediction,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 11531–11538.

[75] Z. Chai, Z. Xu, and C. Yuan, “MoDeRNN: Towards fine-grained motion
details for spatiotemporal predictive learning,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2022, pp. 4658–4662.

[76] Z. Chai, Z. Xu, Y. Bail, Z. Lin, and C. Yuan, “CMS-LSTM: Context em-
bedding and multi-scale spatiotemporal expression LSTM for predictive
learning,” in Proc. IEEE Int. Conf. Multimedia Expo., 2022, pp. 01–06.

[77] Y. Wang et al., “PredRNN: A recurrent neural network for spatiotemporal
predictive learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2,
pp. 2208–2225, Feb. 2023.

[78] Y. Hu, L. Chen, Z. Wang, and H. Li, “SwinvRNN: A data-driven ensemble
forecasting model via learned distribution perturbation,” J. Adv. Model.
Earth Syst., vol. 15, no. 2, 2023, Art. no. e2022MS003211.

[79] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover,
“ClimaX: A foundation model for weather and climate,” in Proc. Int. Conf.
Learn. Representations, 2023.

[80] K. Zhang et al., “MC-Blur: A comprehensive benchmark for image
deblurring,” IEEE Trans. Circuits Syst. Video Technol., early access,
doi: 10.1109/TCSVT.2023.3319330.

[81] K. Zhang et al., “Deblurring by realistic blurring,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2737–2746.

Zhifeng Ma received the master’s degree in applied
statistics from Lanzhou University, Lanzhou, China,
in 2020. He is currently working toward the Ph.D.
degree in computer science and technology with the
Harbin Institute of Technology, Harbin, China.

His research interests include precipitation now-
casting and video prediction.

Hao Zhang received the Ph.D. degree in information
security from the University of Science and Technol-
ogy of China, Hefei, China, in 2014.

He is currently an Associate Researcher with the
Harbin Institute of Technology, Harbin, China. His
research interests include deep learning applications
and federated learning.

Jie Liu (Fellow, IEEE) received the Ph.D. degree in
electrical engineering and computer science from the
University of California at Berkeley, Berkeley, CA,
USA, in 2001.

He is currently a Chair Professor with the Harbin
Institute of Technology, Shenzhen, China. His re-
search interests include Internet of Things and am-
bient intelligence.

https://dx.doi.org/10.1109/TCSVT.2023.3319330


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


