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Abstract—For point cloud registration, the purpose of this ar-
ticle is to propose a novel centralized random sample consensus
(RANSAC) (C-RANSAC) registration with fast convergence and
high accuracy. In our algorithm, the novel contributions are, first,
the proposal of a scale histogram-based outlier removal to delete
outliers from the initial line vector set L for constructing a reduced
line vector set Lred; second, the handshake cooperation between
the host RANSAC (H-RANSAC) only working on L and the local
RANSAC (LCL-RANSAC) only working on Lred; third, in each
handshake process, after receiving the global registration solution
and the global iteration number xH from H-RANSAC, LCL-
RANSAC uses the received global solution as the initial solution
of the modified TEASER++ (M-TEASER++) method to calculate
its first local registration solution. If the first local registration
solution satisfies the global iteration number inheritance condition,
LCL-RANSAC directly sends the accumulated iteration number,
xH + 1, and the first local solution back to H-RANSAC; other-
wise, LCL-RANSAC iteratively refines its local solution using the
M-TEASER++ method, and then sends the resultant local solution
and the required local iteration number xLCL to H-RANSAC for
updating the global solution, the global iteration number toxH :=
xH + xLCL, and the global confidence level. Due to |Lred| � |L|
and employing the global iteration number inheritance condition
test into our algorithm, we have conducted extensive experiments
on testing point cloud pairs to show the registration accuracy and
execution time merits of our algorithm relative to the state-of-the-
art methods.

Index Terms—Execution time, line vector set, outlier removal,
point cloud registration (PCR), random sample consensus
(RANSAC), registration accuracy.

I. INTRODUCTION

3-D scanning techniques, such as the light detection and rang-
ing scanning technique and the structured-light 3-D scanner, can
provide accurate geometry information and have been widely
used in remote sensing [1], [2], [3], [4], [5] and 3-D vision
[6], [7], [8]. To generate the whole scene that multiview point
clouds can cover, solving the point cloud registration (PCR)
problem between the source and target point cloud sets is a
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challenging but important task. PCR aims to determine the ma-
trix transformation, including scaling, rotation, and translation
that aligns the points, which consider noise and variations in
the point data acquisition process, such that the differences be-
tween corresponding points in different scans can be minimized.
To solve the PCR problem, techniques, such as the iterative
closest point (ICP) based approach [9] and the random sample
consensus (RANSAC) based approach [10] are commonly em-
ployed. Feng et al. [11] offered a systematic and comprehensive
review of state-of-the-art approaches for remote sensing registra-
tion, and these approaches include the intensity-based, feature-
based, optical flow-based, deep learning-based, and hybrid
techniques.

A. Related Works

ICP alternates between the closest point search in the target
point cloud and the distance minimization between the aligned
source points and the nearest target points iteratively, where the
quaternion method [12] is used to realize the implementation.
However, ICP often converges to a local minimum, and is
sensitive to the initial registration solution, outliers, missing
data, and partial overlaps, resulting in slow convergence [13]. In
addition, ICP cannot deal with the scale change problem between
the point cloud pairs. To provide a better initial registration
solution for ICP, a principal component analysis approach [14]
was proposed. To better determine the aligned source points
and the corresponding target points in ICP, the angular-invariant
feature approach [15] and the curvature feature similarity ap-
proach [16] were proposed. The Super 4-points congruent set
(4PCS) method [17] introduced a smart indexing mechanism to
reduce the execution time required in the 4PCS method [18]. In
the fast global registration method [19], three rigid correspon-
dences are first selected to construct a rough inlier set. After
that, the graduated nonconvexity (GNC) function [20], [21] and
the Geman-McClure penalty function are combined to solve the
transformation matrix using the Gauss–Newton method.

To alleviate the influence of outliers in ICP, the sparse ICP
approach [22] was proposed by utilizing the sparsity-inducing
penalty function [23] to adaptively assign weights to outliers. To
improve the convergence speed of the iterative process used in
ICP, the Anderson acceleration approach [24] was proposed to
predict the next iteration based on the behavior of the previous
iterations. To tackle the two drawbacks: small convergence
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Fig. 1. Pipeline of our C-RANSAC registration algorithm.

Fig. 2. Scale histogram-based outlier removal for constructing the reduced line vector set Lred. (a) Source point set Ps marked in blue and the target point set
Pt marked in green. (b) Initial correspondence set C in which each correspondence is marked by a red line. (c) Scale histogram of the initial line vector set L.
(d) Scale histogram of Lred.

basin and the sensitivity to outliers and partial overlaps, the
robust symmetric ICP [25] was proposed by using a symmetric
point-to-plane distance metric. In well-structured environments,
the plane-based approach [26] was proposed to segment planes
for registration. To improve the Sparse ICP method [22], the
point-to-point registration problem is first transformed to a
majorization–minimization problem [27]. Next, the Anderson
acceleration approach was used to speed up its convergence.
Then, a Welsch function-based error metric was proposed to
boost the performance.

Unlike the ICP-related methods, RANSAC-based registra-
tion methods do not need an initial registration solution, but
it does need an initial correspondence set to support the it-
erative hypothesis and verification (HAV) process via subset
sampling trials. Due to achieving good registration robustness,
the RANSAC approach for solving the PCR problem has re-
ceived growing attention. However, the initial correspondence

set is influenced by noise and outliers. In particular, when the
outlier rate is high, it often leads to a huge number of sub-
set sampling trials. The fast point feature histograms (FPFH)
method [28] is used to extract feature descriptors of points. In
FPFH, the initial correspondence set is constructed by compar-
ing the similarity among these feature descriptors, and then, a
RANSAC method, simply called FPFH+RANSAC, is applied
to estimate the registration solution. Based on the deep learning
framework combining ResNet [29] and UNet [30], the fully
convolutional geometric feature (FCGF) [31] of each point is
first extracted in a fast and memory-saving manner. Next, using
these features, a reliable correspondence set is constructed,
and then, a RANSAC method, simply called FCGF+RANSAC,
is applied to estimate the registration solution. Experimental
data demonstrated that the FCGF+RANSAC method is more
accurate and faster than FPFH+RANSAC, 3DMatch [32], and
PPFNet [33].
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Fig. 3. Flow chart of our C-RANSAC registration algorithm.

Barath and Matas [34] proposed a Graph-Cut RANSAC-
based registration method using the graph-cut process [35].
Their registration method takes spatial coherences of points
into consideration in order to separate the correct and wrong
inliers of the consensus set, particularly correcting wrongly
estimated inliers of the consensus set with an energy func-
tion locally minimized via the graph-cut process. Experi-
mental data indicated that the Graph-Cut RANSAC-based
registration method is simple but effective. In [36], it was shown
that on average, combining with Graph-Cut RANSAC and one
model estimator [37], [38] can achieve better registration results
when compared with RANSAC, the Bayesian model estimation
method [37], the universal framework for RANSAC [39], and
the neural-guided RANSAC [40].

Based on the given line vector correspondence set L,
Yang et al. [41] proposed a truncated least squares estima-
tion and semidefinite relaxation (TEASER) method. Later,
Yang et al. [42] proposed an improved version of TEASER,
called TEASER++. In their TEASER++ method, the PCR
problem is first transformed into a cost minimization problem.

Next, based on a graph model, the PCR problem is decom-
posed into the scale estimation problem, the rotation estimation
problem, and the translation estimation problem. Experimental
data demonstrated that the TEASER++ method outperforms
RANSAC, the branch and bound approach [43], and the heuristic
approach [44]. Considering only the rotation and translation
estimations, TEASER++ also outperforms the Fast-GlobReg
method [19]. To handle cases for high outlier rates, Shi et al. [45]
proposed a method, called the reject outliers based on INvariants
(ROBIN), to boost robustness performance for PCR. Instead of
the maximal clique idea used in TEASER++, ROBIN utilizes the
maximum k-core idea to remove outliers such that its accuracy is
competitive with TEASER++, but it can speed up the execution
time performance.

Improving the topological graph model-based method [46],
Li et al. [47] first decomposed the PCR problem into the scale,
rotation, and translation estimation subproblems. Based on the
line vector correspondence set L, they proposed a one-point
RANSAC method to estimate the scale solution first. After that,
the constructed maximal consensus set is used to remove outliers
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Fig. 4. Perceptual effects of our C-RANSAC registration algorithm. (a) Four testing point cloud pairs, where the source point set Ps marked in blue and the
target point set Pt marked in green. (b) Four alignments.

from L. To estimate the rotation solution, the scale-annealing
biweight function, differentiation technique, and weighted least-
square regression method are used together. Based on the esti-
mated scale and rotation solutions, frequency-based potential
inliers in the projected correspondence set are obtained. Fi-
nally, the translation solution is estimated. Experimental data
demonstrated that the one-point RANSAC method outper-
forms FLORANSAC [48], K4PCS [49], TEASER++ [42], and
FMP+BnB [50].

Differing from the graph-theoretic approach to reject out-
liers [45], Sun [51] proposed a random sampling with invariance
and compatibility (RANSIC) method. In RANSIC, the theory of
invariance and compatibility is used to extract inlier candidates
from the initial correspondence setC, and then the consensus set
is determined by comparing the compatibility between each new
candidate, which consists of three correspondences, and all the
old candidates. The abovementioned iterative random sampling
process is repeated until the termination condition is reached.
Experimental results illustrated that the RANSIC method out-
performs Fast-GlobReg [19], GNC-TLS [44], the singular value
decomposition-based RANSAC method [52], the guaranteed
outlier removal (GORE) method [53], and TEASER [41]. Re-
cently, based on two layers of random sampling operation, a
double-layered sampling with consensus maximization solver,
called DANIEL [54], leading to low computational cost and
high robustness effects under high outlier rates. Experimental
data demonstrated the superiority of DANIEL relative to GNC-
TLS [44] and GORE [53].

B. Contributions

In this article, a new centralized RANSAC (C-RANSAC)
registration algorithm with fast convergence and high accu-
racy is proposed. The pipeline of our C-RANSAC registration

algorithm is depicted in Fig. 1 where the host RANSAC (H-
RANSAC) and the local RANSAC (LCL-RANSAC) cooperate
in a handshake way. To clarify the novelties and contributions
of our algorithm, the functionality of each module in Fig. 1 is
expressed as follows.

1) In the first novelty of our algorithm, a scale histogram-
based outlier removal method is proposed to delete outliers
from the initial line vector setL for constructing a reduced
line vector set Lred with |Lred| � |L|.

2) Differing from the conventional RANSAC approach, the
second novelty is that in our C-RANSAC registration
algorithm, there are two RANSACs, H-SANSAC, and
LCL-RANSAC. H-SANSAC, which works on the set L,
cooperates with LCL-RANSAC, which works on the set
Lred, in a handshake way.

3) The third novelty of our algorithm is that after receiving
the global registration solution (s,R, t)H and the global
iteration number xH from H-SANSAC, LCL-RANSAC
uses (s,R, t)H as the initial solution of the modified
TEASER++ (M-TEASER++) method, which will be de-
scribed in the Appendix, to calculate its first local regis-
tration solution (s,R, t)LCL. Next, LCL-RANSAC checks
whether the global iteration number inheritance condition
“(s,R, t)LCL is close to (s,R, t)H” holds or not. If the
inheritance condition holds, it means that the first local
registration solution (s,R, t)LCL is seemingly obtained
by executing the HAV process xH + 1 iterations using
H-SANSAC, so LCL-RANSAC sets the local iteration
number to xLCL = xH + 1. Furthermore, LCL-RANSAC
sends (s,R, t)LCL and xLCL back to H-SANSAC. Other-
wise, if the global iteration number inheritance condition
fails, LCL-RANSAC iteratively refines its local solution
using the M-TEASER++ method, and finally, it sends the
resultant local registration solution and the local iteration
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TABLE I
REGISTRATION ACCURACY AND EXECUTION TIME COMPARISON

number to H-SANSAC for updating the global solution,
iteration number, and confidence level.

4) Based on the point cloud datasets: 3DMatch [55] and
RGB-D [56], the registration accuracy and the execu-
tion time comparison for the considered methods are

TABLE II
REGISTRATION ACCURACY AND EXECUTION TIME COMPARISON OF 3DMATCH

DATASET

made. The four registration accuracy metrics used are
scale error, rotation error, translation error, and root mean
square error (RMSE). The execution time performance is
measured in seconds. Comprehensive experimental data
have demonstrated the registration accuracy and execution
time merits of our C-RANSAC registration algorithm
when compared with the state-of-the-art methods, such
as Graph-Cut RANSAC [36], TEASER++ [42], one-point
RANSAC [47], and RANSIC [51].

The rest of this article is organized as follows. In Section II,
the proposed scale histogram-based outlier removal method is
presented to construct a reduced line vector correspondence
set. In Section III, our C-RANSAC algorithm is presented.
In Section IV, thorough experimental results are demonstrated
to justify the superiority of our algorithm. Finally, Section V
concludes this article.

II. SCALE HISTOGRAM-BASED OUTLIER REMOVAL METHOD

The proposed scale histogram-based outlier removal method
shown in Fig. 1 is presented in detail for constructing the reduced
line vector setLred from the initial line vector setL. The two sets
L and Lred will be used as the working spaces by H-RANSAC
and LCL-RANSAC, respectively.

A. Initial Line Vector Set

Given a source point cloud set Ps, a target point cloud set
Pt, and the initial correspondence set C = {(xi, yi) ∈ R

3 ×
R

3 | xi ∈ Ps and yi ∈ Pt for 1 ≤ i ≤ |Ps|}, the goal of PCR
is to estimate a positive scale parameter s ∈ R, an orthogonal
rotation matrix R ∈ SO(3), and a translation vector t ∈ R

3 such
that the aligned source point set and the original target point set
satisfies

Min
s,R,t

|Ps|∑
i=1

wi||(sRxi + t)− yi||2 (1)

where yi is modeled as yi = sRxi + t+ ni in which ni denotes
a bounded measurement noise, which can be assumed to be a
zero-mean Gaussian noise [42], [47].
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Based on the initial correspondence set C, it is easy to
construct the initial line vector set L = {(vxi,j , vyi,j) for 1 ≤
i < j ≤ |C|} where vxi,j = xi − xj , vyi,j = yi − yj , and |L| =
|C|(|C|−1)

2 .

B. Constructing the Reduced Line Vector Set Lred

Based on the initial line vector set L, we take one example to
assist in explaining the proposed scale histogram-based outlier
removal method for constructing the reduced line vector setLred.
Fig. 2(a) depicts one source point set Ps marked in blue and
the target point set Pt marked in green, where Ps is adopted
from the “3DMatch” dataset, which is available on the web-
site https://3dmatch.cs.princeton.edu/ [55], and Pt is randomly
transformed fromPs. To simulate outliers and the noise effect on
correspondences between Ps and Pt, Gaussian-bounded noise
is artificially added to all the target points in Pt, and a random
translation is artificially applied to 90% of the target points inPt.
The detailed construction of the artificial testing point clouds is
referred to Section IV-A-1. In Fig. 2(b), the lines marked in red
denote the initial correspondence set C with |C|= 1993, which
has 90% of outliers, and the number of initial line vectors in L
equals 1 985 028

(
= 1993×1992

2

)
.

Considering each line vector (vxi,j , v
y
i,j) ∈ L, let si,j denote

the positive scale of the Euclidean length of vyi,j over that of vxi,j ,

i.e., si,j =
‖vy

i,j‖
‖vx

i,j‖ . Fig. 2(c) demonstrates the scale histogram of

the scale set of all line vectors in Fig. 2(b), where in the scale
histogram H(s), the x-axis indicates the scale parameter s and
the y-axis indicates the frequency of s. In Fig. 2(c), there are 25
quantized scales on the x-axis, and each quantized scale as well
as the corresponding frequency constitutes a bin with a width of
0.2.

To remove outliers from L, we retain the line vectors in
the bins with the highest peak and those in the left and right
neighboring bins for constructing the reduced line vector set
Lred. Fig. 2(d) illustrates the reduced scale histogram in which
it yields to Lred with |Lred| = 411305. For this example, the
outlier removal rate of the line vector set L equals 79.3%(
= |L|−|Lred|

|L| = (1 985028−411305)
1 985028

)
. As a result, the reduced line

vector set Lred is used as the working space for LCL-RANSAC
and the line vector set L is used as the working space for
H-RANSAC.

III. OUR C-RANSAC REGISTRATION ALGORITHM

The pipeline of our C-RANSAC registration algorithm has
been sketched in Fig. 1 and the contributions of our algorithm
is listed first. Next, two handshake processes are simulated to
explain why if the initial global solution is not correct, how
our algorithm can get better solution, approaching the final
correct solution effectively. Then, the flow chart of our algorithm
is offered. Finally, the analysis of fast convergence and high
accuracy benefits of our algorithm is provided.

A. Our C-RANSAC Registration Algorithm and Flow Chart

The proposed C-RANSAC registration algorithm is listed as
follows.

Algorithm 1: C-RANSAC Registration.
Input: The line vector set L.
Output: The registration solution of L.
Step 1: (Constructing the reduced line vector set Lred)
Construct the reduced line vector set Lred using the scale
histogram-based outlier removal method.

Step 2: (Initialization of H-RANSAC)
H-RANSAC sets the initial global registration solution to
(s,R, t)H = (1, I3, (0, 0, 0)t) and sets the iteration
number to xH = 0. Then, H-RANSAC sends (s,R, t)H
and xH to LCL-RANSAC. Go to Step 3.

Step 3: (Calculating the first registration solution of Lsam

by LCL-RANSAC)
LCL-RANSAC first constructs a new line vector subset
Lsam which is randomly selected from Lred. For
notation’s convenience, LCL-RANSAC first renames the
received global solution (s,R, t)H as (s,R, t)LCL. Next,
LCL-RANSAC takes the received global solution, which
has been renamed to (s,R, t)LCL, as the initial solution of
the M-TEASER++ method (see Appendix) to calculate
the first local registration solution (s,R, t)new based on
the newly generated basic line vector set Lbsc which is
randomly sampled from Lsam. In addition,
LCL-RANSAC sets the tentative iteration number to
xLCL = 1. Go to Step 4.

Step 4: (Global iteration number inheritance condition test)
Let (sLCL,RLCL, tLCL) = (s,R, t)LCL and
(snew,Rnew, tnew) = (s,R, t)new. LCL-RANSAC
checks the following three inequalities:

|snew − sLCL| ≤ 2τ (2)

arccos

(
tr(Rnew(RLCL)

T)− 1

2

)
≤ 0.01 (3)

‖tnew − tLCL‖ ≤ τ, (4)

where the noise bound τ is set by users. If the three
inequalities in (2)–(4) does not hold, LCL-RANSAC
goes to Step 5; otherwise, LCL-RANSAC sets the local
iteration number to

xLCL :=

⎧⎪⎨
⎪⎩
xH + 1 if (s,R, t)LCL is renamed

from (s,R, t)H

xLCL; otherwise

(5)

In (5), if (s,R, t)LCL is renamed from (s,R, t)H , it
indicates that the first local registration solution obtained
by LCL-RANSAC is close to the received global
registration solution. Then, LCL-RANSAC directly
returns xLCL and (s,R, t)new to H-RANSAC, and goes
to Step 6.

https://3dmatch.cs.princeton.edu/
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Step 5: (Local confidence level condition test)
LCL-RANSAC updates its local confidence level to
Pr(LCL) = 1− (1− IrLCL)

xLCL where IrLCL

denotes the currently highest inlier rate of Lsam. If
Pr(LCL) ≥ 99%, LCL-RANSAC returns the currently
best local registration solution (s,R, t)LCL and the
iteration number xLCL to H-RANSAC, and then goes to
Step 6. If Pr(LCL) is less than 99%, LCL-RANSAC
performs the M-TEASER++ method on the newly
generated basic line vector set Lbsc to refine the local
registration solution of Lsam, denoted by (s,R, t)new,
and set the local iteration number to xLCL to xLCL :=
xLCL + 1. Go to Step 4.

Step 6: (Updating the global solution and iteration number)
H-RANSAC utilizes the received local registration solution
to update the global inlier rate and the global registration
solution of L. In addition, H-RANSAC updates the global
iteration number to xH := xH + xLCL. After that,
H-RANSAC updates the global confidence level to
Pr(H) = 1− (1− IrH)xH where IrH denotes the
currently highest inlier rate of L. Go to Step 7.

Step 7: (Global confidence level condition test)
If Pr(H) < 99%, H-RANSAC transmits the currently
best global registration solution (s,R, t)H and the
updated global iteration number xH to LCL-RANSAC
and goes to Step 3. Otherwise, if Pr(H) ≥ 99%,
H-RANSAC stops the algorithm and reports the final
registration solution (s,R, t)H .

After listing our C-RANSAC algorithm, we simulate
the first two handshakes to make our algorithm more
understandable.

In the first handshake process, after completing Step 2, usually
the initial global registration solution (s,R, t)H is not correct
and is far away from the final correct one. In Step 3, LCL-
RANSAC utilizes the received initial global registration solution
as the initial solution of the M-TEASER++ method to calculate
the first local registration solution (s,R, t)new based on the newly
generated basic line vector set Lbsc, which is randomly sampled
from Lsam. Because the line vector subset Lsam is randomly
selected from the reduced line vector setLred, which has removed
outliers, the first local registration solution (s,R, t)new should be
closer to the final correct registration solution when compared
with the initial global registration solution (s,R, t)H . In Step 4,
because usually, (s,R, t)new is much different from (s,R, t)H ,
the global iteration number inheritance condition test will, thus,
fail, and then in Step 5, LCL-RANSAC iteratively refines the
local registration solution of Lsam until the local confidence
level reaches the specified threshold. In Step 6, H-RANSAC
utilizes the received local registration solution to update the
global registration solution and inlier rate of L. In addition, H-
RANSAC utilizes the received local iteration number to update
the accumulated global iteration number asxH + xLCL, and then
the global confidence level is further updated.

In the second handshake process, after receiving the updated
global registration solution and global iteration number from H-
RANSAC, LCL-RANSAC takes the received global registration
solution as the initial solution of the M-TEASER++ method to
calculate the first local registration solution (s,R, t)new of Lsam

again. Furthermore, in Step 4, LCL-RANSAC checks whether
the global iteration number inheritance condition test holds or
not. If the inheritance condition holds, LCL-RANSAC sends
the first local registration solution and the iteration number,
xH + 1, back to H-RANSAC for updating the global solution,
iteration number, inlier rate, and confidence level. Otherwise,
if the inheritance condition fails, LCL-RANSAC iteratively
refines the local registration ofLsam by using the M-TEASER++
method.

For completeness, the detailed flow chart of our algorithm is
illustrated in Fig. 3.

B. Analysis of Fast Convergence and High Accuracy Benefits
of Our Algorithm

We begin the analysis of the fast convergence benefit of our
algorithm, and then analyze the high accuracy benefit.

1) Fast Convergence Benefit: When our algorithm, i.e.,
Algorithm 1, terminates, the global confidence level of H-
RANSAC satisfies

Pr(H) = 1− (1− IrH)
∑m

i=1 x
(i)
LCL

= 1− (1− IrH)M

≥ 99% (6)

where “m” indicates that LCL-RANSAC is called m times by
the H-RANSAC. “x(i)

LCL,” 1 ≤ i ≤ m, denotes the local iteration
number returning to H-RANSAC after completing the ith call
to LCL-RANSAC.

Equation (6) indicates that based on the line vector set L,
H-RANSAC only updates the global confidence level, the global
inlier rate, and the global registration solutionm times instead of
M times. Due tom � M , our algorithm has a fast convergence
benefit relative to the traditional RANSAC method. We take the
point cloud pair in Fig. 2(b) to clarify the fast convergence benefit
of our algorithm.

From Fig. 2(b), it is known that |L| = 1985 028 and |Lred| =
411 305. After randomly sampling 10% line vectors from Lred

to construct Lsam, we have |Lsam| = 41 130. Furthermore, after
randomly sampling 30% line vectors from Lsam to construct
the basic line vector Lbsc, we have |Lbsc| = 12 339. After per-
forming our C-RANSAC registration algorithm on Fig. 2(b), the
number of handshake processes between H-RANSAC and LCL-
RANSAC is five; on the other hand, we have m = 5. Among
the five handshakes, our experience shows that the five local
iteration numbers sent from LCL-RANSAC to H-RANSAC are
x
(1)
LCL = 2, x(2)

LCL = 2, x(3)
LCL = 5, x(4)

LCL = 2, and x
(5)
LCL = 12; the

global iteration inheritance condition holds in the third and fifth
handshake processes. It can be checked that the five iteration
numbers required in the M-TEASER++ method used by LCL-
RANSAC are 2, 2, 1, 2, and 1, respectively. Due to |Lred| � |L|
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and employing the global iteration number inheritance condition
test into our algorithm, our algorithm has a fast convergence
benefit, i.e., an execution time reduction benefit.

2) High Registration Accuracy Benefit: In our C-RANSAC
algorithm, at each time, once LCL-RANSAC receives the
global registration solution (s,R, t)H from H-RANSAC, LCL-
RANSAC uses (s,R, t)H as the initial solution of the M-
TEASER++ method to calculate the first local solution based
on Lred. Because in Lred with |Lred| � |L|, the outliers have
been removed to some degree from the initial line vector set L,
the local registration solution estimated by LCL-RANSAC has
higher accuracy than that estimated by the classical RANSAC-
based registration method onL. Because each time, H-RANSAC
cooperates with LCL-RANSAC in a handshake way, it implies
that the global registration solution estimated by H-RANSAC
has higher accuracy than that using the classical RANSAC
method.

IV. EXPERIMENTAL RESULTS

To evaluate the registration performances of our C-RANSAC
registration algorithm, simply called “Ours,” and the compara-
tive methods, two experiment designs are provided.

In the first experiment design with considering the scale solu-
tion, we follow the same experiment design used in [42] and [51]
to compare the accuracy performance and the execution time
performance among our C-RANSAC algorithm, TEASER++
[42], one-point RANSAC [47], and RANSIC [51].

In the first experiment design, the four accuracy metrics,
namely the scale error (serr), the rotation error (Rerr), the trans-
lation error (terr), and the RMSE [11], are used to evaluate
the accuracy performance of each considered method. Let the
ground truth registration solution be denoted as (sgt,Rgt, tgt) and
the estimated registration solution of the considered method be
denoted as (sest,Rest, test). The four accuracy metrics are defined
as

serr = |sgt − sest| (7)

Rerr = arccos

(
tr(Rgt(Rest)T)− 1

2

)
(8)

terr = ‖tgt − test‖ (9)

RMSE =

√
1

|Ps|
∑|Ps|

i=1
‖xgt

i − xest
i ‖2 (10)

where xgt
i denotes the mapped point by performing the ground

truth registration solution, (sgt,Rgt, tgt), on xi ∈ Ps, xest
i de-

notes the mapped point by performing the estimated reg-
istration solution, (sest,Rest, test), on xi ∈ Ps, and tr(·) de-
notes the trace of the matrix. The construction of the testing
point clouds and the performance comparison is presented in
Section IV-A.

In the second experiment design without considering the scale
solution, to compare the accuracy performance and the execution
time performance among our C-RANSAC algorithm, Graph-
Cut RANSAC [36], TEASER++ [42], one-point RANSAC [47],

and RANSIC [51], the three accuracy metrics, namely Rerr, terr,
and RMSE, are used to evaluate the accuracy performance of
each considered method. The real point cloud dataset 3DMatch
with 1623 point cloud pairs is used. The related performance
comparison is presented in Section IV-B.

For fairness, all comparative methods and the proposed
method have been implemented on a computer with an Intel
Core i7-8700 CPU 3.2 GHz and 32 GB RAM. The operating
system is the Microsoft Windows 10 64-bit operating system.
The program development environment is the Windows Subsys-
tem for Linux and MATLAB R2022b. The C++ source code of
our C-RANSAC registration method can be accessed from the
website: https://github.com/ivpml84079/C-RANSAC.

A. Registration Accuracy and Execution Time Comparison:
Considering Scale Solution

1) Constructing the Artificial Testing Point Clouds: In the
first experiment design, as the 22 testing source point clouds,
eight point clouds are selected from the 3DMatch dataset and
14 point clouds are selected from the RGB-D dataset. Next, we
apply the voxel grid downsampling method, namely “Voxelgrid”
in the Point Cloud Library [57], to downsample every source
point cloud such that the size of the sampled source point cloud
Ps equals |Ps| = 2000. Then, we create the corresponding
target point cloud Pt by performing a random transformation
on each source point cloud Ps, and the transformed point
cloud is viewed as the ground truth registration solution used in
(7)–(10).

In detail, given one sampled source point cloud Ps, using the
random transformation procedure [42], the ground truth target
point cloud Pt is generated such that the generated ground
truth scale solution sgt, rotation solution Rgt, and translation
solution tgt satisfy the three constraints: 1 ≤ sgt ≤ 5, ‖tgt‖ ≤ 1,
and Rgt ∈ SO(3). After performing the random transformation
on Ps, the random bounded noise ni is added to each target
point in Pt, where ni = ([−1, 1] ∗ τ, [−1, 1] ∗ τ, [−1, 1] ∗ τ)m
in which the noise bound τ is set to 0.05 [58], [59] and “m”
denotes the unit “meter.” Following the same outlier rates con-
sidered in [42] and [51], based on each target point cloud Pt,
we first randomly sample target points from Pt based on the
five different outlier rates, namely 0.5, 0.6, 0.7, 0.8, and 0.9. and
then we translate the five sampled target points over the interval
(±[5, 10],± [5, 10],± [5, 10])m. The construction of the initial
correspondence set C and the initial line vector set L are, thus,
followed.

2) Registration Accuracy Comparison and Discussion: For
every testing point cloud pair, each considered method is tested
100 times. In terms of serr, Rerr, terr, and RMSE, the accuracy
performances of the considered methods are demonstrated in the
former four subtables of Table I, respectively. In the last column
of each subtable, “avg” is the abbreviation of “average value.”

In Table I, at one specific outlier rate, among the considered
methods, the best accuracy result, i.e., the least error, is marked
in black color and boldface, and the second-best accuracy result
is marked in orange color and boldface. From Table I, we observe

https://github.com/ivpml84079/C-RANSAC
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that in terms of the two accuracy metrics, serr and terr, our
algorithm has the best accuracy performance. In terms of the
rotation error Rerr, the RANSIC method has the best accuracy
performance, and our algorithm has the second-best accuracy
performance. In terms of the metric RMSE, our algorithm has
the best accuracy performance, and the TEASER++ method has
the second-best accuracy performance.

In terms of the overall accuracy metric “RMSE,” our algo-
rithm has the best accuracy performance, and the TEASER++
method has the second-best accuracy performance. As discussed
in Section III-B2, in the reduced line vector set Lred used
by LCL-RANSAC in our C-RANSAC algorithm, the outliers
have been removed from the initial line vector set L, the local
registration solution estimated by LCL-RANSAC has higher ac-
curacy. In addition, because each time, H-RANSAC cooperates
with LCL-RANSAC in a handshake way, it leads to a global
registration solution.

Although the RANSIC method exhibits the best rotation
performance, in terms of RMSE, its overall registration accuracy
performance is the third-best due to the deficiency in translation
accuracy. The main reason is that RANSIC directly calculates
the difference between the mean vector of the source points and
that of target points in the inlier set as the translation solution.

3) Execution Time Comparison and Discussion: In terms of
seconds, the execution time performance of each considered
registration method is shown in the last subtable of Table I.

The last subtable of Table I indicates that the RANSIC method
has the best execution time performance. Our algorithm has
the second-best execution time performance. Because RANSIC
utilizes the theory of invariance and compatibility to extract
inlier candidates from the initial correspondence set C, the
cardinality of the consensus set determined in each iteration
is small, leading to the best execution time performance. Our
good execution time performance in Table I justifies the fast
convergence benefit analysis in Section III-B1.

In summary, from the abovementioned registration accuracy
and execution time comparison and discussion for the 22 testing
point cloud pairs with considering scale solution, the execution
time performance of our C-RANSAC registration algorithm is
the second-best and the registration accuracy performance of
our algorithm is the best relative to the three state-of-the-art
registration methods.

B. Registration Accuracy and Execution Time Comparison:
Without Considering Scale Solution

In this experiment design without considering the scale solu-
tion, the 3DMatch dataset with 1623 point cloud pairs is used
as the testing dataset. Similar to the first experiment design, the
noise bound τ is also set to 0.05 in the second experiment design.
Rerr, terr, and RMSE, which have been defined in (8)–(10), are
used to compare the registration accuracy performance among
Graph-Cut RANSAC, TEASER++, one-point RANSAC, RAN-
SIC, and our algorithm.

1) Registration Accuracy Comparison and Discussion: The
accuracy performances of each considered method are demon-
strated in Table II.

From Table II, we observe that in terms of the three accuracy
metrics,Rerr, terr, and RMSE, our C-RANSAC algorithm has the
best accuracy performance, justifying the high accuracy benefit
analyzed in Section III-B2. In terms of Rerr and RMSE, the
TEASER++ method has the second-best accuracy performance;
In terms of terr, the one-point RANSAC method has the second-
best accuracy performance.

The perceptual effects of our C-RANSAC algorithm are illus-
trated in Fig. 4. Fig. 4(a) illustrates the four testing point cloud
pairs, namely hotel_uc, redkitchen, mit_lab, and studyroom,
which are adopted from the 3DMatch dataset, where the source
point set Ps is marked in blue and the target point set Pt is
marked in green. Fig. 4(b) demonstrates the alignment effects
of the registration results using our algorithm. From Fig. 4(b),
we observe that the four aligned source point clouds marked
in blue have a good match with the four corresponding target
point clouds, indicating good perceptual registration effects of
our registration algorithm.

2) Execution Time Comparison and Discussion: In terms of
seconds, the execution time performance of each considered
registration method is shown Table II.

From Table II, we observe that the RANSIC method has
the best execution time performance. The Graph-cut RANSAC
method has the second-best execution time performance. Be-
cause there are a certain quantity of outliers in the 3DMatch
dataset, it reduces the outlier removal effect of the scale
histogram-based outlier removal method used in our algorithm,
degrading the execution time performance of our algorithm.

In summary, from the abovementioned registration accuracy
and execution time comparison and discussion for the 3DMatch
dataset without considering scale solution, although the execu-
tion time performance of our C-RANSAC registration algorithm
is fair, the registration accuracy performance of our algorithm is
the best relative to the four state-of-the-art registration methods.

V. CONCLUSION

The proposed C-RANSAC algorithm has been presented
for PCR. In our algorithm, the first novelty is the proposal
of a scale histogram-based outlier removal to delete outliers
from the initial line vector set L for constructing a reduced
line vector set Lred. The second novelty of our algorithm is
that the H-RANSAC and the LCL-RANSAC cooperate in a
handshake way. H-RANSAC only works on the initial line
vector set L, but LCL-RANSAC only works on the reduced
line vector set Lred, which is constructed by removing out-
liers from L. The third novelty of our algorithm is that once
LCL-RANSAC receives the global registration solution from
the H-RANSAC, the first local registration solution is obtained
by the M-TEASER++ method. If the global iteration number in-
heritance condition holds, it seems that the first local registration
solution has been obtained by running the HAV process xH + 1
times by H-RANSAC, and then LCL-RANSAC returns the first
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local registration solution and the iteration number xH + 1 to
H-RANSAC for updating the global solution, iteration num-
ber, and confidence level. Even if the global iteration number
inheritance condition fails, LCL-RANSAC iteratively refines
its local solution using the M-TEASER++ method, and then
sends the resultant local solution and the required local iteration
number xLCL to H-RANSAC for updating the global solution,
the global iteration number to xH := xH + xLCL, and the global
confidence level. We have conducted extensive experiments on
testing point cloud pairs to show the registration accuracy and
execution time merits of our algorithm when compared with
Graph-Cut RANSAC, TEASER++, one-point RANSAC, and
RANSIC.

The future work is to increase the specified confidence level
but sacrifice the execution time to achieve a better tradeoff
between the registration accuracy and the execution time re-
quirement for our algorithm.

APPENDIX

M-TEASER++ METHOD

At each iteration, LCL-RANSAC performs the M-
TEASER++ method on the newly constructed basic line vector
setLbsc to estimate the local registration ofLbsc. The differences
between TEASER++ and M-TEASER++ are highlighted as
follows.

A. Estimating the Local Scale Solution

LCL-RANSAC randomly selects one line vector s from Lbsc,
and then calculates the new inlier rate of Lbsc, denoted by Irsnew.
If Irsnew > IrsLCL, it performs the assignment operation: IrsLCL :=
Irsnew. The local confidence level ofLbsc is updated. The above s-
selection, local inlier rate update, and confidence level update are
repeated until the specified confidence level 99% is reached, and
then the maximal consensus set ⊆ Lbsc is figured out. Finally, a
least square technique is performed on the maximal consensus
set to obtain the local scale solution of Lbsc.

Prior to solving the rotation parameter of Lbsc, based on the
obtained scale solution of Lbsc, denoted by s, for every line
vector (vxi,j , v

y
i,j) in Lbsc, we scale vxi,j by the scale solution s

to obtain a scaled line vector. For convenience, the scaled line
vector set is denoted by Ls

bsc.

B. Estimating the Local Rotation Solution

Prior to applying the iterative GNC-TLS method [44] to
calculate the rotation solution R of Ls

bsc, the GNC surrogate
function is used as a penalty function by setting a larger (smaller)
weight for a line vector in Ls

bsc with a smaller (larger) residue.
In TLS, when the weight is less than the specified threshold,
which is decreasingly updated at each iteration, the weight is set
to zero for truncating the unreliable line vector in Ls

bsc.
Based on the reliable line vectors inLs

bsc, the SVD technique is
applied to obtain the tentative rotation solution, and the rotation
solution update and the weight update are repeated until the
sum of the weighted residuals converges. For LCL-RANSAC,
the initial rotation matrix is set as RLCL, which is sent from

the H-RANSAC. This modified initial rotation matrix setting
strategy leads to faster convergence and better rotation accuracy.

Beforeproceeding to solve the translation parameter, based
on the obtained rotation solution of Ls

bsc, denoted by R, for
every line vector (vxi,j , v

y
i,j) inLs

bsc, we rotate vxi,j by the rotation
solution R to obtain a rotated source vector. Collecting all these
rotated source vectors and the corresponding target vectors, we
reconstruct the correspondence set, namely CsR

bsc.

C. Estimating the Local Translation Solution

Based onCsR
bsc, the adaptive voting-based method used in [42]

is applied to solve the translation parameter t = (t1, t2, t3).
While solving each independent translation parameter ti, 1 ≤
i ≤ 3, the max-stabbing method [60] is used to enumerate
all possible consensus subsets, and the largest one is chosen
as the maximal consensus set. Note that for LCL-RANSAC,
the received global tentative translation solution tLCL, which
is sent by the H-RANSAC, is used to assist in realizing the
max-stabbing method for determining the maximal consensus
set. Furthermore, a least square method is applied to calculate
the translation solution of CsR

bsc.
After completing the M-TEASER++ method, the local reg-

istration solution of Lbsc, namely (s,R, t)new, is returned to the
LCL-RANSAC.
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