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A Unified Multiple Proxy Deep Metric Learning
Framework Embedded With Distribution

Optimization for Fine-Grained Ship Classification in
Remote Sensing Images

Jianwen Xu and Haitao Lang , Member, IEEE

Abstract—Improving ship classification performance in remote
sensing imagery by deep metric learning (DML) is a newly emerg-
ing research topic and has good application prospects. From the
perspective of the use of metric loss (classification loss and pairwise
loss) and the way of proxy learning (a single proxy or multiple
proxies), this study summarizes the existing DML methods into
four representative frameworks and proposes a novel framework,
namely, a unified multiple proxy deep metric learning framework
embedded with distribution optimization (UMP+D). Specifically,
the UMP+D not only unifies the combination of classification loss
and pairwise loss into a single loss function containing only pairwise
representation but also fuses it with multiple proxy learning. In
addition, a distribution loss branch is embedded in the UMP+D to
refine the distribution of samples in the feature embedding space to
further tighten the intraclass samples and pull apart the interclass
samples. Extensive experiments on two optical remote sensing
datasets and one synthetic aperture radar dataset demonstrate
that the proposed UMP+D framework outperforms the existing
frameworks and achieves state-of-the-art performance.

Index Terms—Deep metric learning (DML), deep neural
networks (DNN), fine-grained ship classification, optical remote
sensing (ORS), synthetic aperture radar (SAR).

I. INTRODUCTION

A S WE enter the era of Big Data, the amount of remote
sensing images, including optical and synthetic aperture

radar (SAR) images, available to us has grown substantially
both in quality (e.g., higher resolution) and quantity (e.g.,
more data sources) [1], [2], [3]. The development of maritime
ship monitoring technology has progressed from initial ship
detection to later coarse-grained ship classification, and now
to the present fine-grained ship classification. In light of this
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Fig. 1. Fully loaded (top row) and empty (bottom row) container ships exhibit
distinct characteristics in natural images [(a) and (d) of left column], optical
remote sensing images [(b) and (e) of middle column], and SAR images [(c) and
(f) of right column].

situation, supervised image classification algorithms utilizing
deep learning, specifically deep neural networks (DNN) [4],
[5], [6], demonstrate excellent prospects for fine-grained ship
classification in remote sensing image and have emerged as the
current research hotspot [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23].

One crucial aspect to consider is that the existing sophisti-
cated supervised image classification algorithms based on deep
learning are primarily intended for natural images and have been
adapted for use in remote sensing image classification tasks.
Despite this adaptation, it should be noted that due to differ-
ences in imaging sensors, mechanisms, geometry, etc. [24], [25],
remote sensing images (both optical and SAR) exhibit distinct
characteristics that differentiate them from natural images, as
evidenced by Fig. 1. As is commonly known, natural images are
usually taken by a camera at a relatively close distance, often
with either a front or side view, and possess high resolution,
allowing for an abundance of detail about the ship target [Ref.
Fig. 1(a) and (d)]. In contrast, remote sensing images are usually
acquired from a considerable distance, as indicated by their
name, and present a top–down view [Ref. Fig. 1(b) and (e) and
(c) and (f)]. Given the distinctions between natural images and
remote sensing images, remote sensing images typically provide
limited information about the superstructure of the ship target
and have a reduced resolution compared with natural images.
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This makes it more challenging and complex to extract discrimi-
native ship representation features from remote sensing images.
Consequently, achieving fine-grained ship classification in re-
mote sensing images remains an an open area of research [10],
[11].

The existing supervised learning methods based on DNNs
mainly focus on three aspects in order to improve the per-
formance of fine-grained ship classification in remote sensing
images. These aspects include:

1) more effective network architecture [8], [12], [13], [21],
[23], [26], [27];

2) more comprehensive feature fusion [14], [22], [28], [29];
and

3) more optimized objective function [9], [10], [11], [26],
[27], [30].

This study endeavors to improve the performance by refining
the objective function through deep metric learning (DML) [31],
and leads to the development of a unified multiple proxy
deep metric learning framework embedded with distribution
optimization (UMP+D). Extensive experiments have confirmed
that the proposed UMP+D significantly outperforms existing
methods and achieves state-of-the-art (SOTA) performance in
fine-grained ship classification in remote sensing images.

The major contributions of this study are three-fold.
First, according to the use of two types of elemental loss

(i.e., classification loss and pairwise loss) and proxy-based
classification learning (i.e., SP and MPs), which is a new
taxonomic perspective, we categorized existing DML methods
into four representative frameworks: Single proxy (SP) classi-
fication learning, multiple proxy (MP) classification learning,
single proxy classification learning combined pairwise learning
(SP&P), and multiple proxy classification learning combined
pairwise learning (MP&P). We have presented the principle
models of these frameworks and the canonical formulas of their
corresponding metric loss functions. Our goal is to offer useful
insights for future researchers in this field.

Second, we developed a unified multiple proxy DML frame-
work embedded with distribution optimization (UMP+D). This
framework integrates classification loss and pairwise loss into
a single loss function containing only pairwise representation
and fuses it with MPs learning. Furthermore, we have included a
distribution loss (DL) branch to refine the distribution of samples
in the feature embedding space, further tightening the intraclass
samples and separating the interclass samples.

Third, we conducted extensive experiments comparing the
proposed UMP+D framework with existing ones (SP, MP, SP&P,
and MP&P). The results demonstrate that the UMP+D is su-
perior to the others and achieves the highest level of SOTA
performance.

II. RELATED WORK

A. Fine-Grained Ship Classification

The fine-grained ship classification task aims to classify ships
into specific categories, such as bulk carriers, container ships,
oil tankers, or even different types of warships [10], [15], [16],
[21], [32], [33]. To address the unique challenges posed by

fine-grained ship classification in remote sensing images, re-
searchers have conducted numerous studies across three main
areas.

1) Network Architecture: Many DNNs and their variants,
which have achieved notable success in related fields, are em-
ployed for ship classification in remote sensing images. Liu
et al. [26] improved the inceptionV3 network by adding a fully
connected layer to the original network architecture for obscured
ship classification. Li et al. [8] designed a prototypical structure
network to conduct feature extraction for the purpose of reducing
the computational cost in the distance metric calculation. The
network is made up of four convolutional blocks used to extract
visual information from the original images automatically, and
three fully connected layers paired with the rectified linear unit
(ReLU) to create a nonlinear Softmax classifier. In addition, to
learn a nonlinear distance metric automatically, this study also
proposed an end-to-end relation network. Zhao and Lang [21]
created a dual-branch network that utilizes ResNet-50 as the
deep branch and ResNet-18 as the shallow branch to enhance
the performance of the subdomain adaptation. To extract more
discriminative deep transferable features, they also embedded
the convolutional block attention module after the first and last
convolutional layer of each branch. He et al. [27] proposed a
group of bilinear convolutional neural network (GBCNN) to
extract discriminative ship representations from the pairwise
vertical–horizontal polarization and vertical–vertical polariza-
tion SAR images. Zhang and Zhang [13] proposed a Laplacian
pyramid network with the squeeze-and-excitation (SE) attention
mechanism. Chen et al. [23] proposed a push-and-pull network
(P2Net), where a dual-branch network architecture is adopted
includes a “push-out stage” forces all the instances to be decor-
related and a “pull-in stage” groups them into each subclass,
while an integration module is designed to aggregate the decor-
related images into their corresponding subclass together with a
proxy-based module designed for acceleration.

2) Feature Fusion: Zhang et al. [28] proposed a multilevel
enhanced feature representation that fuses two local levels
feature to represent the “symbol” of a particular category of
the ships, and one global level feature to reveal the senior
semantic information. Zhang et al. [14] combined the traditional
handcrafted histogram of oriented gradient features and modern
abstract convolutional neural network features to improve ship
classification accuracy. Xiong et al. [22] proposed an explainable
attention network (EAN) to seek to increase attention to discrim-
inative parts of objects and explore intrinsic relationships be-
tween multiple attention parts and predicted outcomes. It differs
from other networks mainly in two modules: Causal multihead
attention model (CMAM) and filter aggregation mechanism
(FAM). CMAM is used to generate multiple causal attention
maps. The multiple causal attention maps will be fused with the
original features and, then, fed into the final group of convolution
filters. The FAM in the final group of convolution filters will
provide the explainable information for the convolutional filter
training process.

3) Objective Function: The design of appropriate objective
function that can enhance the discriminative power is one of the
main challenges for fine-grained ship classification. He et al. [9]
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introduced DML to improve the intraclass compactness and
interclass separation for medium-resolution SAR ship classi-
fication for the first time. They adopted triplet loss and Cross
Entropy Loss jointly to optimize a triplet network and proposed
to use the fisher discrimination regularization term to explore the
global information of learned feature embeddings. Xu and Lang
[10] proposed an interclass distribution shift regularization term
to improve the original Laplacian regularized metric learning
framework to further improve the discriminative ability of ship
feature representations. In their later work, a geometric transfer
metric learning (GTML) method was proposed. GTML achieves
discriminative information preservation, and geometric struc-
ture preservation (GSP) handles the domain shift simultaneously
by integrating pairwise constraints, joint distribution adaptation,
and manifold regularization into a unified optimization function,
aiming to make full use of their complementarity to improve
SAR ship classification performance [11]. Zeng et al. [30] pro-
posed hybrid channel feature loss for dual-polarized SAR ship
classification. The loss contains three terms: The first term is the
Cross Entropy Loss for classification learning, the second term
enforces the channels of the feature map to be class-aligned, and
the third term ensures that the feature vectors within the same
category are also diverse enough. In addition, Liu et al. [26]
enhanced the objective function by adding a center loss to reduce
the distance between classes. He et al. [27] constructed the mul-
tipolarization fusion loss to fully explore the dual polarization
information.

B. Deep Metric Learning

A fundamental assumption of the classification task is that
data/image belonging to the same class is somewhat similar,
while data belonging to different classes are less similar. And
this similarity can be measured in a space (such as a feature
space, a transformation space, or an embedding space) in the
form of some distance metric [34], [35].

The Euclidean, Mahalanobis, Matusita, Bhattacharyya, and
Kullback–Leibler are fundamental distance (similarity) metrics
used for data/image classification [34]. However, these prede-
fined distance metrics have limited capabilities in data/image
classification, because distance metrics do not have a good
learning ability independent of the problem itself. To address
this problem, metric learning presents a new way to learn a new
distance metric by analyzing data instead of adopting a prede-
fined one. By using similarity relationships between samples,
this new distance metric provides a new data representation that
has more meaningful and powerful discrimination. The main
purpose of metric learning aims to learn a new metric to reduce
the distances between samples of the same class and increase
the distances between the samples of different classes. That is
to say, metric learning aims to bring similar samples closer, and
dissimilar samples farther.

In recent years, metric learning and deep learning have been
brought together to introduce the concept of DML [31] and have
significantly boosted the performance of scene classification
of remote sensing images [36]. DML usually does not use
a generalized Mahalanobis distance but learns an embedding

space using a DNN. The sampling strategy, architecture of
DNN, and metric loss function are three factors to be considered
as a whole for DML. Among them, the metric loss function
is widely recognized as the most important one. Generally,
DML aims to obtain discriminative feature representations by
specially designing the metric loss function to make a small
intraclass distance and a large interclass distance in embedding
space. Various metric loss functions exist for DML. Those
loss functions can teach the DNN to separate different classes
in the embedding space. In general, the metric loss functions
are usually divided into two categories, i.e., classification loss
and pairwise loss, which are traditionally thought to be dis-
tinct but have been shown to have a unified form by recent
studies.

1) Classification Loss: Softmax Loss is one of the most basic
classification losses and is composed of Softmax function and
Cross Entropy Loss. Its full name is Softmax with Cross Entropy
Loss. As its name suggests, the Softmax function breaks the
whole (sum to unit one) into different elements with probability
rather than selects a maximal value: Maximal element getting the
largest portion of the distribution whereas other smaller elements
get a relatively small value of it as well. This property of the
Softmax function, which generates a probability distribution
makes it suitable for probabilistic interpretation in classification
tasks. Cross Entropy Loss requires Softmax or sigmoid activa-
tion function at the last layer of a DNN so the output values
are ranging from zero to one. Minimizing Cross Entropy Loss
separates classes for classification. It is theoretically justified
in [37] that the Cross Entropy is an upper-bound on the metric
learning losses so its minimization for classification also pro-
vides embedding features. To address the problem of Softmax
Loss, namely, it is good at optimizing the interclass variance,
but is unable to reduce the intraclass variation, Wang et al. [38]
proposed AM-Softmax Loss, which imports the angular margin
into the target logit of Softmax Loss with feature and weight
normalized. After normalization, features with small norms will
get a much bigger gradient compared with features that have
big norms. By back-propagation, the network will pay more
attention to the low-quality data/image, which usually has small
norms. In addition, AM-Softmax optimizes the multiplicative
margin in L2-Softmax [39] and A-Softmax [40] into the additive
margin to improve the efficiency of optimization. ArcFace is an-
other additive angular margin loss proposed by Deng et al. [41].
Unlike AM-Softmax, the sign before the parameter of additive
angular margin penalty in ArcFace Loss function is positive
(“+”) instead of negative (“−”). Proxy-NCA Loss [42] is the
neighborhood components analysis (NCA) Loss [43] but using
a class proxy in order to accelerate computation and make it
memory-efficient. It defines some proxies in the embedding
space of a DNN and utilizes them in the original NCA loss. The
proxies are representatives of classes in the embedding space and
they can be defined in various ways. The most straightforward
method is to define a proxy for each class and calculate the
proxy of every class as the mean of embedded points of that
class. In real-world applications, one class may contain several
local clusters rather than a single one, a SP of each class may
sometimes not represent the class well. To address this problem,
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Qian et al. [44] proposed softtriple loss to expand a SP per class
to MPs per class.

2) Pairwise Loss: Various loss functions use pairs or triplets
of samples to push the positive sample toward the anchor point
and pull the negative sample away from it. Doing this iteratively
for all pairs or triplets will make the intraclass variances smaller
and the interclass variances larger for better discrimination
of classes. Contrastive Loss [45] uses the anchor-positive and
anchor-negative pairs of samples. The samples in an anchor-
positive pair are similar, and the samples in an anchor-negative
pair are dissimilar. Its loss function contains two terms. The
first term minimizes the embedding distances of similar samples
and the second term maximizes the embedding distances of
dissimilar samples. It tries to make the distances of similar
samples as small as possible to keep the intraclass distance as
small as possible, and the distances of dissimilar samples at least
greater than a margin to increase the interclass distance. Triplet
loss [46] uses the triplets of anchor-positive-negative points. This
loss makes the distances between the negative and anchor greater
than the distances between the positive and anchor by at least a
margin. The sampling and training strategy of Contrastive Loss
and triplet loss cannot take full advantage of the training batches
used during the minibatch stochastic gradient descent training of
the DNN, since it first takes randomly sampled pairs or triplets
to construct the training batches and compute the loss on the
individual pairs or triplets within the batch. To make full use of
the batch, one key idea is to enhance the minibatch optimization
to use all O(N2) pairs in the batch, instead of O(N) separate
pairs. In view of this, lifted structure loss [47] proposes to lift
the vector of pairwise distances [O(N)] within the batch to the
matrix of pairwise distances [O(N2)]. It samples a few positive
pairs at random, and then, actively adds their difficult neighbors
to the training minibatch.

3) Difference Between Classification Loss and Pairwise
Loss: The difference between the two kinds of losses stems from
three aspects: In use of samples, calculation of the similarity
matrix, and basic classification ability.

1) Sampling strategy: The sampling strategy is the way that
samples are input in the network and the relationship
between them. Classification loss utilizes the samples with
the class-level labels one by one, and pushes each sample
into its corresponding class. While for pairwise loss, sam-
ples are used in pairs (or triplets) with pairwise labels. To
make the pairs or triplets, every sample is considered as the
anchor point. Then, one of the similar/dissimilar samples
to the anchor point is taken as the positive/negative point.
If class labels are available, one can use them to find the
positive point as one of the points in the same class as the
anchor point and to find the negative point as one of the
points in a different class from the anchor point’s class.

2) Similarity matrix: There are obvious differences between
the two elemental supervised representation learning ap-
proaches, i.e., classification learning and pairwise learn-
ing. As shown in Fig. 2, the similarity matrix of classifica-
tion learning is the product of embedding vectors (a matrix
with the size of K ×D) and a proxy matrix whose size is
D × C matrix. The resulting matrix dimension is K × C,

Fig. 2. Calculation of the similarity matrix of (a) classification learning and
(b) pairwise learning. D is the dimension of the embedding, K is the size of the
minibatch, and C is the number of classes [48].

where K is the size of the minibatch and C is the number
of classes [48]. Based on this output, K samples in the
minibatch can be classified into the corresponding classes
one by one. In contrast, the similarity matrix of pairwise
learning is the product of the embedding matrix and its
transpose, leading to a K ×K dimensional similarity
matrix.

3) Classification ability: In general, the DNN trained with
classification loss focuses on the global discriminative
information, the features extracted by the network gen-
erally stay on a separable feature that just distinguishes
different classes. Whereas the DNN trained with pairwise
loss focuses on the local discriminative information, the
features are more discriminative than the classification
learning [49]. In the field of remote sensing image classifi-
cation, it is difficult to deal with extremely heterogeneous
data/images by using classification learning or pairwise
learning alone. Therefore, researchers propose the method
of combining classification loss and pairwise loss [9].

4) Unity of Classification Loss and Pairwise Loss: Although
classification learning and pairwise learning seem to be quite dif-
ferent, they actually have similar optimization modes in terms of
loss functions. Qian et al. [44] demonstrated that Softmax Loss
is equivalent to a smoothed triplet loss where each class has a SP.
Sun et al. [48] found that the loss functions of classification loss
and pairwise loss are actually designed to reduce the minimum
optimization unit of Sn − Sp, where Sn is the similarity of the
negative pair, Sp is the similarity of the positive pair. Based on
this analysis, they unified the mathematical form of these two
types of losses and proposed Circle Loss.

III. METHODOLOGY

In this section, we first categorize existing DML methods into
four representative frameworks according to the use of metric
loss (i.e., classification loss or/and pairwise loss), and the way
of proxy classification learning (i.e., SP or MPs), which is a
new taxonomic perspective. Next, we describe the proposed
prototype framework which is designed to improve the exist-
ing framework by adding the DL into the objective function,
followed by the UMP+D framework, which is the refinement
of the prototype framework based on a unified perspective of
classification loss and pairwise loss.
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Fig. 3. Various DML frameworks are induced according to the use of metric loss (i.e., classification loss or/and pairwise loss), and the way of proxy learning
(i.e., a SP or MPs). (a) SP classification learning framework. (b) MP classification learning framework. (c) SP classification learning combined pairwise learning
framework (SP&P), (d) MP classification learning combined pairwise learning framework (MP&P). (e) Prototype of the proposed framework, i.e., MP classification
learning combined pairwise learning framework embedded with distribution optimization (MP&P+D). (f) Proposed UMP+D framework, i.e., unified multiple proxy
DML framework embedded with distribution optimization (UMP+D). Legend: K is the batch size, D is the embedding dimension, C is the number of classes,
and N is the number of proxies in each class. ©represents concatenate operation. CL, PL, and DL denote classification loss, pairwise loss, and distribution loss,
respectively. (a) SP. (b) MP. (c) SP&P. (d) MP&P. (e) Prototype framework. (f) UMP+D.

A. Four Representative Frameworks Induced From Existing
DML Methods

1) SP Classification Learning: As shown in Fig. 3(a), in
the SP framework, each class has a proxy that is embedded
in the classifier layer as weight parameters. The main differ-
ence between this framework and a typical DNN classification
framework is that the SP’s classifier layer only contains weight
parameters and no bias parameters. The input images are first
encoded as features through the backbone network, which serves
as a feature extractor. These features are then projected by
the embedder layer into a high-dimensional embedding space,
where they become the embeddings. The embeddings are fed
into the classifier layer, which outputs a classification score for
each class (e.g., a similarity matrix or logits). The logits are used
to calculate the classification loss. The SP framework’s total loss
function is composed of only the classification loss, as follows:

Ltotal = Lcls(Scls, Ycls) (1)

where Scls is the similarity matrix (i.e., logits), which is the
output of the classifier layer, and Ycls is the corresponding
classification label matrix.

2) M P Classification Learning: The MP framework is in-
duced from the work of Qian et al. [44]. As shown in Fig. 3(b),

the classifier layer of the MP framework is extended to a MPs
way, where each class has N proxies (with the same number
for all classes). The resulting similarity matrix has dimensions
K × (N × C), and a “softmax” operation is applied to com-
pute the soft maximum values of the similarities between the
input sample and its proxies from the same class. The specific
calculation is as follows:

s′xi,pn
y
=

N∑

n=1

exp( 1γ sxi,pn
y
)

∑N
n=1 exp( 1γ sxi,pn

i
)
sxi,pn

y
(2)

where xi is the ith sample in the minibatch, pny is the nth proxy
in the class y (y ∈ {1, . . . C}), and γ is a parameter to control the
smooth scale of the function. sxi,pn

y
is an element of similarity

matrix Scls, which is the output of the classifier layer and has the
size of K × (N × C), s′xi,pn

y
is the element of the final logits

S ′ with the size of K × C. The total loss of the MP framework
can be written as

Ltotal = Lcls(S
′, Ycls). (3)

The literature [44] adopted AM-Softmax Loss [38] as the clas-
sification loss and extended it to a MPs form

Ltotal = −log
exp(λ(s′xi,pn

y
− δ))

exp(λ(s′xi,pn
y
− δ)) +

∑
y �=yi

exp(λs′xi,pn
y
)

(4)
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Fig. 4. Motivation of distribution optimization. (a) Problem not solved by the existing MP and MP&P frameworks. (b) Distribution optimization can improve the
intraclass tightness and increase the interclass separateness. This diagram illustrates that there are three classes of data (circle, square, and triangle), which need
to be classified. Each class contains two local clusters (e.g., fully loaded and empty container ship), which are depicted in different colors. The five-pointed star
represents a proxy for each of local clusters.

where λ is a scale parameter and δ is a margin parameter.
3) SP Classification Learning Combined Pairwise Learning

(SPand P): He et al. [9] proposed to combine the Cross Entropy
Loss and the triplet loss to incorporate the advantages of the clas-
sification loss and pairwise loss. The core idea of this framework
is shown in Fig. 3(c) and is termed as SP&P. The total loss of
SP&P is also formulated by integrating classification loss (Lcls)
and pairwise loss (Lpair) as follows:

Ltotal = θLcls(Scls, Ycls) + (1− θ)Lpair(Spair, Ypair) (5)

where Spair denotes the pairwise similarity matrix, and Ypair is
the corresponding pairwise label matrix. 0 < θ < 1 is the weight
to tradeoff the relative importance of the two loss terms. The
authors recommend the θ high enough, e.g., larger than 0.5, to
lay more stress on the supervised classification information.

4) M P Classification Learning Combined Pairwise Learning
(MP&P): The framework of MP&P integrates the advantages of
MP and SP&P as shown in Fig. 3(d). The improvement of MP&P
compared with SP&P is that it upgrades the SP to multiple
proxies. The total loss of MP&P is formulated as

Ltotal = θLcls(S
′, Ycls) + (1− θ)Lpair(Spair, Ypair). (6)

B. Prototype Framework

When examining the characteristics of ship classification in
remote sensing images, one may observe that a particular class of
ships may consist of several localized clusters instead of a single
one. This is illustrated in Fig. 1, where an empty container ship
(bottom row) and a fully loaded container ship (top row) have
distinct superstructure appearances, resulting in separate clusters
in the feature/embedding space. To address this issue, a MPs
framework is more suitable since it can capture the differences
between localized clusters and help to reduce intraclass variance.

On the other hand, as mentioned in Section II-B, classification
learning (i.e., proxy learning) is effective for capturing global
information, whereas pairwise learning focuses on local infor-
mation. It is reasonable to use the complementary nature of these
two types of learning methods to enhance ship classification
performance. Therefore, the MP&P framework is particularly
well-suited for fine-grained ship classification from a theoretical
perspective.

We have studied both theoretically and experimentally the
MP and MP&P frameworks and found that there is still room
for improvement. Due to the heterogeneity of ship data in remote
sensing images, the distribution of data in feature or embedded
space is highly mixed, which greatly reduces the representation
power of proxies. Fig. 4(a) illustrates this situation: The proxies
PA1 and PB1 belong to class A and B, respectively, but the
distance between the sample at the edge of class A and PA1

is even greater than the distance between the same sample and
PB1; on the other hand, two proxies PC1 and PC2 are almost
indistinguishable, losing the benefit of MPs.

To address this problem, we propose to add a distribution
metric loss to the existing MP&P framework as shown in
Fig. 3(e). Distribution metrics are frequently used to measure the
divergence between two domains and are commonly employed
in domain adaptation approaches. In our study, we consider
proxies and real samples as two domains and employ the local
maximum mean discrepancy (LMMD) [50] to measure and fur-
ther constrain the divergence between proxies and corresponding
real samples in a given class under a supervised learning way.
As illustrated in Fig. 4(b), we aim to improve the intraclass
tightness and increase the interclass separation through distribu-
tion optimization by constraining both marginal and conditional
distributions. Each proxy returns to a more optimized position,
which better represents its corresponding local cluster.
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To adapt the MP&P framework, we modify the LMMD to a
supervised version and incorporate the newly developed DL into
the MP&P framework. The DL is formulated as

Ldist =
1

C

C∑

c=1

∥∥∥∥∥
∑

xr
i∈Dr

ωrc
i φ(xr

i )−
∑

xp
j∈Dp

ωpc
j φ(xp

j )

∥∥∥∥∥

2

H
(7)

where the real samples and proxies are regarded as two domains:
Dr and Dp, xr

i and xp
j denote the sample in the domain Dr

and Dp, respectively. ‖ · ‖2H denotes the L2-norm of the vector
in reproducing kernel Hilbert space (RKHS), φ(·) denotes the
feature projection to project the original samples to RKHS. wrc

i

(wpc
j ) is a binary weight. If xr

i (xp
j ) belongs to class c, the value

of wrc
i (wpc

j ) is 1, otherwise, it is 0. The total loss function is

Ltotal = Lcls(Scls, Ycls) + αLpair(Spair, Ypair)

+βLdist(Dr,Dp, yr, yp) (8)

where Ycls and Ypair denote the label matrix of the classification
label and pairwise label, yr and yp are the labels of samples
in the domain Dr and Dp. α and β are the hyperparameters to
balance the classification loss, pairwise loss, and DL.

C. UMP+D Framework

The prototype framework can enhance classification perfor-
mance by integrating the DL to the MP&P framework, but it
also has significant drawbacks: not only does it increase the
complexity of the framework [as shown in Fig. 3(e)], but it
also requires balancing three loss functions [ref. Equation (8)],
which makes training unstable and challenging to implement in
practical scenarios.

To refine the prototype framework, we adopt the idea of
combining classification loss and pairwise loss in [48] and
propose UMP+D framework as shown in Fig. 3(f). The proposed
UMP+D framework simplifies the prototype framework by
only including two components: The pairwise loss computation
branch and the DL computation branch. The DL computation
branch is identical to that in the original prototype framework
[Fig. 3(e)]. The pairwise loss computation branch in the UMP+D
framework combines the classification learning branch with the
pairwise learning branch of the prototype framework. Although
the similarity matrix for classification loss and pairwise loss is
calculated differently, there is no significant difference in the
objective function to be optimized. As long as the similarity
matrix used for the metric loss includes both similarities between
real samples and similarities between samples and proxies, the
final result will be similar to optimizing both pairwise loss and
classification loss.

Based on this unified understanding, we extract the proxies
embedded within the last fully-connected layer (classification
head) and concatenate them with the embeddings generated by
the embedder. We, then, consider the concatenated embedding
matrix as our new set of embeddings and use it to compute
any desired similarity metric, which is obtained by taking its
transpose to produce a similarity matrix for loss calculation pur-
poses. Such a similarity matrix contains both global information
and local information of the current minibatch. Feeding such a

Fig. 5. Datasets used in our experiments. FGSC-23 contain of 23 fine-grained
ship classes (orange bar). FGSCR-42 is composed of 42 fine-grained ship classes
(green bar). FUSAR is a SAR dataset including five ship classes (purple bar).

similarity matrix into a pairwise loss for training is equivalent to
training with both pairwise loss and classification loss as used in
frameworks of SP&P, MP&P, and the prototype. By combining
the benefits of both learning methods, we can achieve our desired
outcome without having to include two distinct loss terms within
the overall loss function. This approach enables us to capitalize
on the unique advantages of each method while minimizing the
complexity of the training process. The total loss function in the
UMP+D framework is

Ltotal = Lpair(Spair, Ypair) + μLdist(Dr,Dp, yr, yp) (9)

where μ is a hyperparameter to balance the metric loss and DL.
By minimizing the optimization objective, the parameters of the
networks are obtained, which will be used for inference.

IV. DATA

We assessed the efficacy of our proposed framework using two
optical remote sensing datasets and a SAR dataset. The classes
of ships included in each dataset, along with the corresponding
numbers of ships per class, are presented in Fig. 5. A detailed
description of each dataset is also provided below.

A. FGSC-23

FGSC-23 is an optical remote sensing dataset specifically de-
signed for ship classification. It was collected by Zhang et al. [28]
using Google Earth public images and the GF-1 satellite. Some
of representative sample images from FGSC-23 can be found in
Fig. 6.

The dataset consists of a total of 22 fine-grained classes of
ships, with a resolution range of 0.4 to 2.0 m and a separate
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Fig. 6. Representative sample of each class in FGSC-23.

Fig. 7. Representative sample of each class in FGSCR-42.

“nonship” class that contains negative samples resembling ships.
All ship classes are labeled by human judgment. FGSC-23
categorizes ships into fine-grained classes, such as classifying a
coarse cargo ship class into various fine-grained classes, such as
container ship, bulk carrier, car carrier, oil tanker, and liquefied
gas ship. The high degree of intraclass similarity among the fine-
grained classes makes the ship classification task more difficult.
In addition, this dataset exhibits an imbalanced distribution, with
certain ship classes, such as medical (27) and barge (54) being
scarcer compared to others, such as destroyer (542) and bulk
carrier (343). In our experiments, we utilized the division ratio
recommended by the dataset provider, which allocated 80% of
the data for training purposes and 20% for testing.

B. FGSCR-42

Another optical remote sensing fine-grained ship classifica-
tion dataset is FGSCR-42, which was collected and released by
Di et al. [51].

The dataset consists of 42 fine-grained ship classes, with a to-
tal of 9320 ship samples. The dataset comprises images sourced
from three primary sources. The first source comprises several
public remote sensing datasets such as DOTA, HRSC2016, and
NWPU VHR-10. The second part of the images are remote
sensing images collected by data providers from over 40 ports
worldwide. To enhance the classifier’s generalization capabili-
ties and balance the sample numbers across various classes, the

Fig. 8. Representative sample of each class in FUSAR-Ship.

data provider employs data augmentation techniques to obtain
some additional images, which form the third part of the dataset.
Some of the representative sample images from FGSCR-42
can be found in Fig. 7. We also followed the division ratio
recommended by the dataset provider, which allocated 50%
of the data for training purposes and 50% for testing in our
experiments.

C. Fusar-Ship

FUSAR-Ship is a fine-grained ship classification dataset for
SAR images, collected by Hou et al. [52] from 126 GF-3 images
with an azimuth resolution of 1.124 m and a slant range reso-
lution ranging from 1.700 to 1.754 m. Some of representative
sample images are illustrated in Fig. 8.

Due to the abundance of nonship classes and noisy ship sam-
ples in the original FUSAR dataset, we conducted a data cleaning
process to ensure that our experiment focused on fine-grained
ship classification. As a result, the dataset now consists of a total
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of 379 ship samples across five classes. We utilized 60% of this
dataset for training purposes and reserved the remaining 40%
for testing.

V. EXPERIMENTS

A. Experimental Settings

1) Backbone Network: Given that the optical datasets FGSC-
23 and FGSCR-42 offer adequate training samples, we opted
to employ ConvNext [53], which is a DNN, as our backbone
network for ship feature extraction from optical images. Con-
vNext achieved first place in the ImageNet [54] classification
challenge in 2022, showcasing its exceptional performance in
image recognition tasks. Since the FUSAR-ship dataset has a
relatively small size, we decided to utilize ResNet18 [55] as the
backbone to extract ship features from SAR images in accor-
dance with recent research findings [56]. Both ConvNext and
ResNet18 were initially trained (pretrained) on the ImageNet
dataset and subsequently fine-tuned using training data specific
to each dataset.

2) Sampling Strategy of MiniBatch: It is worth noting that
all datasets utilized in our experiments were imbalanced, as
specified in Section IV. Training a model with an imbalanced
dataset can potentially lead to a model biasing toward classes
with more samples. To mitigate this risk, we opted for the qk
sampling approach instead of traditional random sampling for
minibatch selection. The qk sampling method is commonly
employed in DML and entails selecting a minibatch of size
q × k, where q denotes the number of classes in the minibatch,
and k denotes the number of samples per class.

In our experiments, we set k to 8 and q to 16 for the FGSC-23,
k to 4 and q to 32 for the FGSCR-42, and k to 16 and q to 5 for
the FUSAR, empirically.

3) Hard Mining Strategy: For the hard mining strategy, we
adopted a simple but effective method proposed by Wang
et al. [57]. Specifically, a negative pair is compared with the
hardest positive pair (with the lowest similarity), whereas a
positive pair is sampled by comparing to a negative one having
the largest similarity. Formally, assume xm is an anchor, a
negative pair {xu, xv} is selected if its pairwise similarity suv
satisfies the condition

s−uv > min
yt=yu

sut − ε (10)

where ε is a given margin. If {xu, xv} is a positive pair, the
condition is

s+uv < max
yt �=yu

sut + ε. (11)

4) Hyperparameters Setting: Some of hyperparameters were
preset empirically for the proposed UMP+D framework: For
FGSC-23 and FGSCR-42 datasets, theμ in our loss function was
set to 0.01, training epochs was set to 120, and each epoch sam-
ples 100 minibatches with qk sampler. The optimizer adopted
was the AdamW with learning rate 1e–4 and weight decay 5e–4.
For FUSAR dataset, the training epochs and minibatches per
epoch were set to 25 and 5, respectively.

5) Experimental Platform: All of our experiments were run
on a deep learning workstation with two Nvidia GeForce RTX

2080Ti GPUs, Intel(R) Core(TM) i9-9980XE @ 3.00 GHz
CPU, 64 GB RAM, and Ubuntu 20.04 operation system with
the PyTorch deep learning framework [58] and Pytorch-metric-
learning library [59].

B. Experimental Contents

To gain a comprehensive understanding of the proposed
framework, we organized three separate groups of experiments.

1) Hyperparameters Selection: Given the variations in ex-
perimental datasets FGSC-23, FGSCR-42, and FUSAR-ship,
the values of hyperparameters N and D can significantly affect
the classification outcomes across different datasets. To identify
the optimal settings for these parameters, we conducted an ex-
periment utilizing a traversal search method within a 2-D space,
which will serve as a foundation for subsequent experiments.

2) Comparison Between Various Frameworks: This group of
experiments assessed the performance of the proposed UMP+D
framework, in addition to the prototype framework, by com-
paring them with four existing frameworks, namely, SP, MP,
SP&P, and MP&P. To ensure statistically significant results,
we employed three classification losses (Cross Entropy, AM-
Softmax [38], and ArcFace [41]) and three pairwise losses
(Contrastive [45], Multisimilarity [57], and Circle [48]) indi-
vidually or combined for comparative analysis across different
frameworks.

3) Comparing With SOTA Methods: In this set of experi-
ments, we compared our UMP+D approach with some SOTA
approaches. These approaches cover the three main following
aspects that are crucial for improving the performance of fine-
grained ship classification:

1) more effective network structures, ResNet 50 [55], Con-
vNext [53], and P2Net [23];

2) more comprehensive feature fusion, AMEFRN [28] and
EAN [22]; and

3) more refined objective functions, Combination Loss [9]
and DSL Loss [60].

Here, we will provide a brief overview of these approaches.
1) ResNet 50 [55]: It is a variant of the ResNet (residual

network) architecture, which was designed to solve the
problem of vanishing gradients in DNNs. ResNet 50 has
achieved SOTA performance on various image recognition
tasks, such as the imagenet large scale visual recognition
challenge.

2) ConvNext [53]: The architecture of ConvNext was pro-
posed by facebook AI research (FAIR) and is based on
the concept of 1) “next-generation” convolutional layers,
which are designed to be more efficient than traditional
convolutional layers; 2) “residual connections,” which
helps to reduce the number of parameters and computa-
tional complexity required for training; 3) “preactivation
residual blocks,” which helps to improve the training speed
and stability of the model; and 4) “SE modules,” which are
used to extract important features from the input data and
provide additional information to the convolutional layers
for improved accuracy.

3) P2Net [23]: This dual-branch network separates or decor-
relates images of distinct subclasses using two separate
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Fig. 9. Hyperparameters selection for UMP+D on three datasets. (a) FGSC-23. (b) FGSCR-42. (c) FUSAR.

branches. An integration module combines these decor-
related images into their respective subclasses, while a
proxy-based module accelerates the process. The network
includes a “push-out stage” that encourages all instances to
be decorrelated, followed by a “pull-in stage” that groups
them into each subclass.

4) AMEFRN [28]: This approach utilizes feature fusion to
represent the symbol of a particular category of ships
using two local level features, while also revealing senior
semantic information through one global level feature.

5) EAN [22]: EAN is also a feature fusion based method.
This approach relies on two key components: a CMAM
that generates multiple causal attention maps, and a FAM
that integrates these maps with the original features to
provide interpretable information during convolutional
filter training.

6) Combination Loss [9]: To address the problem of SAR
ship classification, He et al. [9] combined the use of
triplet loss and Cross Entropy Loss in optimizing a triplet
network. Furthermore, they proposed incorporating the
Fisher discrimination regularization term to improve the
model’s ability to extract and utilize global information
from the learned feature embeddings.

7) DSL Loss [60]: DSL loss is designed to maintain consis-
tency between the optimization objective and the original
data distribution.

C. Evaluation Metric

To gain a statistically meaningful understanding, the experi-
ment is repeat ten times to eliminate the possible data bias caused
by random sampling of data in each individual experiment. The
overall performance, i.e., average accuracy over ten runs, is
reported to evaluate the performance of various methods. In each
individual experiment, we define the classification accuracy as

acc. =
|{x : x ∈ Dtest ∧ f(x) = y(x)}|

|{x : x ∈ Dtest}| (12)

where Dtest denotes the test dataset and x is the instance in
Dtest. f(x) denotes the predicted label of x and y(x) denotes the
ground truth label of x.

VI. RESULTS

A. Hyperparameters Selection

The number of proxies for each class (N ) and the embedding
dimension (D) are two important hyperparameters in the MPs
learning framework. The number of proxies (N ) determines the
granularity of the representation learned by the network, whereas
the embedding dimension (D) directly affects the discriminative
power of the features. Determining optimal values for these
parameters is crucial for achieving good performance on a given
dataset, as different datasets may require different combinations
of these hyperparameters. This experiment aims to find the
optimal combination of hyperparameters for each dataset, which
can then be used as a baseline for subsequent experiments.

Fig. 9 presents the hyperparameters selection results for the
proposed UMP+D framework with Circle Loss. It is evident
that for two optical datasets, FGSC-23 and FGSCR-42, the
optimal combination of embedding dimension (D) and number
of proxies (N ) is 512 and 4, respectively. However, for the
FUSAR dataset, the optimal combination is 64 and 3. This result
is consistent with the theoretical analysis and makes sense. As
we know, increasing the number of proxies (N ) results in more
granularity in the learned representations, but it may also lead to
overfitting. On the other hand, reducing the number of proxies
(N ) results in simpler representations, but it may underfit the
data. In contrast, due to the inherent imaging properties of SAR
images, which have much less information content than optical
images, it is difficult to distinguish subclasses as accurately as
in optical images. Therefore, the optimized N value for SAR
images (N = 3) is smaller than that for optical images (N = 4).
Similarly, a higher value of embedding dimension (D) leads to
more complex and abstract representations, which can capture
more information from the input data. However, in cases where
there is insufficient information, SAR images require only a
relatively small D value, such as 64, whereas optical images
require a larger value, such as 512.

B. Comparison Between Various Frameworks

In this experiment, we employed six frameworks detailed
in the aforementioned article, including the existing four: SP
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TABLE I
PERFORMANCE OF SP ON THREE DATASETS WITH DIFFERENT CLASSIFICATION

LOSSES

[Fig. 3(a)], MP [Fig. 3(b)], SP&P [Fig. 3(c)], MP&P [Fig. 3(d)],
along with the transitional prototype framework [Fig. 3(e)] and
our proposed UMP+D framework (Fig. 3(f), a refined version of
the prototype framework), under identical experimental condi-
tions (data division, training strategy, hyperparameter configu-
ration, etc.). This allowed us to conduct fine-grained ship classi-
fication on each of the three datasets and compare the outcomes.
The experimental results are listed in Tables I, II, III, IV, V, and
VI.

To establish a common benchmark, we utilized the perfor-
mance of the SP framework as our baseline (Table I). We then
compared the performance of other frameworks against this
baseline. In these tables, the value with a underline indicates
the highest performance achieved by a specific loss function (or
a combination of loss functions) on a particular dataset for the
corresponding framework. In Tables II–VI, red font represents
an improvement over the baseline with a gain (+), while green
font indicates that the result is worse than the baseline with a
loss (-).

Upon observing the performance of the SP framework on
three datasets (Table I), we observed that for a given dataset,
the performance of the three classification loss functions was
similar. For instance, on the FGSC-23 dataset, the Cross En-
tropy, AM-Softmax, and ArcFace classification loss functions all
achieved scores of 89.44%, 89.81%, and 89.81%, respectively,
which were very close to each other. When comparing the
performance of SP framework on various datasets. We found that
the average accuracy for classification on the FUSAR dataset
was only 73.38% (even though it only contained five categories),
which was significantly lower than the performance on the two
optical data sets (FGSC-23: 89.69%, FGSCR-42: 92.03%). This
demonstrates once again that the information content of SAR
images is still the main bottleneck limiting its classification
performance improvement. Further in-depth exploration of fine-
grained ship classification based on SAR images remains to be
done.

Comparing MP and SP frameworks (Table I versus II), we
found that the MP framework improved classification accuracy
across all datasets when using the same classification loss func-
tion. Especially on the FUSAR dataset, the average accuracy
increased from 73.38% to 75.11%. Considering the difficulty of
SAR image classification as previously mentioned, this 1.73%
gain is not an insignificant improvement.

On the basis of the SP framework, the SP&P framework is ob-
tained by combining classification loss and pairwise loss. The re-
sults in Table III present some complexity and also contain some

regularity. From our experiments, we can find that combining
any classification loss function (Cross Entropy, AM-Softmax,
or ArcFace) with the Contrastive Loss (a kind of pairwise loss)
leads to a decline in classification accuracy. On the contrary,
combining any classification loss with the other two kinds of
pairwise losses, namely, Circle Loss and Multisimilarity, leads to
performance improvement. A similar yet more complex scenario
occurs in the results of the MP&P framework (Table IV). Again,
the combination of the Contrastive Loss and Cross Entropy leads
to a decline in classification accuracy. However, its performance
with respect to the other two classification losses (AM-Softmax
and ArcFace) varies across datasets (some increase whereas
others decrease).

Table V presents the performance achieved by the prototype
framework. The prototype is a framework built on the basis of
the MP&P, with the addition of DL as shown in Fig. 3(e). By
comparing the average classification accuracy in the last row of
Tables IV and V, we can see that the performance of prototype
framework has been further improved by adding DL. Instead of
using the combination of classification loss and pairwise loss,
the proposed UMP+D unified the two kinds of losses into an
individual pairwise loss mode. This refinement not only reduces
the complexity of the framework, freeing up resources for other
tasks (such as exploring optimal combinations of classification
loss and pairwise loss), but also directly improves classification
performance. The effectiveness of UMP+D framework can be
observed by comparing the average classification accuracy in
Table VI to that in Table V. The experimental results show that
the gains in accuracy of the prototype framework are 1.91%,
1.64% and 2.38% on three different datasets, respectively, com-
pared with the baseline method (SP). The gains in accuracy of
the UMP+D framework are 2.46%, 2.10%, and 3.46% on the
same three databases, respectively.

In order to further analyze how UMP+D achieves perfor-
mance improvement, we plot the confusion matrices for the best
classification results of each framework on the FUSAR dataset in
Fig. 10. By examining the confusion matrices in Fig. 10(a)–(f),
it can be observed that three classes, namely, “fishing,” “other,”
and especially “cargo,” appear to be difficult for all frameworks
to handle. On the other hand, two classes, “carrier” and “tanker,”
seem relatively easy. When comparing the performance of differ-
ent frameworks on the HARD classes, it can be seen that UMP+D
excels at handling these types of problems. For the most HARD
class, namely, the “cargo” class, while none of the frameworks
surpasses 60.0% accuracy, UMP+D achieves 59.4% (the highest
accuracy), beating MP, SP&P, and prototype framework by 3.2%
with an accuracy of 56.2%, and SP and MP&P even lower at
53.1% up to 6.3%. Moreover, UMP+D achieves leading results
in each individual ship class, resulting in the highest overall
classification accuracy of 78.57%, which is 1.30% higher than
the second-ranked prototype framework and 2.60% higher than
the third-ranked MP&P framework.

C. Comparing With SOTA Methods

In this experiment, we compared our proposed UMP+D with
several SOTA approaches. As mentioned in Sections II-A and
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TABLE II
PERFORMANCE OF MP ON THREE DATASETS WITH DIFFERENT CLASSIFICATION LOSSES

TABLE III
PERFORMANCE OF SP&P ON THREE DATASETS WITH DIFFERENT COMBINATION OF CLASSIFICATION AND PAIRWISE LOSSES

TABLE IV
PERFORMANCE OF MP&P ON THREE DATASETS WITH DIFFERENT COMBINATION OF CLASSIFICATION AND PAIRWISE LOSSES

TABLE V
PERFORMANCE OF THE PROTOTYPE FRAMEWORK ON THREE DATASETS WITH DIFFERENT COMBINATION OF CLASSIFICATION AND PAIRWISE LOSSES
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TABLE VI
PERFORMANCE OF UMP+D ON THREE DATASETS WITH DIFFERENT PAIRWISE LOSSES

Fig. 10. Confusion matrices for the best classification results of each framework on the FUSAR dataset. (a) SP: 74.03%, ArcFace, (ref. Table I). (b) MP: 75.97%,
AM-Softmax, (ref. Table I). (c) SP&P: 74.68%, ArcFace+Circle, (ref. Table III). (d) MP&P: 75.97%, ArcFace+Circle, (ref. Table IV). (e) Prototype framework,
77.27%, ArcFace+Circle, (ref. Table V). (f) UMP+D.78.57%, Circle, (ref. Table VI). (a) SP. (b) MP. (c) SP&P. (d) MP&P. (e) Prototype framework. (f) UMP+D.

V-B, these approaches represent the most recent advancements
in three main areas of research. By comparing them to our
proposed UMP+D, we can provide an objective evaluation of
its performance.

As shown in the Table VII, UMP+D achieved leading results
on all three datasets except for the FGSC-23 dataset where it was
slightly lower than AMEFRN (93.33% versus 93.58%). On the
other hand, UMP+D outperformed the comparison approaches
by a significant margin in the other two datasets, with an edge
of 1.12 percentage points over EAN in the FGSCR-42 dataset

and nearly 2 percentage points over DSL in the FUSAR dataset.
Upon further examination of the experimental results, it can
be observed that ConvNext and P2Net have made significant
improvements in terms of network structure compared with
ResNet50. Both ConvNext and P2Net outperform ResNet50
by 6–7 percentage points on both optical datasets. By utilizing
ConvNext as the backbone network in UMP+D, we achieve a
leading performance. Furthermore, UMP+D further improves its
performance by 2 percentage points compared with ConvNext
by incorporating multiagent learning and unified classification
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TABLE VII
COMPARING WITH SOTA METHODS

and pairwise loss functions. AMEFRN achieved comparable or
better performance than UMP+D, mainly due to its more indepth
feature fusion compared with UMP+D. While the idea of MP
learning and loss function optimization is not contradictory with
feature fusion, it is possible to further enhance the performance
of UMP+D by incorporating these ideas into the feature fusion-
based approaches.

Due to the limited amount of data in the FUSAR dataset,
complex models such as AMEFRN, EAN, and P2Net suffer
from overfitting. Therefore, we only present results using ResNet
18 in Table VII. On the other hand, several loss function opti-
mization based methods, such as Combination Loss [9], DSL
Loss [60], and our proposed UMP+D, achieve good results.
This demonstrates that optimizing the objective function can
improve model performance and generalization ability without
increasing network size or complexity when dealing with small
datasets. This is why objective function optimization has become
one of the three mainstream research directions.

VII. DISCUSSION

A. Rethinking Various Frameworks

Analyzing the experimental results described in Section VI-B,
we believe that the performance of various frameworks has a
direct relationship with proxy and loss function.

The performance of the MP framework is better than that of
the SP framework because it performs more detailed demar-
cation for each class, further exploring the differences within
classes and learning these differences through setting multiple
subclass centers. This leads to improved feature representations
in the final classification.

As for SP&P and MP&P frameworks, there are two points
that should be kept in mind: 1) Combining classification loss
with pairwise loss directly does not guarantee that it will always
bring benefits. Researchers must consider, which combinations
are truly effective for specific tasks. 2) While MP&P is still more
effective than SP&P when using a combination of classification
loss and pairwise loss, the complexity also increases.

The proposed UMP+D framework proves to be superior to
existing frameworks mainly due to three following points:

1) The use of MP learning to obtain fine demarcation for
sub-classes;

2) the unification of classification loss and pairwise loss
into a single mathematical paradigm to improve training
efficiency; and

3) the further optimization of MP positions through distribu-
tion constraint to enhance representation capabilities.

B. Ablation Study

We investigated and discussed the effects of two major innova-
tions, namely, DL and unified pairwise loss, on UMP+D through
ablation study. As shown in Fig. 3(f), these two innovations
make up the DL and PL branches of the UMP+D framework,
respectively.

1) Impact of DL Branch: In order to study the effect of
DL on UMP+D framework, we removed DL branch from the
framework, as shown in Fig. 3(f). In practice, this is equivalent to
removing Ldist from the total objective function (9) but retaining
all other terms. For the sake of expression, we refer to this
trimmed UMP+D framework as UMP. The experimental results
are listed in Table VIII. The results of UMP and UMP+D both
used Circle Loss. The experiment results demonstrate that when
DL is removed from the UMP+D framework, the performance
of UMP on all three datasets significantly degrades. This result
confirms that DL is an essential component of the UMP+D
framework.

In addition to the positive effect of DL on classification as
reflected in the quantitative classification accuracy, visualizing
the distribution of samples in embedding space can help us
see more clearly how DL reorganizes sample distribution to
improve classification performance through t-SNE [61]. Fig. 11
illustrates the distribution of test samples in the embedding
space of the FGSCR-42 dataset. By comparing the difference
in sample distributions between Fig. 11(a) and (b), we can see
the role that DL plays in separating samples from different
classes and compacting samples within a class, especially when
there are multiple possible subclasses within a particular class.
Overall, the embedding space of UMP+D with DL [Fig. 11(a)]
maintains a basic isolation between interclass samples while
preventing overconcentration of intraclass samples, as shown
in that of UMP [Fig. 11(b)]. This results in the MPs not being



5618 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VIII
RESULTS OF ABLATION STUDY ON THREE DATASETS

Fig. 11. Visualization of sample distribution in the feature space on the FGSCR-42 dataset utilizing t-SNE [61]. (a) UMP+D. (b) UMP.

mixed together due to the high clustering of samples within
each class, thus, losing the discriminative capability between
MPs within a class. Upon closer observation of specific classes,
we can see that DL does effectively adjust and optimize the
proxy positions. For example, in Fig. 11(b), class 19 is mixed
with other classes as marked in the red dashed line. After DL
optimization in Fig. 11(a), class 19 is clearly separated from
other classes. For class 40, which contains multiple local clusters
due to intraclass variation, it is not only separated by a large
gap (intraclass dissimilarity) but also blocked by other classes
(interclass similarity). However, after DL adjustment, class 40
no longer mixes with other classes and the four subclasses show
clear boundaries.

2) Impact of PL Branch: When the unified classification loss
and pairwise loss are not used, but a direct combination of
the two losses is adopted, UMP+D returns to the prototype
framework. We relisted the best performance achieved by the
prototype framework on the three datasets (i.e., the second row
from the bottom in Table V) when using a combination of
ArcFace Loss and Circle Loss, and compared it with that of
UMP+D in Table VIII. This result again demonstrates that the
unified classification loss and pairwise loss are more effective
than directly combining them.

VIII. CONCLUSION

To improve ship classification performance in remote sensing
imagery, the existing supervised deep learning methods are
mainly studied from three following aspects:

1) more effective network architecture;
2) more comprehensive feature fusion; and
3) more refined metric loss function.
This study focuses on the third aspect, that is, improving the

intraclass compactness and interclass separation of fine-grained
ship samples through DML, so as to improve final ship classifica-
tion performance. Through the indepth investigation of related
work, this study summarized the existing DML methods into
four representative frameworks from the perspective of the use of
two kinds of elemental loss (i.e., classification loss and pairwise
loss) and the way of classification learning (i.e., SP and MP).
Inspired by the existing work, this study proposes the UMP+D
framework, which has three novel characteristics:

1) Unifying the combination of classification loss and pair-
wise loss into a single loss function containing only pair-
wise representation.

2) Fusing pairwise representation with MP learning.
3) Embedding the DL to refine the distribution of samples

in the feature embedding space to further tighten the
intraclass samples and pull apart the interclass samples.

Extensive experiments demonstrate that the proposed
UMP+D framework outperforms the existing ones and achieves
SOTA performance.

The proposed UMP+D aims to refine the metric loss function,
which gives it certain independent properties. This property al-
lows it to be integrated with two other aspects of current research
efforts. That is, we can further improve the performance of the
proposed framework by designing a more effective network
architecture, or by fusing more appropriate features. In future
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work, we will follow the above ideas and continue to improve
the ship classification performance of remote sensing imagery
through further adaptive expansion based on this framework.
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