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Abstract—In this study, we propose a robust debris estimation
model applied to satellite imagery that is suitable for practical
applications. In our previous study, we proposed a coastal ma-
rine debris estimation model using semantic segmentation applied
to very high-resolution satellite images. We identified limitations
when applying the model to various lower spatial and spectral
resolution satellite images or to areas with fewer satellite images
cases. To overcome these limitations, we now employed unsuper-
vised domain adaptation (UDA) techniques to transfer the earlier
model to these lower resolution or fewer satellite images. These do-
main adaptation techniques consider differences in spatial feature
distributions and/or satellite sensor characteristics. We confirmed
the ability of UDA to classify Planet Skysat and Airbus Pleiades
images using MAXAR WorldView images to generate an accurate
segmentation map. The UDA, then, allows us to analyze the lower
satellite images without the need to independently generate new
segmentation labels. We conducted statistical analyses and demon-
strated the high correlation between the local debris cleanup data
and entropy metrics computed using our UDA approach. Our
method enhances the sampling frequency of satellite images by
analyzing lower resolution imagery, allowing monthly to weekly, or
even daily intervals, and facilitates rapid estimation utilizing fewer
images, thereby providing an invaluable tool for coastal debris
characterization and assessment.

Index Terms—Marine debris, remote sensing, satellite imagery
analysis, semantic segmentation, unsupervised domain adaptation
(UDA), very high-resolution satellite images.

I. INTRODUCTION

MARINE debris poses a significant and widespread threat
to the marine environment. It is transported by ocean

currents and accumulates in coastal waters and on beaches from
local to mesoscales (10–1000 km) [1], [2], [3]. The degradation
of anthropogenic debris in the ocean results in the formation
of increasingly smaller particles, making their detection and
cleanup very challenging [4].
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Policy-based organizations, such as the United Nations En-
vironment Programme, have drawn public attention to the
scope, magnitude, and impacts of marine pollution in recent
decades [5]. Current developmental goals, such as those of the
United Nations (UN) Agenda 2030 for Sustainable Develop-
ment, approved in 2015, provide a long-term plan to encourage
global action, including 17 Sustainable Development Goals
(2015–2030) [6].

The current approach to marine debris on beaches is human
physical cleanup, in areas of active fisheries or coastal recre-
ation [7], [8]. The objective of these activities is to mitigate their
impact on human activities. While these efforts are necessary
and provide temporary relief in limited regions, it is important
to recognize that the long-term impacts of anthropogenic de-
bris extend beyond their influence on human activities. These
long-term impacts apply to all marine animals and their habitats.
The persistent presence of anthropogenic debris poses a threat to
marine ecosystems [7], [9]. These changes in the marine environ-
ment eventually impact human activities, such as aquaculture.
Over three billion people are known to depend on marine and
coastal biodiversity for their livelihood [10].

Therefore, a long-term and comprehensive approach to iden-
tify and mitigate the impacts of marine debris is essential for
effectively reducing their environmental impact. Research on
identifying marine debris plays an important role in mitigating
the impacts of marine debris, including environmental policy
integration and the allocation of human resources. Our study
focuses on using satellite imagery for the rapid assessment of
debris deposition on beaches. By providing detailed information
on marine debris deposition, we aim to support public agen-
cies and local communities in making informed decisions to
take appropriate actions to clean the beaches. Moreover, the
dissemination of detailed information on debris deposition can
contribute to raising social awareness about marine pollution.
This increased awareness can drive long-term measures aimed
at reducing the discharge of debris into the ocean including be-
havioral changes, such as the adoption of sustainable practices,
the reduction of single-use plastics, and the implementation of
proper waste management strategies [7], [11], [12].

A. Earlier Marine Debris Studies

We propose to use satellite imagery and aerial photography
to estimate the deposition of coastal debris. We follow other
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earlier studies that employ machine learning algorithms to detect
anthropogenic debris, such as plastics [13], [14], [15], [16]. Most
of these studies, however, achieved high accuracy only in limited
areas or using only a few satellite images. These early machine
learning models were trained by supervised learning, which
trains the model using given ground truth data. So if you apply
the model to other data or environments, the model performance
is expected to be lower. Some studies also require a visual inspec-
tion of the imagery before the machine learning method can be
applied [17], [18], [19], [20]. This process improves the model
accuracy, but the required human intervention retards the speed
of model deployment. Several researchers have used hyperspec-
tral laboratory systems to characterize the spectral response of
specific debris elements and then use supervised learning to
analyze the satellite images to detect these elements [21], [22].

One study deployed several plastic sheets made of differ-
ent materials and analyzed the spectral responses in the open
ocean [23], [24]. Topouzelis et al. demonstrated the identifica-
tion capability of 10 m × 10 m sheets using Sentinel-1 and 2
images. Kikaki et al. introduced a database of marine debris
using Sentinel 2 images [25]. Open-source (free) imagery en-
ables marine debris studies and most studies are conducted using
open-source satellite images, such as Landsat or Sentinel [26],
[27]. Unfortunately, the spatial resolution of those images is
significantly lower than the size of marine debris (10–30 m/pix).
Consequently, the utilization of these satellites poses a challenge
for achieving detailed debris characterization and early debris
detection.

In addition, previous studies focus on detecting one single
material, such as plastics [23], [28], [29] and then primarily
under relatively restrictive conditions, such as the identifica-
tion of manmade objects or in heavily contaminated regions.
Most of the marine debris consists of and is entangled with
a variety of components. On beaches, the debris has different
backgrounds that are exposed to different weather conditions.
Also, on the practical side, rapid deployment of the cleanup
crew is crucial to prevent the re-entry of marine debris back
into the open water. As a consequence, it is necessary to char-
acterize coastal debris deposition to better manage its costly
cleanup.

In our previous study, we proposed a new approach to iden-
tify the coastal debris density level based on the segmentation
of WorldView 2 and 3 satellite imagery [30]. Our approach
combined WorldView 2, 3, and coincident ground truth from
coastal cleanup operations. This analysis was carried out for
beaches on the islands of Okinawa in southern Japan where
we have the regularly sampled clean-up data. We found a 0.72
correlation between the satellite image estimated debris and the
ground truth clean-up data. Unlike other approaches, this model
can differentiate between clean beaches and the early stages of
debris deposition. However, this study was based on a semantic
segmentation trained on only WorldView 2 and 3 images and
the results do not apply to other satellite sensors with poorer
resolutions, and to other areas with coverage of fewer satellite
images, than were used in our study. Therefore, the ability to
adapt the model to different satellite sensors or regions with
limited image availability is needed to achieve higher temporal

sampling and enable rapid assessment on diverse beaches. The
ultimate objective of the present study is to develop a robust
estimation model capable of providing accurate estimates of
beach debris solely from lower resolution or fewer satellite
images.

B. Domain Adaptation

The ultimate ability of our debris estimation is directly de-
pendent on the improvement of the segmentation model. The
primary approach to designing robust semantic segmentation
models is: 1) to train the model with a large dataset and 2)
to employ unsupervised domain adaptation (UDA) to transfer
the results from the model developed with the large dataset of
satellite images with high spatial and spectral resolutions. In our
previous study, many beaches in Japan were not covered with
many high-resolution satellite images or were covered by satel-
lite images of lower spatial and spectral resolutions. Therefore,
we decided to use UDA to transfer the results from the data-rich
region to other beaches on Japanese islands where fewer satellite
images, or lower resolution images, and less ground truth data
are available.

UDA carries knowledge from a label-rich source domain to an
unlabeled weakly sampled target domain [31]. Thus, UDA can
be viewed as a special case of transfer learning, where a model
is trained on a source domain and then, applied to a similar
target domain [32]. One method we can use to translate domain
invariant features is using pixel-level adversarial training, such
as a generative adversarial network (GAN) [33], [34]. Here, the
generator performs the adaptation at the pixel level by translating
a source input image to an image that closely resembles the
target distribution [35]. The advantage of this domain mapping
approach is that labels are not required for both the source and
target domains. Thus, image-to-image translation is not affected
by the label qualities or granularity differences of the classes
defined by the labels.

Many studies using UDA have recently been conducted on
remote sensing images [36], [37], [38], [39], [40]. These studies
primarily focused on urban areas and employed publicly avail-
able datasets [36], [40], [41]. The most common knowledge
transfer is a domain adaptation applied to semantic segmentation
for land use land classification, which plays a major role in
understanding local statistics [37], [38]. In addition, the latest
research is focused on specific remote sensing problems, such as
change detection, crop monitoring, and vehicle detection [42],
[43], [44]. These new architectures proposed complicated con-
cepts including multisource/ multitarget adaptation, and statis-
tical domain alignment techniques [35], [36], [39]. Whereas the
tailored model can achieve very good performance in certain
conditions, this framework makes it difficult to extend its per-
formance to different conditions or scenarios.

While the final goal of this study is to characterize the ma-
rine debris distribution in coastal areas, our focus in UDA is
on the knowledge transfer of semantic segmentation models.
The biggest challenge in our study is to transfer information
about marine debris using UDA, which has not been explicitly
trained for this particular application. The spatial representation
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Fig. 1. Targets of interest located in Okinawa: Southeast islands in Japan and Shikoku: inland sea of Japan. Red dots show the cleanup beach locations.

of beach debris at subpixel scales is complicated due to the
significant variability in its components and backgrounds. The
beach itself can consist of various types of sand, mud, and veg-
etation. Meanwhile, the scattered debris encompasses different
materials with varying orientations, influenced by tides, cur-
rents, and meteorological events, such as typhoons. Hence, the
primary objective of this study is to evaluate the ability of UDA
to effectively characterize coastal marine debris under various
conditions. We have assumed two general transfer scenarios that
account for the major differences in debris characterization as
follows. 1) Transferring the model developed for high spatial
resolution satellite images to lower resolution satellite images. 2)
Applying the classification results from data-rich environments
to areas with far fewer high-resolution satellite images.

II. STUDY AREA AND DATASET

As we mentioned in Section I, we need two different sites
to perform our UDA. The first source location is Okinawa;
the same site used in the previous study [30], and the new
geographic region with fewer images is Shikoku Island, a beach
of a Japanese inland sea shown in Fig. 1. This region and the
Okinawa region have dramatically different climates in Kop-
pen’s climate classification [45], which results in differences
in the local characteristics especially in vegetation and general

TABLE I
SATELLITE IMAGERY SPECIFICATIONS

background, as shown in Fig. 2. We analyzed the following
satellite data at these locations.

1) WV Okinawa dataset (42 scenes).
2) Pleiades Okinawa dataset (27 scenes).
3) Skysat Okinawa dataset (four scenes).
4) Skysat Shikoku dataset (three scenes).
We show the basic specification of three satellite image types

in Table I. “Res.” and “Sat” represent resolution and satellite,
respectively.

We should note that all of the satellite images have submeter
spatial resolution and the data are acquired from the archive
data. The temporal resolutions presented in Table I apply to
new capture requests, while the archived dataset is available
approximately on a weekly basis for WorldView and Pleiades
images, and daily for Skysat images. It should be noted that the
data acquisition may be significantly reduced due to cloud cover,
which is dependent on local weather conditions. In our region
of interest, the actual data acquisition rate was approximately
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Fig. 2. Example of debris on target locations in southern islands of Japan (Left) and Shikoku area (Right) where fewer samples are available. We can observe the
background difference (vegetation and sand) due to the weather conditions. Debris tends to deposit from the middle to the “high water mark” of the beach rather
than at the ocean shoreline.

2–3 times per month for WorldView and Pleiades, and once per
week for Skysat images.

A UDA analysis that utilizes such widely used satellite data
yields an important method to increase the sampling frequency.
All images we obtained are pansharpened L2 surface reflectance
(SR) products. These images contained urban structures, vege-
tation, mountains, and coastal regions. We selected nine classes
(vegetation, trees, buildings, roads, manmade structures, water,
sand, rocks, and others) to cover the diversity of elements
contained in these images. We prepared the labeling of 202 km2

of Maxar WorldView images, 178 km2 of Pleiades images, and
544 km2 of Planet Skysat images for the Okinawa area. The
overall WorldView and Pleiades dataset is comprised of 42 and
27 scenes, respectively, with smaller areas whereas the Skysat
dataset is only four scenes. Although the entire area of Skysat
is larger than that of WorldView or Pleiades, the variability
including radiometric difference is much larger in WorldView
and Pleiades data. Total beach sites in their datasets result in 49,
32, and 13 samples to be analyzed, respectively.

As for the Shikoku dataset, we only have three images, which
result in 9.3 km2 covering 616 tiles. The latter small dataset is
ideal for the few-shot domain adaptation. We show both regions
of interest in Fig. 1

To preprocess the images, we split them into small patches of
224×224 pixels with no overlap. This results in 1.61 × 104 tiles
for WorldView, 4.33 × 104 tiles for Skysat and 1.42 × 104 tiles
for Pleiades. All of our processing steps are carried out in these
patches.

A. In-Situ Measurement

We collected local information from the two aforementioned
regions. In Okinawa, the target beaches undergo regular cleanup
every few months to maintain their appeal to the tourists industry.
The clean-up operation is manually conducted and collected
debris is classified into different categories and measured as
weight and volume. The detailed log was made in 50-m bands
across the beach. These clean-up operations have been going on
since 2014. For our study, we selected 29 beaches to be analyzed,

each of which has a different length and width and occur on
different islands, as shown by the red dots in Fig. 1.

On the other hand, the beaches in the Shikoku region do
not undergo regular cleanup operations, resulting in a higher
accumulation of debris compared to the cleaned beaches in Ok-
inawa. The ground truth data in Shikoku relies solely on visual
estimates conducted by local investigations. Moreover, access
to these areas is challenging due to their terrain. Therefore,
we can assume that the debris accumulation in these areas is
primarily influenced by natural processes, with minimal human
intervention.

In this analysis, we used the total volume of the debris and
the debris value is normalized by the length of the beach. A
relatively clean beach has a value of 10 L/50 m while a dirty
beach will have a value of 5000 L/50 m, which corresponds to
the left image shown in Fig. 2. These normalized values serve
as indicators of the debris level present on the beach. Further
details regarding the acquisition and processing of the ground
truth data can be found in our previous studies [30].

III. METHODOLOGY

We summarize our analysis in Fig. 3. The estimate of ma-
rine debris is conducted based on the entropy calculated by
the semantic segmentation model. The analysis procedure is
described in more detail in the previous study [30]. The entropy
as defined in (1) provides a probabilistic metric to quantify
the inhomogeneity on the beaches [46] and we found that it
has a high correlation with the amount of debris accumulation.
Therefore, we need to extract the accurate sand area using our
segmentation model and calculate the entropy from the output.
We used the U-net model for the segmentation as in the previous
analysis

H(h,w,c)
s = −

∑
c∈C

p(h,w,c)
s logp(h,w,c)

s . (1)

Our UDA approach is a two-step process, illustrated in Fig. 3;
to perform image-to-image translation using the CycleGAN
technique [34]. This step focuses on adapting the images from
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Fig. 3. Our image data processing pipeline from data acquisition of multiple satellite images to the debris characterization using UDA. (Original satellite images
from WorldView-3 ©2023 MAXAR TECHNOLOGIES, Pleiades ©Airbus, and Skysat ©Planet).

the source domain (e.g., MAXAR WorldView) to align with the
target domain (e.g., Planet Skysat), and to train a U-net model for
segmentation using translated images. We conducted two UDA
cases to address different scenarios. The first case transferred
the model developed for Okinawa, utilizing a large number of
WorldView images, to lower-resolution satellite images, such
as Skysat. For this case, we employed CycleGAN. The second
case involved applying the classification results obtained from
the data-rich environment of Okinawa to an area with a signifi-
cantly lower number of satellite images. In this case, we utilized
CycleGAN with cross-domain correspondence.

A. CycleGAN

CycleGAN is frequently utilized for image style transfer [34]
and was originally proposed for image-to-image translation
known as “pix2pix” transformation [47]. CycleGAN uses a
convolutional neural network that employs a conditional ad-
versarial generative network [48] without using paired images
during the training. CycleGAN constructs a mapping function
G : X → Y such that the output images G(X) are projected
within the distribution of images Y using adversarial loss as a
criterion. This framework also adds another mapping constraint
with inverse mapping. CycleGAN is employed with a cycle
consistency loss to enforceF (G(X)) ≈ X . This adversarial loss
with the cycle consistency is known to achieve image generation
with very high quality in various contextual shifts [34].

B. Cross Domain Correspondence

It is generally not possible to have a large number of high-
resolution satellite images at each debris site. Consequently,

it is important to develop a UDA approach that can perform
effectively even with a small number of images.

To address this issue, we introduced the concept of cross-
domain correspondence [49] into the CycleGAN architecture.
By incorporating this additional constraint, we aim to compen-
sate for the data variability in the satellite data. We benefited
from previous studies on “few-shot image generation” [50], [51],
which focus on preserving the diversity of data transformations
during the knowledge transfer phase. The overfitting during
the transfer phase results in the difference in relative distances
of samples in the source domain and transfer domain [50].
Therefore, the preservation of relative pairwise distances will
help prevent overfitting and collapsed image generation.

To implement the concept of cross-domain distance consis-
tency [50], we calculated the cross-domain distance by compar-
ing the similarity between data samples in two domains. Unlike
the traditional images used in previous studies, satellite images
have complex spatial representations, making it challenging to
achieve precise domain alignment with only a few images. The
generator in CycleGAN has an encoder–decoder architecture
and the features computed by the encoder can be represented as
high-dimensional features. Therefore, we computed the cross-
domain distance using the retrieved features in CycleGAN. The
images: xi are encoded in the generator as E(xi) using the
encoder E. Initially, we estimated data diversity by evaluating
the similarity between the generated images xi in the feature
space from a large source dataset Ds using the cosine similarity
function sim() shown in (2) as follows. Here, Es represents
the encoder of the generator Gs, and the subscripts s and t
indicate the source and target domains, respectively. Subse-
quently, we calculated the cross-domain distance Ldist using the
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TABLE II
TILED DATASET LIST

Kullback–Leibler (KL) divergence as defined in (3) as follows.
KL divergence quantifies the difference between two probability
distributions [52]. It characterizes the relative pairwise distance
between the two domains. Therefore, Ldist penalizes the GAN
model to maintain the relative distance distribution of sampled
images.

As a consequence, the model preserved the variance of the
generated images even after being updated with the target do-
main data. Therefore, the model was updated by integrating the
CycleGAN loss (Lcyc) and cross-domain distance loss (Ldist), as
given in (4). A significant advantage of this approach is that it
can be simply added to the loss function without updating the
GAN architecture, allowing the use of any model for a dataset
with a small number of samples. We refer to this architecture as
a “few-shot” model

ysi = Softmax
(
{sim (Es (xi) , Es (xj))}∀i�=j

)

ys→t
i = Softmax

(
{sim (Es→t (xi) , Es→t (xj))}∀i�=j

)
(2)

Ldist (Gs→t, Gs) = E{xi∼Dt}
∑
i

DKL

(
ys→t
i ‖ysi

)
(3)

G∗
s→t = argmin

G
max
Dpatch

Lcyc (G,Dpatch)

+ λLdist (G,Gs) . (4)

IV. EXPERIMENTAL STUDY

We conducted statistical analyses using the aforementioned
data and models using the detailed settings given below. We
first prepared the tiled images for each dataset, as described in
Table II. We did not use all of the tiles but rather chose the
tiles that contained more than one class since the majority of
tiles contained only “water” or “trees.” This resulted in roughly
2500, 3000, and 4300 tiles for the Okinawa WV dataset, the
Pleiades dataset, and the Skysat dataset, respectively. In addition,
we calculated the class intersection over union (IoU) to test the
accuracy of our model for each case.

A. Algorithm

We examined other domain adaptation architectures to com-
pare with our CycleGAN model. First, we examined a U-net
model [53] trained with supervised learning. We, then, imple-
mented the CycleGAN and other similar domain adaptation
algorithms: adversarial entropy minimization (AdvEnt) [54],
FDA [55] and CyCADA [56].

AdvEnt is based on adversarial training, which uses the la-
bel information. The entropy values are high when the model
dictates that the images are not well aligned with the training

TABLE III
PARAMETER LIST FOR UDA ANALYSIS

data. Thus, AdvEnt minimizes entropy by ensuring that the
entropy distribution of the target domain aligns with that of
the source domain [54]. By aligning the entropy distributions,
AdvEnt enhances both the consistency and similarity between
the segmentation maps of different domains. We used this algo-
rithm because the direct adaptation of the entropy metric was
also effective for our debris study as well.

Fourier domain adaptation (FDA) is also a straightforward
approach for reducing the distribution discrepancy between the
source and target domains by swapping their low-frequency
spectra [55] with that of the source domain. This method does not
require any training of the model but instead uses a Fourier trans-
form. The low-frequency domain captures large-scale features
that are typically the major reasons for discrepancies between
the different image domains.

Cycle-consistent adversarial domain adaptation (CyCADA)
[56], is similar to CycleGAN but also incorporates a
training phase for segmentation. This method combines cycle
consistency, semantic consistency, and adversarial objectives to
generate a final target model [56]. Semantic consistency aims to
measure the difference in spatial representation before and after
the image translation. It is computed by comparing the labels
from the source domain with the segmentation output obtained
using the style-transferred images.

B. Application of UDA to Different Satellite Images

As is clear from Table I, Skysat images are quite different from
WorldView images in terms of spatial and spectral resolutions.
We utilized four bands from the WorldView images that closely
matched those of Skysat (Pelaides) and performed the UDA pro-
cess. The parameters employed in our studies are summarized
in Table III. An important advantage of CycleGAN is its ability
to perform style transfer without the need for pairwise images,
allowing us to conduct the transfer using varying numbers of
tiles in each domain. However, it is necessary to run this style
transfer process for a sufficient number of epochs to accurately
represent the images in the target domain, which requires a large
number of iterations and high computational costs. We also
monitored the training loss functions for both discriminators
and generators shown in Fig. 4. Steady decreases in both losses
were observed. Notably, the discriminator’s loss increased to-
ward the end of training, which suggests that the generator was
producing increasingly convincing images capable of fooling
the discriminator.

C. Application to Small Sample Conditions

We also wanted to test the UDA as applied to the case with
a few samples. As we mentioned in Section II, we have only
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Fig. 4. Training loss curves of CycleGAN for style transfer from Worldview to Skysat images: the discriminator’s loss (Loss_D)(left plot (blue)), the generator’s
loss (Loss_G)(right plot (green)).

TABLE IV
CLASS IOU OF INFERENCE RESULT USING SKYSAT IMAGES BY DIFFERENT UDA MODELS

three Skysat images for the Shikoku area that is geographically
very different from Okinawa and can be expected to have a very
different spatial distribution of debris in the satellite images. We
run the UDA with the CycleGAN combined with cross-domain
correspondence having the parameters shown in Table III. We
should note that this style transfer is initialized with the Cycle-
GAN model discussed in Section IV-B.

D. Correlation Analysis

We performed a correlation analysis using entropy derived
from the UDA models and the ground truth “clean-up” data.
We should note that the CycleGAN transfer from WorldView
to Skysat (Pleiades) also generates the model from Skysat
(Pleiades) to WorldView transfer model. Therefore, when you
apply the UDA model for debris characterization, we can cal-
culate the entropy in two ways: in the WorldView domain or in
the Skysat (Pleiades) domain. The first method is to compute
entropy from the worldview-styled Skysat (Pleiades) images
using the segmentation model trained by the WorldView images.
The second method is to compute entropy from Skysat images
using the segmentation model trained by Skysat (Pleiades)-
styled WorldView images.

E. Debris Estimation in Different Areas

We also analyzed the entropy in the Shikoku area using the
few-shot UDA model. In this experiment, we only have six
beaches and could not observe the correlation with the ground

truth data. Therefore, we present the result of entropy analysis
for both clean and dirty cases.

V. RESULTS AND DISCUSSION

We will first present the result of our UDA models and then, we
will discuss the statistical analyses for debris characterization.

A. Application of UDA to Different Satellite Images

The results for Skysat images are summarized in Table IV. To
better visualize these comparisons, we plot them in Fig. 5. For
comparison purposes, we also included the results of supervised
learning models and other UDA approaches. As expected, the
supervised learning models achieved the highest IoU scores,
while the transfer learning models had lower IoU scores due to
the associated domain shift. Qualitatively, the AdvEnt and FDA
models exhibited inaccuracies in capturing the spatial distribu-
tions, resulting in some areas being misclassified. AdvEnt, in
particular, exhibited higher accuracy in major classes. This can
be attributed to the AdvEnt model’s update mechanism, which
aims to make the output of the target domain resemble that of
the source domain. As a result, this model tends to prioritize
the accurate representations of major classes while potentially
sacrificing the finer details in the generated segmentation maps.
In contrast, we can observe the improvement of Class IoU from
the direct transfer learning model when we apply the CycleGAN
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Fig. 5. Inference result of tile images of Skysat for segmentation using UDA approaches (original satellite images from Skysat ©Planet).

TABLE V
CLASS IOU OF INFERENCE RESULT USING PLEAIDES IMAGES BY DIFFERENT UDA MODELS

or CyCADA models. We should mention that the important ca-
pability of our segmentation model is an accurate segmentation
of the minor classes (road, building, sand, etc.). The class IoU
is greatly improved especially in vegetation, buildings, roads,
manmade structures, and sand/dirt. These features are needed to
characterize the presence of beach marine debris in our case. Cy-
CADA achieved a more accurate extraction of minor classes as
the architecture also incorporated the supervised training phase.

We also summarize the result for Pleiades images in Table V.
We plot the inference tiles in Fig. 6 showing supervised learning
models with other similar UDA models. Similar to the SkySat
cases, supervised learning models achieved the highest IoU
scores. However, the direct transfer model can also achieve
good segmentation performance, reaching a total IoU of over
0.8. This is due to the similar specification between WorldView
and Pleiades. WorldView-2 images, from which the majority
of the WorldView dataset is cropped, and Pleiades images
have roughly the same spatial resolution of 0.5 m/pix. Both

types of images are SR products. The main difference of these
two datasets is a preprocessing algorithm for pansharpening.
Pleiades images are processed using the Airbus DS proprietary
algorithm, whereas WorldView images are processed manually
using public library algorithms. [57]. The fact that the direct
transfer model has lower IoU in vegetation and tree classes
than other UDA approaches may be due to the difference in
the preprocessing algorithms. This suggests that the difference
in preprocessing algorithms resulted in some changes in the
segmentation accuracy. Other UDA approaches also achieve
good performance as well in this study. CycleGAN and
CyCADA, in particular, have superior performance to the other
UDA approaches by 2–3 points in total IoU.

B. Application to Small Sample Conditions

The results of applying UDA to the small sample case are
presented here in Table VI. To visually present this analysis,
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Fig. 6. Inference result of tile images of Pleiades for segmentation using UDA approaches (original satellite images from Pleiades ©Airbus).

TABLE VI
CLASS IOU OF INFERENCE RESULT USING SKYSAT IMAGES BY DIFFERENT UDA MODELS

we plotted the results of the “few-shot UDA models in Fig. 7.
In this scenario, even the supervised model does not do very
well with the spatial classification, especially in the areas with
multiple classes. This result indicates that supervised learning
with small amounts of data could not retrieve the spatial patterns,
especially in the minor classes. In the case of the CycleGAN
model, the transfer to several Skysat images exhibits very poor
accuracy. This can be attributed to the limited dataset and the
difficulty of style transfer models in capturing detailed feature
distributions. On the other hand, the few-shot CycleGAN and
CyCADA models demonstrated improved performance, with
smoother and consistent segmentation maps. The class IoU also
showed significant improvements, as it produced highly accurate
maps with IoU levels superior to those of the supervised model.
Although the inference of few-shot CycleGAN and CyCADA
has similar IoU values, CyCADA showed more robustness in
the presence of the minor classes, such as road, sand, and rocks.

This is attributed to the use of semantic consistency loss, which
compares the spatial distribution of the source image and style
transferred image. The target images were only cropped near
the coast, where the dominant semantics are ocean, road, sand,
and rocks, while the CyCADA model captures the representa-
tion of these frequent occurring classes more efficiently than
CycleGAN model.

C. Correlation Analysis

Here, we used the UDA model to calculate the entropy values
in each location. We present the correlation plots in Figs. 8 and
9 for Skysat and Pleiades images, respectively. We computed
the correlation coefficients and created the scatter plot with log-
scaled debris values. These correlations are based on the fact that
the area covered by debris on the beach will become saturated
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Fig. 7. Inference result of tile images of Skysat for segmentation using few-shot UDA (original satellite images from Skysat ©Planet).

Fig. 8. Correlation plots between debris density and entropy value of skysat images using different segmentation models: Skysat model (supervised) (left),
WorldView model (2nd left), UDA model computed in Skysat domain (3rd left), and UDA model computed in WorldView domain (right).

Fig. 9. Correlation plots between debris density and entropy value of Pleiades images using different segmentation models: Pleiades model (supervised) (left),
WorldView model (2nd left), UDA model computed in Pleiades domain (3rd left), and UDA model computed in WorldView domain (right).

as the area increases. We also show the examples of inference
results in Figs. 10 and 11.

Overall trends are consistent both in Skysat and Pleiades
cases. For instance, the correlation of the direct transfer learning
model is very low as it does not generate accurate segmentation
maps. Conducting UDA in the source domain tends to get a
lower correlation than in the target domain.

In the case of Skysat images, we found that the correlation
is the highest when the entropy is computed using the UDA
model in the target domain. This is because the Skysat model was

trained with a dataset, which does not include various capture
conditions and beach sites. This results in a poor capability of
acquiring the various beach or radiometric conditions. Also, the
segmentation model tends to overfit the training data, leading
to lower entropy values. In contrast, applying UDA to target
images tends to cause an increase in entropy values overall. In
this case, the source WorldView dataset has more variability in
the images, which enables the UDA models to generate images
with more abundant spatial representations than are found in the
supervised models. In addition, it is known that UDA models



6024 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 10. Inference example of a target beach using different segmentation models (original satellite images from Skysat ©Planet). Left column shows segmentation
maps, middle column shows entropy intensity maps and right column shows the satellite images.

Fig. 11. Inference example of a target beach using different segmentation models (original satellite images from Pleiades ©Airbus). Left column shows
segmentation maps, middle column shows entropy intensity maps, and right column shows the satellite images.

trained in the target domain tend to achieve higher segmenta-
tion accuracy [58], [59]. This phenomenon explains why the
correlation reached its highest value when computed for the
Skysat images. This indicates a strong alignment between the
UDA model and the target domain. We also note that using
UDA in the WorldView domain results in nonhomogeneous
images, as they are reconstructed from the tiles of the translated
images. This can introduce variations that are inconsistencies in

the characteristics of the generated images, which influences the
entropy calculation.

In the case of Pleiades images, the supervised learning model
achieves the highest correlation as the Pleiades dataset exhibits
greater variability, which enables the models to capture different
beach conditions. UDA in the Pleiades domain is also capable
of achieving a correlation coefficient of greater than 0.6 when
compared with ground observations. We should note that the
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Fig. 12. Inference example of a target beach compared with in-situ observation (Left: entropy map, middle: RGB image right column shows the satellite images
from Pleiades ©Airbus Right: Cleanup records in each 50-m band).

TABLE VII
LIST OF COMPUTED ENTROPY AND GROUND TRUTH DATA

correlation coefficient using the direct transfer model is very
low, despite the fact that the segmentation accuracy is almost
comparable to the supervised model. The WorldView model
tends to generate higher entropy values than the Pleiades model.
Therefore, this result indicates that high compatibility in the
segmentation model does not necessarily translate to the effec-
tive transfer of debris information. We can also observe that the
correlation of the Pleiades model is higher than that of Skysat
due to the higher spatial resolution.

The inference results in Figs. 10 and 11 also show that the
higher entropy resides on the inner side of the beach, which
coincides with the conclusion found in the previous study [30].
To further investigate the debris representation of the entropy
map, we visualized a comparison of the entropy map with in-situ
observations in Fig. 12. We can see a good agreement between
the cleaned debris amount and estimated entropy values. Al-
though the entropy tends to be high along the boundaries of
the semantics (e.g., ocean and sand), The area with consistent
entropy increase coincides with the presence of marine debris.

Therefore, we demonstrated the ability to detect marine debris
using Planet Skysat and Airbus Pleiades images, effectively
increasing the sampling frequency from monthly to weekly, or
even daily. This enhancement is achieved through the higher
revisit rates of satellite constellations and by avoiding the acqui-
sition of data obscured by clouds.

D. Debris Estimation in Different Areas

We also present the computed mean entropy values along
with their respective ground truth data for Shikoku in Table VII.
In addition, we provide examples of inference results from the
Shikoku dataset in Fig. 13. In comparison to the debris analysis

conducted for Okinawa, as shown in Figs. 8 and 10, the overall
entropy values in the Shikoku dataset are notably higher. This
can be attributed to three primary factors as follows.

1) The beaches in the Shikoku region primarily consist of
rocks and pebbles, which introduce greater heterogeneity
and result in higher entropy values.

2) The number of available images used in this analysis is
considerably smaller, leading to increased uncertainty in
the segmentation output.

3) The presence of a higher amount of debris in this region
increases the heterogeneity due to the absence of regular
cleanup activities.

We calculated the entropy value where the segmentation class
is classified as “roads” and “rocks” in this study. This is because
the extracted beach areas primarily fall under these classes,
which is the proper result as concrete and rocks exhibit similar
spectral characteristics [60]. Despite the variability of entropy
values, a clear distinction can be observed between relatively
clean beaches and heavily polluted beaches. The dirtiest beach,
depicted in the bottom left image of Fig. 13, exhibits significantly
higher debris deposition and consequently presents a much
higher overall entropy value. This particular beach, shown in
the right image of Fig. 2, had debris accumulation in multiple
layers, intertwined with adjacent grass.

It is important to note that the composition of marine de-
bris in the Shikoku region predominantly consists of fishing
components, whereas in Okinawa, it is comprised of various
materials. Despite this difference in debris type, we found that
the entropy method used for estimation is not significantly
affected. This is because entropy captures the uncertainty of the
probabilistic distribution, which is independent of the specific
debris composition.

As a result, we demonstrated the debris detection model’s
adaptability to areas with limited samples, significantly reducing
data acquisition costs and facilitating rapid assessment across
various coastal regions.

VI. FUTURE WORK

In our study, we have demonstrated the feasibility of using
the UDA model for marine debris characterization on beaches
viewed with different types of satellite data and from a data-rich
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Fig. 13. Inference examples of target beaches in Shikoku using different segmentation models (original satellite images from Skysat ©Planet). Left column
shows segmentation maps, the middle column shows entropy intensity maps and right column shows the satellite images. Each color represents the semantic class
defined in the labels (Light green: vegetation, Green: trees, Purple: buildings, Dark gray: roads, Pink: other manmade structures, Light blue: water, Yellow: coastal
sand, Gray: rocks, White: others, Red: inland sand).

region to one poor in satellite data coverage. However, further
detailed analysis is necessary to provide a more comprehensive
understanding of its capabilities and potential applications.

First, a time series analysis can be performed to visualize
the temporal evolution of marine debris deposition. Employ-
ing our UDA model, we can utilize multiple satellite sensors
for an enhanced characterization of marine debris. A detailed
examination of the variations in debris deposition can reveal
temporal or spatial patterns of increase and decrease. Such
an analysis facilitates the correlation of meteorological events
with fluctuations in debris deposition, potentially aiding in the
prediction of debris arrival onshore.

Another further analysis is to explore and characterize the
specific biases present in satellite images in greater detail. This
includes examining the impact of preprocessing techniques,
such as atmospheric correction and pansharpening, as well as ac-
counting for geographical and sensor differences. Having prior
knowledge of these influences will facilitate the implementation
of UDA models for similar cases. Understanding and mitigating
these biases will enhance the accuracy and reliability of our
approach when applied to different datasets and scenarios.

Finally, while our current analysis is based on Japanese
beaches due to in-situ data accessibility, it is important to ac-
knowledge the potential applicability of our method to other
similar beaches worldwide. Conducting a comparative analysis
across geographically different regions will enable us to assess
the ability to generalize our model to more diverse coastal
environments.

VII. CONCLUSION

We developed robust debris estimation models using very
high-resolution satellite images for practical assessment scenar-
ios. We employed UDA, specifically utilizing the CycleGAN

framework, to transfer the model trained using WorldView
satellite images to other satellite sensors, such as Skysat and
Pleiades. We tested two different scenarios and showed that this
framework can improve the segmentation accuracy from World-
View to Skysat/Pleiades images and from data-rich models to
beaches with poor satellite coverage. We conducted statistical
analyses and demonstrated the high correlation between the
ground truth data and entropy metrics, which were computed
using our UDA models. We also confirmed the good alignment
of spatial debris estimation using entropy metrics and the actual
collected debris records. This framework compensates for the
differences in domains between the training dataset and the
target dataset. Our approach enhances the sampling frequency of
satellite images and facilitates rapid estimation, thereby proving
to be an invaluable tool for coastal debris characterization and
assessment.

ACKNOWLEDGMENT

The authors would like to express their deep and sincere grati-
tude to the CEO of Amanogi corp., Yu Kudo for the management
of this project and data acquisitions.

REFERENCES

[1] A. A. Keller, E. L. Fruh, M. M. Johnson, V. Simon, and C. McGourty,
“Distribution and abundance of anthropogenic marine debris along the
shelf and slope of the us west coast,” Mar. Pollut. Bull., vol. 60, no. 5,
pp. 692–700, 2010. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0025326X09005086

[2] C. Zhang, H. Zhou, Y. Cui, C. Wang, Y. Li, and D. Zhang, “Microplastics in
offshore sediment in the yellow sea and east China sea, China,” Environ.
Pollut., vol. 244, pp. 827–833, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0269749118336017

[3] Z. Zhang, H. Wu, G. Peng, P. Xu, and D. Li, “Coastal ocean dynam-
ics reduce the export of microplastics to the open ocean,” Sci. Total
Environ., vol. 713, 2020, Art. no. 136634. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0048969720301443

https://www.sciencedirect.com/science/article/pii/S0025326X09005086
https://www.sciencedirect.com/science/article/pii/S0025326X09005086
https://www.sciencedirect.com/science/article/pii/S0269749118336017
https://www.sciencedirect.com/science/article/pii/S0269749118336017
https://www.sciencedirect.com/science/article/pii/S0048969720301443
https://www.sciencedirect.com/science/article/pii/S0048969720301443


SASAKI et al.: ENHANCING THE DETECTION OF COASTAL MARINE DEBRIS IN VERY HIGH-RESOLUTION SATELLITE IMAGERY VIA UDA 6027

[4] F. Thevenon, C. Carroll, and J. Sousa, “Plastic debris in the ocean: The
characterization of marine plastics and their environmental impacts, situa-
tion analysis report,” Int. Union Conservation Nature, Gland, Switzerland,
Tech. Rep., 2014. [Online]. Available: https://portals.iucn.org/library/
node/44966

[5] I. Issifu and U. R. Sumaila, “A review of the production, recycling and
management of marine plastic pollution,” J. Mar. Sci. Eng., vol. 8, no. 11,
2020, Art. no. 945. [Online]. Available: https://www.mdpi.com/2077-
1312/8/11/945

[6] K. A. Boluk, C. T. Cavaliere, and F. Higgins-Desbiolles, “A critical frame-
work for interrogating the united nations sustainable development goals
2030 agenda in tourism,” J. Sustain. Tourism, vol. 27, no. 7, pp. 847–864,
2019, doi: 10.1080/09669582.2019.1619748.

[7] S. B. Sheavly and K. M. Register, “Marine debris & plastics: Environ-
mental concerns, sources, impacts and solutions,” J. Polymers Environ.,
vol. 15, no. 4, pp. 301–305, 2007.

[8] G. Pasternak et al., “Nearshore survey and cleanup of benthic marine debris
using citizen science divers along the mediterranean coast of Israel,” Ocean
Coastal Manage., vol. 175, pp. 17–32, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0964569118308007

[9] S. Gall and R. Thompson, “The impact of debris on marine
life,” Mar. Pollut. Bull., vol. 92, no. 1/2, pp. 170–179, Mar. 2015,
doi: 10.1016/j.marpolbul.2014.12.041.

[10] A. Jain, B. N. Singh, S. P. Singh, H. B. Singh, and S. Singh, “Exploring
biodiversity as bioindicators for water pollution,” in Proc. Nat. Conf.
Biodiversity, Develop. Poverty Alleviation, 2010, pp. 50–56.

[11] K. A. Owens, “Using experiential marine debris education to make an
impact: Collecting debris, informing policy makers, and influencing stu-
dents,” Mar. Pollut. Bull., vol. 127, pp. 804–810, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0025326X17308056

[12] I. E. Napper and R. C. Thompson, “Plastic debris in the marine environ-
ment: History and future challenges,” Glob. Challenges, vol. 4, no. 6, 2020,
Art. no. 1900081, doi: 10.1002/gch2.201900081.

[13] T. Aoyama, “Extraction of marine debris in the sea of Japan using
high-spatial-resolution satellite images,” in Proc. SPIE Conf. Remote
Sens. Oceans Inland Waters: Techn., Appl., Challenges, 2016, vol. 9878,
pp. 213–219, doi: 10.1117/12.2220370.

[14] K. Kylili, I. Kyriakides, A. Artusi, and C. Hadjistassou, “Identifying
floating plastic marine debris using a deep learning approach,” Env-
iron. Sci. Pollut. Res., vol. 26, no. 17, pp. 17091–17099, Jun. 2019,
doi: 10.1007/s11356-019-05148-4.

[15] S. Kako, S. Morita, and T. Taneda, “Estimation of plastic marine de-
bris volumes on beaches using unmanned aerial vehicles and image
processing based on deep learning,” Mar. Pollut. Bull., vol. 155, 2020,
Art. no. 111127. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0025326X20302459

[16] D. V. Politikos, E. Fakiris, A. Davvetas, I. A. Klampanos, and G. Pap-
atheodorou, “Automatic detection of seafloor marine litter using towed
camera images and deep learning,” Mar. Pollut. Bull., vol. 164, 2021,
Art. no. 111974. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0025326X21000084

[17] T. Kataoka, C. C. Murray, and A. Isobe, “Quantification of marine macro-
debris abundance around vancouver island, Canada, based on archived
aerial photographs processed by projective transformation,” Mar. Pol-
lut. Bull., vol. 132, pp. 44–51, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0025326X17307348

[18] L. Fallati, A. Polidori, C. Salvatore, L. Saponari, A. Savini, and P.
Galli, “Anthropogenic marine debris assessment with unmanned aerial
vehicle imagery and deep learning: A case study along the beaches
of the republic of Maldives,” Sci. Total Environ., vol. 693, 2019,
Art. no. 133581. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0048969719335065

[19] K. Moy et al., “Mapping coastal marine debris using aerial im-
agery and spatial analysis,” Mar. Pollut. Bull., vol. 132, pp. 52–59,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0025326X17310020

[20] G. Gonçalves, U. Andriolo, L. Pinto, and D. Duarte, “Mapping marine
litter with unmanned aerial systems: A showcase comparison among
manual image screening and machine learning techniques,” Mar. Pol-
lut. Bull., vol. 155, 2020, Art. no. 111158. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0025326X20302769

[21] T. Acuña-Ruz et al., “Anthropogenic marine debris over beaches: Spec-
tral characterization for remote sensing applications,” Remote Sens. En-
viron., vol. 217, pp. 309–322, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0034425718303730

[22] S. P. Garaba and H. M. Dierssen, “An airborne remote sensing case study
of synthetic hydrocarbon detection using short wave infrared absorption
features identified from marine-harvested macro- and microplastics,” Re-
mote Sens. Environ., vol. 205, pp. 224–235, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425717305722

[23] K. Topouzelis, A. Papakonstantinou, and S. P. Garaba, “Detection of
floating plastics from satellite and unmanned aerial systems (plastic litter
project 2018),” Int. J. Appl. Earth Observ. Geoinf., vol. 79, pp. 175–183,
Jul. 2019.

[24] K. Topouzelis, D. Papageorgiou, A. Karagaitanakis, A. Papakonstanti-
nou, and M. A. Ballesteros, “Plastic litter project 2019: Exploring the
detection of floating plastic litter using drones and sentinel 2 satel-
lite images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2020,
pp. 6329–6332.

[25] K. Kikaki, I. Kakogeorgiou, P. Mikeli, D. E. Raitsos, and K. Karantzalos,
“MARIDA: A benchmark for marine debris detection from sentinel-2
remote sensing data,” PLoS One, vol. 17, no. 1, 2022, Art. no. e0262247,
doi: 10.1371/journal.pone.0262247.

[26] A. Kikaki, K. Karantzalos, C. A. Power, and D. E. Raitsos, “Remotely sens-
ing the source and transport of marine plastic debris in bay islands of Hon-
duras (caribbean sea),” Remote Sens., vol. 12, no. 11, 2020, Art. no. 1727.
[Online]. Available: https://www.mdpi.com/2072-4292/12/11/1727

[27] C. Hu, “Remote detection of marine debris using satellite observations in
the visible and near infrared spectral range: Challenges and potentials,” Re-
mote Sens. Environ., vol. 259, 2021, Art. no. 112414. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425721001322

[28] L. Biermann, D. Clewley, V. Martinez-Vicente, and K. Topouzelis, “Find-
ing plastic patches in coastal waters using optical satellite data,” Sci. Rep.,
vol. 10, no. 1, Apr. 2020, Art. no. 5364, doi: 10.1038/s41598-020-62298-z.

[29] H. Booth, W. Ma, and O. Karakuş, “High-precision density mapping of
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