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LiDAR-IMU Tightly-Coupled SLAM Method Based
on IEKF and Loop Closure Detection

Huimin Pan , Dongfeng Liu , Jingzheng Ren , Tianxiong Huang , and Huijun Yang

Abstract—Simultaneous Localization and Mapping (SLAM)
technology based on LiDAR can achieve real-time robot position-
ing and establish environmental maps in unknown environments.
LiDAR odometry can achieve accurate pose estimation in short dis-
tances or small-scale environments, but the accuracy will decrease
with the accumulation of errors. At the same time, under scenes
with insufffcient structural features, point cloud-based LiDAR
SLAM will show degradation phenomena, leading to failures in
localization and mapping. We propose a loop closure detection
method based on fusion of Inertial Measurement Unit (IMU) and
LiDAR information to reduce system cumulative errors and solve
environment degradation problems. Firstly, by fusing LiDAR key
feature and IMU information, an odometry calculation method is
proposed based on Iterative Extended Kalman Filtering (IEKF)
to improve the accuracy of FAST-LIO initial pose. Then in loop
closure detection, by considering geometric and intensity infor-
mation simultaneously, a new scan context global descriptor is
constructed from dedistortion feature points of front-end IMU to
enhance the accuracy of loop closure detection for original point
cloud descriptors. Finally, GTSAM is used for global optimization
and GPS constraint is introduced to reduce trajectory drifts, ob-
taining globally consistent trajectories and mapping. Compared
with existing LiDAR SLAM on KITTI dataset and self-collected
dataset, proposed method has smaller trajectory errors on KITTI
sequences, which reduced by 15% than baseline FAST-LIO2, and
average time consumption of loop closure detection is reduced by
about 50% than SC-ALOAM, and mapping drifts is reduced, which
enhanced mapping accuracy and robustness while ensuring global
consistency of constructed maps.

Index Terms—Inertial measurement unit (IMU), iterative
extended Kalman filtering (IEKF), LiDAR simultaneous
localization and mapping (SLAM), loop closure detection.
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I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is a
crucial technology for unmanned autonomous operations,

enabling effective environment perception and real-time local-
ization and mapping of mobile robots. SLAM methods can be
categorized as LiDAR SLAM and visual SLAM based on the
sensors used [1]. Visual SLAM, relying on cameras, faces uncer-
tainties in outdoor environments due to light and environmental
changes, impacting its accuracy and robustness [2]. In contrast,
LiDAR SLAM offers significant advantages in measurement ac-
curacy, range, and resistance to environmental interference [3].
Consequently, LiDAR SLAM excels in mapping and localiza-
tion, finding widespread applications indoors and outdoors.

With 360◦ horizontal field of view, accurate distance mea-
surement, insensitivity to environmental lighting and optical
textures, as well as effective perception in dark environments,
3-D LiDAR finds wide application in diverse scenarios [4].
However, LiDAR-based methods encounter degradation in sce-
narios like long corridors, tunnels, and open roads [5]. This
degradation leads to significant errors in LiDAR SLAM state
estimation and mapping overlapping and intersecting. At the
same time, in large-scale or complex environments, there are
high requirements for data processing, real-time performance,
and stability of the system, while a single sensor may not provide
enough information to ensure high-precision SLAM. In view of
the above problems, this article studies the laser SLAM scheme
based on multisensor fusion. Inertial measurement unit (IMU)
data and laser mileage count are fused in a tightly coupled way
to improve the accuracy of positioning map construction. The
research shows that the fusion of these two sensor data can
improve the accuracy and robustness of vehicle positioning and
navigation. However, due to the differences between 3-D LiDAR
and IMU in frequency, precision and coordinate system, it is
difficult to learn from each other, calibrate, and synchronize
multisensor parameters.

On the one hand, loop closure detection presents a challenging
issue in LiDAR SLAM as it prevents significant deviations
in state estimation over time [6], which crucial for accurate
and effective back-end mapping. LiDAR-based loop closure
detection methods are typically classified into local and global
descriptors [3], [7]. Global descriptors, proposed to address
the instability of matching local key points, calculate similarity
between the current frame and others to detect loop closures [8].
Dube et al. [9] proposed SegMatch, a segment-based scene
recognition method, as a loop closure detection module for
global optimization of vehicle pose [10], [11]. However, due to
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additional point cloud processing, it increases the computational
cost of loop closure detection.

On the other hand, incorporating back-end nonlinear global
optimization, such as GTSAM [12] and Levenberg–Marquardt
(LM), trajectory is optimized to produce high-precision map
on a larger scale. The main methods for back-end global opti-
mization include filter-base and graph-based approaches. Due
to computational complexity and limited robustness of former,
graph-based optimization dominates the field and with the fol-
lowing four categories:

1) least squares;
2) random gradient descent;
3) relaxation iteration;
4) manifold iteration, which can conveniently construct and

solve large-scale factor graph problems.
Aiming at inaccuracy of positioning in existing LiDAR

SLAM [3], [10], [13], especially in large-scale environments,
the data information of multiple sensors is huge and complex,
requiring a large amount of computing resources and effective
data processing schemes, and for long-term system operation,
it may lead to sensor drift, cumulative errors and other prob-
lems, in this article, by introducing loop closure detection and
back-end optimization, FAST-LIO2 [14] is improved to reduce
the cumulative errors and improve the accuracy of localization
and mapping. The main contributions are as follows.

1) A tightly coupled localization method is proposed based
on LiDAR key features and IMU. Curvature-based feature
extraction scheme is proposed to enhance the spatial con-
straints of planar feature points. The initial pose estimation
of LiDAR-Inertial Odometry is then obtained by an IEKF
to improve the accuracy of the localization.

2) A loop closure detection method based on height-intensity
scan context (HISC) global descriptor is proposed. By
integrating geometric and intensity information, HISC
global descriptor is designed and an adaptive distance
threshold is introduced to correct the accumulated errors
over time in LiDAR-IMU system, improve the trajectory
and mapping accuracy of large-scale environment.

3) A feature matching is proposed for calculating the pose
transformation between pairs of loop-point clouds, to re-
duce the computational cost of pose estimation. In addi-
tion, we introduce a trajectory global optimization method
based on GTSAM, which constructs a factor graph using
iSAM2 and incorporates GPS factors to impose absolute
position constraints, thereby reducing mapping trajectory
drift.

The rest of this article is organized as follows. In Section II,
we discuss current research works of LiDAR SLAM methods.
Section III describes the details of the proposed method, in-
cluding LiDAR inertial odometry, loop closure detection, global
optimization and mapping. The experiments are presented in
Section IV. And the experimental results are discussed in Section
V. Finally, Section VI concludes this article.

II. RELATED WORK

At present, the research of LiDAR SLAM has been very
extensive. In this section, we focus on analyzing the research

status of LiDAR SLAM, loop closure detection, and tightly
coupled of LiDAR and IMU sensors.

A. LiDAR SLAM

The development of SLAM can be categorized into three
stages: early (1986–2010), middle (2010–2014), and modern
(2014–present). In the early stage, methods based on Kalman
filter (KF) held prominence, followed by the emergence of meth-
ods based on extended Kalman filter (EKF) and particle filter,
among others. In 2010, the introduction of Karto SLAM [15]
marked the arrival of optimization-based SLAM, which demon-
strated better performance compared to filter-based methods.
In 2014, Zhang Ji [5] proposed Lidar Odometry and Mapping
in Real-time (LOAM), which marked the basic maturity of
LiDAR SLAM, and separated the localization and mapping
into two algorithms. One performs high-frequency odometry
with low accuracy (localization), while the other operates at
a lower frequency to perform point cloud matching and reg-
istration (mapping and odometry correction). By combining
these, a high-precision and real-time LiDAR odometry system
is achieved. However, it also has certain limitations, such as
reduced optimization efficiency in feature-rich environments
due to the lack of a closed-loop detection function [16]. As a
result, enhancing the robustness of SLAM has become a new
research focus, leading to continuous improvements in LOAM’s
performance.

Based on Ceres Solver [17], Wang et al. [1] proposed Fast
LiDAR Odometry and Mapping (F-LOAM), which improves the
frame matching accuracy of LOAM by removing scan-to-scan
pose estimation, retaining only scan-to-map pose optimization,
and adopting a noniterative two-level distortion compensation
method to reduce computational complexity and cost. According
to the official evaluation criteria of KITTI dataset [18], although
F-LOAM achieved the best accuracy in pose estimation, it
lacks loop closure detection, leading to accumulated errors and
reducing effectiveness in large-scale scenarios [3]. Shan [19]
proposed Light-weight and Ground-Optimized LiDAR Odom-
etry and Mapping (LeGO-LOAM), which incorporated loop
closure detection and lightweight and ground optimization on
feature extraction, by combining ICP and Euclidean distance
to identify loop closure points. Compared to other methods, it
achieved similar or better accuracy. However, the loop closure
detection in LeGO-LOAM is unstable and may occasionally
result in detection errors or missed identifications [13].

B. Optimization Methods for LiDAR SLAM

Many researchers have attempted to enhance the performance
of SLAM systems by incorporating additional modules. Among
them, loop closure detection is a critical module in SLAM.
Over time, LiDAR odometry accumulates errors, leading to drift
problems in long-term navigation and mapping. To address this
issue in large-scale scenarios, integrating a loop closure detec-
tion module in the back-end can correct odometry drift [1]. Kim
et al. [8] proposed a method using scan context global descriptor
to reduce the dimensionality of point cloud data frames, which
are stored in a 2-D matrix, the rows represent the distance of
the divided ground regions (i.e., bins) from the LiDAR center,
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and the columns represent the angle of these regions relative
to the x-direction. By using the global descriptor to calculate
the similarity between current frame and others, loop closure
detection results can be obtained (e.g., [13] and [20]).

However, existing 3-D loop closure detection methods often
use local or global geometric descriptors while neglecting the
intensity information in point clouds. To address this limitation,
a global descriptor called intensity scan context (ISC) was
proposed based on F-LOAM, which incorporates both geometry
and intensity information [21]. Furthermore, to enhance the
efficiency of loop closure detection, a two-stage hierarchical
rerecognition method was introduced. Optimized-sc-f-loam [3]
is also a loop closure detection method based on F-LOAM. Un-
like [21], it employs a feature-point matching method instead of
using the original LiDAR point cloud to calculate the pose trans-
formation between the current frame and the closed-loop frame,
resulting in reduced computation time. In the back-end, global
optimization is based on GTSAM, and an adaptive distance
threshold is utilized for more precise loop closure detection.

Integrating an IMU is another approach to enhance the perfor-
mance of LiDAR SLAM system. The incorporation of IMU can
significantly improve the accuracy and robustness of the LiDAR
odometry and compensate motion distortions in LiDAR scans.
With the rapid development of robotics technology, localization
and mapping techniques are being applied to increasingly com-
plex and dynamic scenarios [22]. The combination of LiDAR
and IMU offers advantages such as high accuracy, fast speed, and
immunity to environmental lighting conditions, which makes it
widely employed [23].

At present, LiDAR and IMU fusion can be categorized into
the loosely-coupled and the tightly-coupled. The former deal
with two sensor information separately to infer their motion
constraints which are fused later (e.g., [5], [19], [24], and [25]).
The authors in [26] proposed combining IMU measurements
with attitude estimates, which obtained from a LiDAR-based
Gaussian particle filter and a prebuilt map. Generally speaking,
the loosely-coupled fusion method is computationally effec-
tive and has good real-time performance. However, the motion
constraints between LiDAR and IMU may lead to information
loss [4], making it difficult to ensure accuracy in high-speed
motion or degraded scenes.

Another approach is the tightly-coupled method that directly
fuses LiDAR information and IMU data by joint optimization,
which can be further divided into optimization-based [27], [28]
and extended KF-based approaches [4], [29]. The authors in [30]
proposed a graph optimization based tightly-coupled approach,
which combined prior information from the LiDAR-IMU odom-
etry and optimization method based on rotational constraints
to further refine the odometry pose, it can obtain a globally
consistent and robust mapping trajectory. However, constraints
and batch optimization in constructing local map windows are
time consuming and have poor real-time performance. Shan
et al. proposed LIO-SAM [28], which is based on incremental
smoothing [31] that introduced a global factor graph consisting
of LiDAR odometry factors, IMU preintegration factors, GPS
factors, and loop closure factors, and it achieved high-precision
global consistency in mapping and motion estimation for the
robot. The authors in [29] proposed a LiDAR-IMU fusion

odometry framework with high computational efficiency and
good robustness, which adopted the iterative extended Kalman
Filter similar to [4], and used forward propagation to predict
the state as well as backward propagation to correct motion
distortion in LiDAR scanning, and proposed a new Kalman gain
calculation formula to reduce the computational complexity.
But the system lacked back-end optimization and only worked
in small environment. The authors in [14] inherited FAST-LIO
and introduced a new data structure called the incremental k-d
tree (ikd-tree) [32], which supports incremental update (e.g.,
point insertion and deletion) as well as dynamic rebalancing,
significantly reducing the amount of computation. This approach
improves the accuracy and robustness of odometry and map
generation. However, similar to [29], this method is also limited
to small-scale environments.

In summary, 3-D LiDAR faces challenges in long-range envi-
ronments with sparse structural features, leading to localization
and mapping failures and inadequate construction of surround-
ing environment maps. The tightly-coupled of LiDAR and IMU
incurs high computational costs, significant time consumption,
and large memory usage, which making it difficult to ensure
real-time and accurate operation of the system. Therefore, im-
proving the precise localization and mapping of 3D point cloud
maps in large-scale environments, both indoors and outdoors,
is of great significance for applications such as mobile robotics
and autonomous driving.

III. METHODOLOGY

The proposed LiDAR SLAM method consists of three parts:
1) LiDAR-IMU odometry; 2) loop closure detection; and
3) global optimization and mapping, as in Fig. 1, to enable
real-time six-DOF state estimation of the robot and establish a
globally consistent map. To address the asynchronization issue
between the LiDAR and IMU, the LiDAR point cloud data is
first preprocessed. Considering challenges as the large quantity
of raw LiDAR points, slow data processing speed, and compu-
tational complexity, local neighbor that based feature extraction
is given to compute curvature and extracted feature points,
including planar points and edge points. Next, the motion model
provided by the IMU is employed to predict the state of feature
points, which is fused and optimized using iterative Kalman
Filter to estimate the robot’s pose and position during motion.
Simultaneously, the IMU backward propagation is employed to
mitigate the motion distortion of the LiDAR, to obtain more
accurate and robust localization results. Subsequently, a loop
closure detection method based on the HISC is proposed to
reduce the localization drift caused by cumulative errors in the
LiDAR-IMU odometry. Then, an adaptive distance threshold is
introduced to reduce the probability of wrong loop closure detec-
tion and the similarity between the current frame and historical
frames is computed based on proposed global descriptor, which
is constructed by the distortion-corrected feature points. Finally,
by adding odometry factors, loop closure factors, and GPS
factors to the iSAM2 factor graph, a global optimization-based
GTSAM is presented to correct the accumulated drift errors and
generate globally consistent trajectories and maps.
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Fig. 1. System framework overview.

A. LiDAR-Inertial Odometry

1) Feature Extraction: Due to the large number of points
contained in a single scan of LiDAR, traditional point cloud
matching methods, such as ICP and NDT, have low computa-
tional efficiency. Therefore, it is necessary to process the raw
point cloud data Pk. In practical applications, feature-based
matching methods have shown stronger robustness and effi-
ciency compared to raw point cloud matching methods. To
improve the speed, matching accuracy, and efficiency of the
algorithm, this article extracts plane feature points and edge
feature points [5] from the raw point cloud while discarding
noisy or less significant points. As the 3-D mechanical rotating
LiDAR scan produces sparser points in the vertical direction and
denser point clouds in the horizontal direction, the algorithm
focuses on points on the plane for each scan and calculates the
local plane curvature σ as follows:

σ
(m,n)
k =

1

|S(m,n)
k |

∑
p(m,j)
k ∈S(m,n)

k

||p(m,j)
k − p(m,n)

k || (1)

where k ∈ Z+ is the scan number;Pk is the point cloud obtained
from the kth scan, each point is p(m,n)

k ,m ∈ [1,M ], n ∈ [1, N ];

S
(m,n)
k is the local point cloud set formed by the neighboring

points of p(m,n)
k in the horizontal direction (along the clockwise

and anticlockwise, respectively, choose five points as a local
adjacent point cloud); |S(m,n)

k | is the number of point clouds in
the local point cloud set. Compared to the local search method,
S
(m,n)
k can be obtained more quickly according to the index

number n of the points, reducing the computational cost. For
planar points, such as feature points on walls, they have smaller

Fig. 2. Extract feature points (yellow indicates edge points, green indicates
planar points). (a) KITTI dataset. (b) Self-collected dataset.

smoothness values. On the other hand, edge points have larger
smoothness values. Therefore, for a given scan point cloud Pk,
point with largerσ value is edge point (σ > σe), while point with
smaller σ value is planar point (σ < σs). Ek is the set of edge
points and Sk is the set of planar points. Fk = {Ek,Sk} is the
set of feature points. The planar and edge points extracted using
this method on the KITTI dataset and self-collected dataset are
shown in Fig. 2.

2) Tightly-Coupled LiDAR-IMU With IEKF: To address the
issue of localization and mapping failures in scenes with insuffi-
cient structural features, this article inherits the FAST-LIO2 [14]
by integrating IMU and LiDAR with IEKF. This approach
aims to handle degraded and weak-textured scenes and improve
system stability. It mainly includes forward propagation based
on IMU measurements and iterative updating based on LiDAR
scanning.

1) Forward Propagation Based on IMU
State definitions as follows:

x = [pT , vT , RT , bTω , b
T
a , g

T ]
T

(2)
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where p,R are the position and attitude of IMU, v is the velocity,
g is the gravity vector, and bω and ba are the IMU bias.

Assume the optimal state estimate after fusing the last (i.e.,
k − 1th) LiDAR scan is x̄k−1 with covariance matrix P̄k−1.
The forward propagation is performed upon the arrival of an
IMU measurement. The state and covariance are propagated as
follows:

x̂i+1 = x̂i � (Δtf (x̂i, μi, 0)) ; x̂0 = x̄k−1 (3)

P̂i+1 = Fx̃i
P̂iFx̃i

T + Fwi
QiFwi

T ; P̂0 = P̄k−1 (4)

where i represent the index of IMU data, xi, x̂i, and x̄i represent
the ground-true, propagated, and updated value of xi, respec-
tively. Based on the definition of� and� in [29], the continuous
state transition equation xi+1 = xi � (Δtf(xi, μi, wi))(wi =
0) is discretized using the IMU sampling interval Δt to obtain
(3). And in (4), the matrix P̂i+1 is the covariance of the error of
x̃i+1 = xi+1 � x̂i+1 = Fx̃i

x̃+ Fwi
wi. Then, Qi is the covari-

ance of the noise wi and the matrix Fx̃i
and Fwi

are computed
as follows:

Fx̃i
=

∂ (xi+1 � x̂i+1)

∂x̃i
|x̃i = 0, wi = 0 (5)

Fx̃i
=

⎡
⎢⎢⎢⎢⎢⎢⎣

I IΔt 0 0 0 0

0 I −R̂�am − ba�∧ 0 −R̂Δt IΔt
0 0 Exp(−(ωm − bω)Δt) -IΔt 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

Fwi
=

∂(xi+1 � x̂i+1)

∂wi
|x̃i = 0, wi = 0 (7)

Fwi
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−IΔt 0 0 0
0 −IΔt 0 0
0 0 −IΔt 0
0 0 0 −IΔt
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

The forward propagation continues until reaching the end time
of the currentkth scan where the propagated state and covariance
are denoted as x̂k, P̂k, respectively, serving as the predicted state
for the forward propagation and then continues to the next scan.

2) Residual Computation
Assume the estimate of state xk at the current kth iterate

update is x̂k
k, when k = 0, x̂k

k = x̂k, where x̂k is the predicted
state from the propagation in (3). Then, using the coordinate
transformation defined in (9), the scan points pj

L of the LiDAR,
after distortion correction using IMU [29], are projected onto the
global coordinate system.

p̂k
j
W

= T̂k
Ik

W
T̂k
Lk

I
pj

L (9)

where L, I,W represent LiDAR coordinate system, IMU coor-

dinate system, and global coordinate system, respectively; T̂
k
Lk

and T̂
k
Ik

are the state transition matrix of coordinate transforma-
tion.

For each LiDAR feature point, we assume that the nearest
plane or edge defined by its neighboring feature points in the map
represents its true location. The residual is defined as the distance
between the estimated global coordinates p̂k

j
W of the feature

point and the nearest plane (or edge) in the map. Let μj be the
normal vector of the corresponding plane or the direction of the
corresponding edge, and let qj

W be a point on the plane or edge.
Then, the residual is defined as follows:

zj
k = μj

T (p̂k
j
W − qj

W ) (10)

zj
k = �μj�∧(p̂k

j
W − qj

W ) (11)

where (10) is the residual of plane feature points, and (11) is the
residual of edge feature points.

Substituting (9) into (10) and (11) yields the measurement
model 0 = hj(xk, nj

L) = Gj(T̂k
Ik

W T̂k
Lk

Ipj
L − qj

W ) (when
the point is a planer point Gj = μj

T , otherwise Gj = �μj�∧.
Moreover, approximating the measurement equation by its first
order approximation made at x̂k

k leads to (12).

0 = hj
(
xk, nj

L
)

= hj
(
x̂k

k � x̃k
k, nj

L
)

� hj
(
x̂k

k, 0
)
+Hj

kx̃k
k + vj

= zj
k +Hj

kx̃k
k + vj (12)

where x̃k
k = xk � x̂k

k (or equivalently, xk = x̂k
k � x̃k

k);
zjk = hj(x̂k

k, 0) is called the residual; Hj
k is the Jacobin matrix

of hj(x̂k
k � x̃k

k, nj
L) with respect to x̃k

k, evaluated at zero;
vj ∈ (0,Rj) is due to the raw measurement noise.

3) State Iterative Update
The propagated state x̂k and covariance P̂k from (1) impose

a prior Gaussian distribution for the unknown state xk. More
specifically, P̂k represents the covariance of the error state in
(13).

xk � x̂k =
(
x̂k

k � x̃k
k
)
� x̂k

= x̂k
k � x̂k + Jkx̃k

k ∼ N
(
0, P̂k

)
(13)

where Jk is the partial differentiation of (x̂k
k � x̃k

k)� x̂k with
respect to x̃k

k evaluated at zero. For the first iteration, x̂k
k = x̂k,

Jk = I.
Besides the prior distribution, the state distribution of (14) is

computed based on the measurement model derived from (12).

−vj = zj
k +Hj

kx̃k
k ∼ N (0,Rj) . (14)

Combining the prior distribution in (13) and the measurement
model from (14) yields the posteriori distribution of the state xk

equivalently represented by x̃k
k and its maximum a-posteriori

estimate (MAP) in (15).

min
x̃k
k

⎛
⎝‖xk � x̂k‖2P̂k

+

m∑
j=1

∥∥zjk +Hj
kx̃k

k
∥∥2
Rj

⎞
⎠ . (15)

This MAP problem can be solved by IEKF method as follows:

K = (HT R−1H+P−1)
−1

HT R−1 (16)
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x̂k
k+1 = x̂k

k � (−Kzk
k − (I − KH)(Jk)

−1
(x̂k

k � x̂k)) (17)

where K is the Kalman gain, and x̂k
k+1 is the poststate estima-

tion. H = [H1
kT ,H2

kT , . . .,Hm
kT ], R = diag[R1,R2, . . .,Rm],

P = (Jk)−1P̂k(Jk)−T , zkk = [z1kT , z2kT , . . ., zmkT ]
T

.
The above process repeats until convergence, then, the final

optimal state and covariance estimates after convergence are
given as follows:

x̄k = x̂k
k+1 (18)

P̄k = (I-KH)P. (19)

Subsequently, the optimal state estimate x̄k and covariance
estimate P̄k are used as inputs for the next scan, and the previous
operations are repeated to obtain the estimated LiDAR-Inertial
odometry.

B. Loop Closure Detection

To address the issue of accumulated errors in the LiDAR-
IMU system during long-term operation, this article introduced
a loop closure detection method to reduce positioning drift.
The stability is improved by correcting the trajectory and op-
timizing the map. The Scan Context [8] and Intensity Scan
Context [21] algorithms reduced computational complexity by
dimensionality reduction, mapping the 3-D point cloud data to
a 2-D image. The global descriptor, as shown in Fig. 3(b), is
calculated to measure the similarity between point cloud frames
and determine if a loop closure is formed. However, it utilized the
original point cloud from the LiDAR for constructing the global
descriptor, resulting in high computational cost and a high rate
of wrong loop closures. By using feature points after front-end
IMU distortion corrected, we introduced a global descriptor to
improve accuracy in measuring the similarity between point
clouds. To better represent the characteristics of the point cloud,
a combined consideration of intensity and height information
is proposed, known as the HISC global descriptor. To address
the limitation of fixed distance threshold, which may result in
missing loop closures or false positives, an adaptive distance
threshold is proposed to replace it to reduce the probability of
false loop closure detection.

1) Global Descriptor of HISC: This article introduced a
novel global descriptor, which constructed by height [8] and
intensity [21] information. The height information provides an
effective summary of the vertical structure of the surrounding
buildings, eliminating the need for complex calculations to
analyze the point cloud characteristics. The maximum height
indicates the visible portion of the surrounding structure. This
self-centered visibility allows for the analysis of place charac-
teristics [8], making it useful for loop closure detection and veri-
fying if the system passes through the same location. Moreover,
objects exhibit different intensity values, and intensity infor-
mation serves as a representation of the reflectance of surfaces
in the environment. For instance, highly reflective materials
like metal plates have higher intensity values, while concrete
surfaces have lower values. Therefore, intensity information can
effectively serve as a feature to assist laser odometry in location
identification.

Fig. 3. Using the top view of a point cloud from a 3-D scan (a), we partition
ground areas into bins, that are divided according to azimuth (from 0 to 2π
within the LiDAR frame) and radial (from center to maximum sensing range)
directions. The yellow area as a ring (Nr), the cyan area as a sector (Ns), and
the black-filled area as a bin. Scan Context is a matrix as in (b). The ring and
sector described in (a) are represented by the same-colored column and row,
respectively, in (b). In this article, we use the maximum Height and Intensity of
points in a bin.

Assuming the LiDAR scan contains n points, denotes as
P = {p1, p2, . . . ,pn} and the intensity value is η. [x, y, z]
represents the spatial position coordinates of each point. And
in Cartesian coordinate system, each point is represented as
pk = [xk, yk, zk, ηk] (where k is the kth point in the point cloud
P ). According to the method in [21], we first divide the 3-D
scan point cloud into the azimuth and radial bin in the sensor
coordinates, in an equally spaced manner as shown in Fig. 3(a).
Ns, Nr are the number of sectors and rings, respectively. That is
to say, if we set the maximum measurement range of the LiDAR
sensor toLmax the radial clearance between the rings isLmax/Nr,
and the center angle of the sector to be equal to 2π/Ns, this article
defines Ns = 60, Nr = 20, each frame point cloud is divided
into the subspace Si,j(i ∈ {1, 2, . . ., Ns}, j ∈ {1, 2, . . ., Nr})
of Nr ×Ns. For the same object, the intensity values are
consistent, and the number of points in each subdivided subspace
is much smaller than the total number of points in a frame.
Therefore, it is assumed that the intensity values of LiDAR points
are the same within each subspace, combined with the height
information of point clouds in each subspace, the sum of the
maximum height value and intensity value of all points in each
subspace is employed to calculate the value of this subspace, is
defined as a new descriptor, as follows:

Ω(i, j) = max
pk∈Si,j

(ηk + zk) . (20)
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According to the above process, HISC global descriptor is
finally expressed as the matrix I of Nr ×Ns in (21).

I = (aij) ∈ R
Nr×Ns , aij = Ω(i, j). (21)

The matrix contains geometric information and intensity in-
formation of the environment. The Similarity Score between
Scan Contexts and Two-phase Search Algorithm method [8] is
employed to calculate the similarity between point cloud pairs
according to I , so as to determine whether there is a closed
loop.

2) Adaptive Distance Threshold: The original Scan Context
method uses a fixed distance threshold to detect and exclude
point cloud pairs that have high similarity but are far apart.
Setting a small fixed distance threshold may result in undetected
loops, while setting a large threshold may detect more false
loops. To address this problem, an adaptive distance threshold [3]
is introduced to replace it, which effectively detects closed loops
and reduces the occurrence of false loop closures.

When a loop closure was detected, the matrix in (21) is
computed to obtain a pair of similarity loop-closing points,
denoted as pk

L and ploop
W . Using coordinate transformations,

the relative pose transformations of the two-point cloud frames
with respect to the world coordinate system, Tk

W and Tloop
W ,

are calculated. Then, the relative pose transformation between
the two-point clouds, T̃ loop

k , is computed as follows:

T̃ loop
k = Tloop

W−1

Tk
W . (22)

The distance d between the two points is calculated based on
the obtained transformations in (23).

d =

√
T̃ loop
k .x2 + T̃ loop

k .y2 + T̃ loop
k .z2 (23)

where pose Tk
W and Tloop

W are obtained from the front-end
LiDAR-IMU odometry. T̃ loop

k is the relative pose transformation
calculated based on the current and the loop-closed frame.

Then, a linear function is constructed using the number of
keyframes k from the front-end odometry to define the threshold
dthre, as shown in (24).

dthre = 60 + k/100. (24)

If d is greater than the threshold dthre, it indicates that no
loop closure has been detected. This method helps to reduce the
error rate in loop closure detection, improve the results of global
optimization, and enhance the efficiency of the overall LiDAR
SLAM algorithm.

C. Global Optimization and Mapping

In order to address the problem of system error accumulation
over time and loop closure detection, we proposed back-end
optimization to correct system errors. While local optimization
only considered the relationship between consecutive frames,
it is prone to noise and motion deviations. Therefore, global
optimization is introduced, which utilizes global observation
data and pose to correct errors. Scan-to-map constraints are
constructed for all observed key frames using the feature point
matching method [5], forming a large-scale nonlinear least

squares problem. The LM algorithm is employed to minimize the
error functions, eliminate errors, and correct trajectory drift. In
addition, the GTSAM library based on factor graph is employed
for global optimization. The iSAM2 algorithm [31] is utilized to
incorporate odometry factors, loop closure detection factors, and
GPS factors. By using joint optimization, errors are effectively
eliminated, enabling the determination of an optimal trajectory
and pose for each key frame. This leads to more accurate map and
positioning results, enhancing the precision of map construction.

1) Pose Estimation Based on Feature Matching: The feature
points pk

L of the current frame, which are in the LiDAR coor-
dinate system, are transformed to the global coordinate system
as pk

W using the coordinate transformation matrix (Tloop
W )new

optimized in the previous frame. A submap is then constructed
in the global coordinate system, consisting of the loop closure
point cloud ploop

W and the neighboring point clouds. First, (25)
is used to project the feature points from the LiDAR coordinate
system to the global coordinate system.

pk
W = RW

loop ∗
(
Rloop

L ∗ pkL + tloop
L

)
+ tWloop (25)

where pk
L is the feature point in the LiDAR coordinate sys-

tem. (Rloop
L , tloop

L ) represents the external parameter between the
LiDAR coordinate system and the carrier coordinate system.
(RW

loop, t
W
loop) represents the transformation of the carrier coordi-

nate system to the global coordinate system.
Then, a feature point matching-based method is used to match

the planar points and edge points in the current point cloud frame
with the submap. Point-to-line and point-to-plane positional
constraints are then constructed as (26) and (27), respectively.

dεk =

∣∣(pkW − pl
W
)× (

pk
W − pm

W
)∣∣

|plW − pmW | (26)

where l and m represent the two nearest points to point k that
are not on the same laser ring. These two points form a line, and
dεk is the distance from point k to the line lm.

dSk
=

∣∣∣∣
(
pk

W − pl
W
)(

pl
W − pm

W
)× (

pl
W − pj

W
) ∣∣∣∣

|(plW − pmW )× (plW − pjW )| (27)

where l, m, and j are the three points closest to k and not
collinear, forming a plane lmj, dSk

is the distance from point k
to the plane lmj.

Then, using (26) and (27), nonlinear equations are con-
structed, and the L-M nonlinear optimization method is used
to iteratively solve for the pose transformation matrix Tk

loop

between the current point cloud frame and the submap, as
follows:

min

⎧⎨
⎩

m∑
i=1

dε (pi(X)) +
n∑

j=1

dS (pj(X))

⎫⎬
⎭ (28)

where X is the vector composed of the estimated state variables,
i.e., (roll, pitch, yaw, x, y, z)T . m is the total number of success-
fully matched edge feature points, while n is the total number of
successfully matched plane feature points.dε(pi(X)) represents
the distance from the ith corner point to the line calculated
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from the map matching, i.e., the point-to-line distance. Similarly,
dS(pj(X)) represents the distance from the point to the plane.

Finally, the pose transformation matrix Tk
loop is passed to

the map construction and optimization module for building the
global map.

2) Pose Graph Construction: This module takes the transfor-
mation matrix Tk

loop obtained from the pose estimation module
in (28), as well as the Tk

W obtained from the LiDAR-IMU
odometry module. We introduced GTSAM to construct a factor
graph for global optimization. The received odometry poses
Tk

W are added to the corresponding factor graph nodes, and
Tk

loop is added to the edges connecting the nodes. In addition, we
introduced GPS factors to construct absolute position constraints
and reduce trajectory drift.

The constructed factor graph is then subjected to global
optimization, resulting in optimized poses (Ti

W )new, yielding
a globally consistent trajectory. Simultaneously, the obtained
poses are used to integrate newly acquired map information into
the existing map, continuously improving the overall environ-
ment map. Finally, a complete 3-D point cloud map is obtained.

IV. EXPERIMENT

To evaluate the performance of the proposed algorithm, we
conducted tests on both public dataset and self-collected dataset.
The KITTI dataset sequences 05, 06, 07, and 09 are used to
validate the localization accuracy of the proposed algorithm,
and compared with A-LOAM [5] and FAST-LIO2 [14]. In
order to verify the time efficiency of the proposed loop clo-
sure detection algorithm, that compared with SC-A-LOAM on
KITTI sequences. In order to demonstrate the performance of
the proposed global descriptor, the proposed method, SC [8]
and ISC [21] methods were tested by comparing the RMSE of
the generated trajectory on KITTI dataset. For further evalua-
tion, self-collected dataset by VLP-16 LiDAR and N100 IMU
are named Park dataset and Street dataset. A comparison of
trajectory results was performed against SC-A-LOAM [20],
Optimized-sc-f-loam [3], and FAST-LIO2 [14]. Then, com-
parisons were made with SC-A-LOAM, Optimized-sc-f-loam,
LIO-SAM,FAST-LIO2 on the KITTI sequence 07, the outdoor
Park dataset, and indoor dataset to validate the effectiveness
of the proposed algorithm in mitigating mapping drift. Finally,
the CPU usage and memory usage of five different algorithms
running three different data sets are analyzed. The experimental
data in this article is the best result of multiple measurements.

A. Hardware Platform

The experimental hardware platform in this article consisted
of a laptop with an Intel i5-12500H, 16 GB RAM, and an
NVIDIA GeForce RTX 3050 graphics card. The operating sys-
tem used was Ubuntu 20.04. The software framework employed
was Robot Operating System, which version is Noetic, and the
primary programming language used was C++. The sensors
utilized in this study included the VLP-16 mechanical LiDAR
and the WHEELTEC N100 IMU.

For the experimental evaluation, the publicly available KITTI
dataset, which contains data from outdoor autonomous driving

Fig. 4. Self-data collection in the campus environment. (a) Shows the self-
data collection platform consisting of LiDAR and IMU. (b) Shows the self-data
collection environment and the experimental operating environment.

scenarios, was utilized. The dataset includes 22 different outdoor
environment sequences, and for 11 of these sequences (00-10),
ground-truth trajectories obtained from GPS are provided. Each
data sequence consists of grayscale images, color images, and
LiDAR point cloud data. In addition, a campus environment
data acquisition platform was used. Fig. 4(a) illustrates the
configuration of this data collection platform, and Fig. 4(b)
shows the environment.

B. Localization Accuracy

1) KITTI Dataset: In this article, we use the EVO evalua-
tion tool to assess the localization accuracy of the proposed
algorithm. Specifically, we compared the performance of the
proposed algorithm with the ground-truth on KITTI dataset
sequences 05, 06, 07, and 09. These sequences contain loop
closures, making them suitable for evaluating the effectiveness
of the improved loop closure detection algorithm proposed in
this article. The evaluation was based on trajectory visualiza-
tion, Absolute Trajectory Error (ATE), and Relative Pose Error
(RPE).

Fig. 5 illustrates the visual comparison results of the proposed
algorithm, A-LOAM, and FAST-LIO2 running on KITTI dataset
sequences 05, 06, 07, and 09, along with the ground truth
trajectories.

Table I presents the ATE statistics comparing the estimated
trajectories obtained by the three algorithms on the sequences
of the KITTI dataset with the ground truth trajectories. From
the comparison of the statistical values in the table, it can be
observed that the proposed algorithm has smaller error values
in sequences 05 and 07. The proposed algorithm also achieves
the lowest average error (mean) and root mean square error
(RMSE) across all four sequences. Compared to the A-LOAM
algorithm, the RMSE of the proposed algorithm are reduced
by 65.1%, 73.6%, 78.3%, and 61.3% in the four sequences,
respectively. Similarly, compared to the FAST-LIO2 algorithm,
the RMSE is reduced by 59.4%, 1.16%, 36.4%, and 12.0%.
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Fig. 5. Visualization of trajectory comparison between A-LOAM, FAST-LIO, and our method on KITTI dataset sequences. (a), (b), (c), and (d) correspond to
sequences 05, 06, 07, 09, respectively. (a) 05 sequence. (b) 06 sequence. (c) 07 sequence. (d) 09 sequence.

These results demonstrate that the proposed algorithm achieves
smaller trajectory estimation errors compared to the ground truth
trajectories in the KITTI sequences, indicating higher accuracy
of the algorithm.

The RPE is used to compare pose increments and describe the
accuracy of the pose difference between two frames relative to
the real pose under a fixed time difference. The error values of the
three algorithms on the four sequences are shown in Table II.
It can be observed that the algorithm proposed in this article
does not achieve the minimum error in each case. However, for
sequences 05, 06, and 09, the RMSE statistics of the proposed
algorithm are the lowest among the three algorithms. In addition,
the proposed algorithm also exhibits the majority of the lowest
errors in other statistical values. Overall, the algorithm proposed
in this article demonstrates superior performance.

2) Self-Collected Dataset: The experimental platform
shown in Fig. 4 was used to collect dataset within the
campus of Northwest A&F University, including the Park
dataset and Street dataset, which contain LiDAR and IMU
information. The satellite map is shown in Fig. 6, and it was
used for evaluating the algorithm. The algorithm proposed

Fig. 6. Satellite map of campus dataset. (a) The dataset consists of a long-
distance navigation around the campus garden. (b) The dataset depicts walking
around the teaching building. (a) Park dataset. (b) Street dataset.

was compared with three other algorithms: SC-A-LOAM [20]
and Optimized-sc-f-loam [3], these only use LiDAR data, and
FAST-LIO2 [14] which utilize both LiDAR and IMU data.
The trajectories obtained by running different algorithms are
shown in Fig. 7, which include long-distance loop closures.
Fig. 8 displays the trajectories in the x, y, and z directions. Due
to different numbers of keyframes extracted, the length of the
displayed trajectories are different.
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TABLE I
ATE EVALUATION FOR DIFFERENT SEQUENCES AND ALGORITHMS IN KITTI DATASET

TABLE II
RPE EVALUATION FOR DIFFERENT SEQUENCES AND ALGORITHMS IN KITTI DATASET

Fig. 7. Visual comparison of the trajectory projections on the x-y plane
obtained by running four different algorithms on the campus environment data
set. (a) Park dataset. (b) Street dataset.

As shown in Fig. 7, it can be observed that the algorithm
proposed in [3] exhibited significant drift in the trajectories that
obtained from both environments, indicating poor robustness of
the algorithm. Although the method proposed in [20] obtained
a complete trajectory in the Street dataset, suffered from severe
drift and incomplete trajectory in Park dataset. The algorithm
in [14] produced a complete trajectory but fails to form valid
loop closures. As seen in Figs. 7 and 8, our method can generate
complete trajectories and effectively detect loop closures, and

Fig. 8. Trajectories output in the x-y-z directions by running four different
algorithms on the campus environment dataset. (a) Park dataset. (b) Street
dataset.

the output trajectory in the z direction is smoother, indicating
lower elevation errors.

C. Time Consumption of Loop Closure Detection

This module is compared with the A-LOAM algorithm with
Scan Context (SC-A-LOAM) to evaluate the computational
efficiency of the loop closure detection process using the pub-
licly available KITTI dataset (05, 06, 07, 09), and the number of
keyframes extracted by the algorithm is also recorded, as shown
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TABLE III
COMPARISON OF AVERAGE LOOP CLOSURE DETECTION TIME FOR DIFFERENT

SEQUENCES AND ALGORITHMS IN KITTI DATASET

TABLE IV
COMPARISON OF ATE AND RPE FOR DIFFERENT SEQUENCES AND GLOBAL

DESCRIPTOR ALGORITHMS IN KITTI DATASET

in Table III. According to the data, our method achieved the
best computational time for four sequences. For each sequence,
compared to the SC-A-LOAM algorithm, the time consumption
of loop closure detection of the proposed algorithm is reduced
by 64.4%, 59.4%, 78.3%, and 74.3%, respectively, achiev-
ing improved algorithm efficiency while ensuring algorithm
accuracy.

D. Performance Analysis of Global Descriptor

A new method for computing global descriptors was pro-
posed. We used four sequences (05, 06, 07, 09) from the KITTI
dataset to validate its effectiveness. The RMSE of the ATE
and RPE between the trajectories obtained using three different
global descriptor computation methods and the ground truth was
compared using the EVO evaluation tool, and the results are
shown in Table IV. It can be observed that for the 05 sequence,
the ATE error of our is slightly higher than ISC. However, for
the sequences 06, 07, and 09, our method achieved the lowest
error values. Compared to the SC and ISC methods, our method
shows an average improvement of approximately 16.18% and
8.97% for ATE, 0.23% and 0.21% for RPE, respectively.

E. Analysis of Mapping

In the experiment of outdoor 3-D point cloud map reconstruc-
tion, we used the KITTI sequence 07 and self-collected dataset
for analysis. Four LiDAR SLAM methods (SC-A-LOAM, Op-
timized sc-f-loam, LIO-SAM, FAST-LIO2) are compared to
validate the mapping effectiveness of the proposed method in
this article. The results are shown in Fig. 9–12.

According to the global map in Fig. 9, which can be observed
that the lane markings and directional contours are clearly vis-
ible in the mapping results of all three algorithms. However,
in Fig. 9(a), the point cloud is dense and the generated map
exhibits cumulative drift; In Fig. 9(b), the mapping result is
blurry and obstacles on the lane cannot be clearly displayed.
The environmental map established in Fig. 9(c) has blurred
boundaries and cannot clear obstacles on the displayed road. The
point cloud in Fig. 9(d) is dense, and the global map is blurry,
but the local map Fig. 10(d) is clear and has clear boundaries.
However, the map established in Fig. 9(e) of the algorithm in this
article eliminates most of the “ghosts” generated by cumulative
drift. Fig. 10 shows that the mapping results of our algorithm
was neat on straight roads and corners, with no significant drift.
It clearly displays obstacles such as cars on the road, indicating
improved robustness of the algorithm.

Meanwhile, in order to verify the accuracy of the proposed
algorithm on the outdoor self-built dataset, the global mapping
effect of the above five algorithms running the Park dataset
is shown in Fig. 11. It can be seen from the figure that the
SC-A-LOAM algorithm and the Optimized sc-f-loam algorithm
are fuzzy, with large cumulative errors and serious drift. FAST-
LIO2 algorithm has clear map boundaries and obvious color
contrast, but the point cloud is dense and cannot effectively
detect the closed loop. Then, the map established by the LIO-
SAM algorithm and this algorithm is clear and can effectively
detect the closed loop (Fig. 12) and make trajectory correction.
However, the previous map established by LIO-SAM algorithm
will disappear when the running time is too long. The map
established by the algorithm in this article eliminates most of
the accumulated drift and has clear boundaries, which will have
high robustness and positioning accuracy in actual scenes.

For the experiment of 3-D point cloud map reconstruction
in indoor scenes, this article collects the datasets by VLP-16
and N100 inertial navigation in the indoor environment of the
library. By comparing the four kinds of LiDAR SLAM method
(SC-A-LOAM, Optimized-sc-f-loam, LIO-SAM, FAST-LIO2)
to verify the effect of the proposed method.

Fig. 13 shows the indoor environment for data collection.
Fig. 14 shows the mapping results obtained by five different
algorithms. It can be seen from the figure that (a) the mapping is
fuzzy and the outline of the building can be generally seen but
not clearly. (b) The mapping effect of the algorithm cannot see
obstacles and clear routes in the environment. (c) The contour of
the algorithm is clear, and the indoor environment structure can
be clearly seen. (d) The algorithm creates large shadows, dense
point clouds, and cannot clearly distinguish indoor objects.
(e) The map built by the algorithm in this article is relatively
clear, there is no double shadow, and the environment structure
can be seen, but the point cloud is relatively sparse, and the map
is not dense enough. To sum up, LIO-SAM and the algorithm in
this article have the best effect of indoor environment mapping.

F. CPU and Memory Usage Analysis

This section mainly analyzes the CPU and memory usage
of different algorithms running different datasets by comparing
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Fig. 9. Visualization of the global map reconstruction for KITTI sequence 07. (a) for A-LOAM algorithm with Scan Context loop closure detection, (b) for
F-LOAM algorithm with loop closure detection, (c) shows the LIO-SAM algorithm, (d) shows the mapping results of the FAST-LIO2 algorithm, (e) for the proposed
method in this article. (a) SC-A-LOAM. (b) Optimized-sc-f-loam. (c) LIO-SAM. (d) FAST-LIO2. (e) Our.

Fig. 10. Visualization of the local map reconstruction for KITTI sequence 07 (showing the map reconstruction on straight roads and at corners). (a) SC-A-LOAM.
(b) Optimized-sc-f-loam. (c) LIO-SAM. (d) FAST-LIO2. (e) Our.

five different algorithms running three different datasets (KITTI
07 sequence, outdoor park, and indoor library). The results are
shown in Fig. 15, which show the maximum CPU and memory
usage when running the dataset.

As can be seen from the data in the figure, for the KITTI
dataset 07 sequence, the CPU usage was 82%, 48.0%, 71.7%,
100%, 59.8%, and the memory usage was 42.8%, 36.8%, 37.9%,
99.2%, 37.5%, respectively. Optimized-sc-f-loam is seemed low
with poor accuracy, followed by the algorithm in this article.
For the self-collected outdoor dataset, the CPU usage is 100%,

99.0%, 60.6%, 96.0%, 46.5%, and the memory usage is 45.0%,
54.7%, 40.9%, 88.9%, 63.3%, respectively. The lowest CPU
usage is the algorithm in this article, with a little memory usage
increasing. For the self-collected indoor dataset, the CPU usage
was 98.0%, 49.0%, 48.0%, 53.5%, 39.8%, and the memory
usage was 28.9%, 28.4%, 29.9%, 46.7%, 30.9%, respectively.
The CPU usage was the lowest in this algorithm with a little
memory usage increasing. According to the above analysis, it
can be seen that the CPU usage of the proposed algorithm is
small in different datasets, but for some outdoor datasets, our
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Fig. 11. Global Map of Park dataset. (a) SC-A-LOAM. (b) Optimized-sc-f-loam. (c) LIO-SAM. (d) FAST-LIO2. (e) Our.

Fig. 12. Loop closures detection of Park dataset. (a) and (b) show severe trajectory drift and the absence of proper loop closures. (c) The closed loop can be
detected. (d) Cannot form a closed loop. (e) The proposed method performs loop closure correction. (a) SC-A-LOAM. (b) Optimized-sc-f-loam. (c) LIO-SAM.
(d) FAST-LIO2. (e) Our.

Fig. 13. Indoor data collection environment. Walk around the library to record data.

algorithm will produce a little memory usage increasing due to
accurate mapping in complex environment.

V. DISCUSSION

In this article, we proposed a LiDAR-IMU tightly-coupled
SLAM method with IEKF and loop closure detection to address
the problems of decreased localization and mapping accuracy
caused by the accumulation of errors in a wide range of indoor

and outdoor scenes. A loop closure detection method based
on HISC global descriptor and a trajectory global optimization
method based on GTSAM are proposed. The trajectory accuracy
was measured by comparing with the ground-truth value of
the public KITTI dataset, which show that in most cases, the
proposed algorithm has lower trajectory errors and is close to the
ground truth, as well as achieve more accurate pose estimation
and improve localization accuracy. Then, the Global Descriptor
experimental results show that the characteristics of points can
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Fig. 14. Indoor library global map. (a) SC-A-LOAM. (b) Optimized-sc-f-loam. (c) LIO-SAM. (d) FAST-LIO2. (e) Our.

Fig. 15. CPU and memory usage when running three dataset using five different algorithms. (a) KITTI 07 sequence, (b) self-collected outdoor park datasets,
(c) self-collected indoor library datasets.

be displayed more comprehensively by combining the intensity
information and the height information, which reducing the
probability of error loop closure detection and improving the
accuracy. At the same time, the backend global optimization
reduces the drift of the mapping trajectory. When constructing
the global descriptor, we set a threshold for dividing the point
cloud into grids. From the experimental results of both public and
self-built datasets, it can be seen that the consistency of intensity
information in the same subspace is basically ensured. However,
if in different lighting conditions, reflective surfaces, or occlu-
sions, a smaller threshold may need to be set to ensure strength
consistency, which may lead to a slight increasing in time
consumption. Time comparison with SC-A-LOAM on KITTI
dataset indicates that the positional constraints constructed on
extracted feature points can address high point cloud volume,
reduce estimation cost, and shorten system runtime. Through the
introduction of loop closure detection and global optimization,
the problems of motion trajectory drift and map overlap are
solved.

Furthermore, to verify the generalization ability of the algo-
rithm, we conducted experiments on the Velodyne dataset of
FAST-LIO2. As ground truth was not provided, we compared
the trajectory and mapping result of the benchmark framework
and the improved network on this dataset, as shown in Figs. 16–
17. The trajectory results show that our algorithm coincides
completely with the FAST-LIO2 trajectory. According to the
mapping results, although the point cloud density of our drawing
is not as dense as that of FAST-LIO2, the result of mapping is
clear with less memory consumption and time consumption.
Overall, the proposed algorithm can quickly, accurately and
clearly reconstruct 3-D scenes in real time in the lowest CPU
usage during runtime, with a little memory usage increasing.

Based on the above experimental results, the SC-A-LOAM
algorithm and the Optimized sc-f-loam algorithm have poor tra-
jectory accuracy and mapping effect on the outdoor park dataset,
with severe trajectory drift and blurred mapping; the FAST-LIO2
algorithm cannot detect and form a closed loop when running
on a dataset with loopback, and occupies a large amount of
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Fig. 16. Trajectory results of FAST-LIO2 and Our algorithms on the publicly available Velodyne dataset are shown in the figure. They are 2-D visualization
results, x-y-z three-axis visualization results, and RPY visualization results.

Fig. 17. Figure shows FAST-LIO2 and our algorithm for global and local mapping. (a) FAST-LIO2. (b) Our.

CPU and memory; The proposed algorithm and LIO-SAM have
high mapping accuracy in indoor and outdoor environments,
good real-time performance, can accurately identify and detect
loops, with low CPU usage during runtime. The experiments
have verified that our proposed algorithm has high accuracy of
positioning map construction, which can be applied to urban
roads, forest parks, and spacious indoor environments, and can
build environmental maps in real time with low CPU usage and
a little memory increasing.

VI. CONCLUSION

In order to solve the problem of accuracy degradation caused
by cumulative errors in a wide range of environments and
the failure of localization map construction caused by Li-
DAR SLAM degradation in scenes with insufficient structural
features, this article-based FAST-LIO2 proposed a LiDAR-IMU
tightly-coupled SLAM method with IEKF and loop closure
detection. The proposed method has been thoroughly evaluated
in a variety of environments on both public datasets and data col-
lected on self-built data acquisition platforms. The results show
that compared with A-LOAM, FAST-LIO2, and LIO-SAM,
the proposed method can achieve similar or better accuracy,
and the CPU usage is low, and good real-time performance of
the algorithm. Future work will continue to optimize back-end
mapping and reduce memory usage.
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