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Abstract—Achieving automatic target recognition in synthetic
aperture radar (SAR) imagery is a long-standing difficulty because
of the limited training samples and its sensitivity to imaging con-
dition. Active target recognition methods can offer an innovative
perspective to improve recognition accuracy compared to their
passive counterparts. Although prevailing in the optical imagery
area, the active target recognition in SAR image processing remains
underexplored. This article proposes an active SAR target recogni-
tion framework based on deep reinforcement learning for the first
time, where we design a simple view-matching task and model it
as a Markov decision process. The proximal policy optimization
algorithm is used to help the agent learn how to alter the observing
azimuth to seek more discriminative target images for the classifier.
Furthermore, the single-view feature extractor is trained with the
contrastive learning method to help distinguish the target images
under different azimuths, allowing the agent to successfully learn
the active data collection policy in the training environment and
transfer it to the test environment. Lastly, the effectiveness and
advancement of the proposed framework are verified on the SAM-
PLE dataset. When the training samples for the classifier are very
scarce, it could bring around 10% more gain in target recognition
rate compared to existing active target recognition frameworks.

Index Terms—Active target recognition (AcTR), contrastive
learning, deep reinforcement learning (DRL), synthetic aperture
radar (SAR).

I. INTRODUCTION

W ITH the advantages of high-resolution, day-and-night,
and weather-independent imaging, synthetic aperture

radar (SAR) has been widely used in both military and civil-
ian fields [1]. Achieving the SAR automatic target recogni-
tion (ATR) is a long-standing goal for the researcher in the
remote sensing area. The past several years have witnessed the
blossoming of the deep learning-based SAR ATR methods [2],
[3]. For its single-view recognition branch, a key challenge is
that the feature for classification should be highly robust to
different observing azimuths, under which target exhibits large
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Fig. 1. Impact of observations under different azimuth angles on multiview
SAR target recognition. For a classifier trained on a small dataset, a few target
images under certain azimuths are conducive to recognizing the target, while
the others would confuse its judgment based on past observations.

intraclass variation. Especially when the training samples are
very scarce, it is extremely hard to overcome this obstacle for
the model trained. Many previous works prove that, compared
to the single-view SAR ATR, using multiple SAR images from
different viewing azimuths enables a better and more robust
recognition performance [4], [5]. In essence, not only can the
images from different views give complementary descriptions
concerning the target, but they also bring the discriminative
inner correlation among different views to target recognition [6].
Accordingly, leveraging multiple images from different aspects
can greatly improve recognition accuracy.

However, traditional multiview recognition methods assume
that the target is observed in a fixed pattern, that is, the view-
ing azimuth angles are randomly distributed or in a uniformly
increasing manner, ignoring the way of active data collection.
In contrast, active SAR ATR methods can autonomously seek
more discriminative target images to achieve high-performance
recognition. As shown in Fig. 1, when performing a multiview
SAR target recognition task, the impact of new observations
on the recognition results based on previous observations can
be positive or negative. Therefore, teaching the agent to actively
observe the target based on past observations is very promising in
raising recognition accuracy. In addition, SAR imaging requires
a lot of time costs, storage resources, and energy from the
SAR-equipped platform. Active data collection can focus these
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resources on obtaining high-quality samples, thus improving the
efficiency in performing the task.

In this article, active target recognition (AcTR) in SAR im-
agery is defined as follows. The SAR-equipped platform serves
as an agent, and it is able to autonomously determine the azimuth
angle of the subsequent observation based on the observed
images in the past (the observation at the initial moment is given),
and all previous observations are combined to recognize the
target at last, thereby improving classification accuracy using
the same imaging time and storage resources. Furthermore, it
should be noted that all the target images mentioned in this
article, unless stated otherwise, refer to the SAR image slices
containing the target.

The pioneering work for the AcTR problem in the remote
sensing area was first seen in the literature [7], which proposed
to improve the quality of data input to the ATR algorithm by
optimizing sensor movement, settings, or collaboration between
sensing platforms, thus improving the recognition rate. Unfor-
tunately, few relevant fruits were published after this work. Pei
et al. [8] proposed a multiview SAR ATR method based on
unmanned aerial vehicle (UAV) path planning, which uses suf-
ficient measured data to approximate the optimization function
and transforms the SAR AcTR problem into a constrained opti-
mization problem. However, the premise of sufficient measured
data is somewhat unrealistic, and the necessity of active data
collection would be greatly reduced because the performance of
the multiview recognition algorithms with passively observed
data can already reach satisfactory level with this condition.

According to the definition above, the AcTR task in SAR
imagery asks for the capabilities of scene understanding and
decision-making from the sensing platform. Deep reinforcement
learning (DRL), combining the powerful approximation ability
of deep neural network (DNN) and the excellent decision-
making ability of reinforcement learning (RL), has made great
progress in fields like robot control [9], adversarial games [10],
and the foundation model training [11] with the in-depth re-
search in recent years. In the context of the AcTR task, this
learning paradigm also suits very well, which can be validated by
the extensive studies and applications [12], [13]. The features of
the observed images can be effectively extracted through DNN
to construct the state in the Markov decision process (MDP).
And the agent can learn an active data acquisition strategy from
interacting with the environment through the RL algorithm.
However, although prevailing in the optical imagery area, the
DRL-based AcTR in SAR imagery remains underexplored.
Hence, we intend to tackle the problem of SAR AcTR from
the DRL perspective for the first time.

To cope with the three main difficulties in the AcTR in
SAR imagery, this article proposes an azimuth aware DRL
framework, referred to as AaDRL. First, a complete training
environment is needed to provide plenty of interactions between
the agent and the environment, so as to facilitate the policy
learning. However, unlike the convenience of collecting opti-
cal images, obtaining measured SAR target images is costly
and time-consuming, so its amount is usually insufficient to
construct a complete training environment. To address this, we
use the synthetic SAR images and a small number of measured

samples to build a relatively complete training environment for
the agent’s policy learning, alleviating the difficulty of lacking
measured samples.

Second, since SAR images are very sensitive to imaging
settings, the recognition performance at various azimuth angles
of the classifier would fluctuate in different environments [14].
If the reward function is designed only based on the recognition
result, its mapping can be very vulnerable to the environment’s
variation, and the agent’s policy would easily fail when trans-
ferred from the training environment to the test one. On this
point, given that the classifier is inclined to be overfitted since
the scarcity of the training samples, and it can only recognize
a small part of target images that share the same or very close
azimuth with the training samples. Hence, we design a simple
view-matching task, where the RL algorithm of proximal policy
optimization (PPO) [15] is utilized to help the agent learn how
to search the target image as similar as possible to the training
samples. With this design, the mapping of reward function could
be sufficiently robust to the environment’s variation.

In addition, in the scenario of the sim-to-real active SAR
target recognition problem, there are two premises for policy
learning and transfer. First, the image features of different tar-
gets under various azimuths can be distinguished by the policy
network; second, for the features of training and test images, it
is supposed that those with the same target class and azimuth
should be matched, i.e., the most alike. In the existing AcTR
frameworks [12], [13], [14], [15], [16], the single-view image
representations are directly borrowed from that used for class
identification, blurring the differences among the individual tar-
get images holding different azimuths within a single category.
Besides, there is usually a distinct distribution gap between the
measured and the simulated data [17]. Hence, there would be
massive state representation mismatches when transferring the
agent’s policy to the test environment, which can also make its
policy failed. In our AaDRL framework, the contrastive learning
method is leveraged to train the single-view feature extraction
module. In this way, an effective state representation is generated
for the policy network, which could help distinguish the charac-
teristics of different targets at various azimuths. This practice can
not only raising the training sample efficiency, but also enhance
the policy generalization capability in the test phase. Lastly, we
conduct extensive experiments on the SAMPLE dataset [18] to
demonstrate the effectiveness of the proposed framework.

The main contributions of this article are summarized as
follows.

1) The DRL framework is employed to solve the AcTR
problem in SAR imagery for the first time. Experimental
results show a significant improvement in recognition rate
by using the policy derived under the AaDRL framework
compared to state-of-the-art policies.

2) A simple view-matching task is designed and modeled as
an MDP, where the agent is guided with the PPO algorithm
to learn how to find images that are easy to be recognized.
With this design, the reward function in the MDP could
remain robust to the environment’s variation.

3) In our framework, the contrastive learning method is uti-
lized to learn an effective representation that helps the
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agent distinguish the target images at various azimuths.
This practice can not only raise the training sample effi-
ciency but also enhance the policy generalization capabil-
ity in the test phase.

II. RELATED WORK

In this section, we will introduce the relevant research works
of multiview SAR ATR and AcTR, respectively. Next, since
the conventional target’s azimuth angle estimation task is close
to the view-matching task in this article, we also illustrate the
similarity and difference between these two works.

A. Multiview SAR ATR

A large number of existing works [4], [5] suggest that, com-
pared to single-view SAR ATR, using multiple SAR images
from different viewing angles enables a better and more robust
recognition performance. Based on the means of information fu-
sion, previous multiview SAR ATR methods could be generally
divided into two categories: feature-level fusion and decision-
level fusion. The former merges different image features after
the feature extraction step, generating a new output, including
not only targets’ identity information under different aspects but
also the correlation among them. Pei et al. [4] proposed a deep
learning-based multiview SAR ATR framework, whose main
idea is to extract features from the input images and concatenate
all intermediate features layer by layer with a convolutional neu-
ral network (CNN), and the final classification result is derived
based on the feature absorbing the information from all images.
Bai et al. [19] utilized the bidirectional long short-term memory
(Bi-LSTM) network to merge feature vectors extracted by CNN
and train the whole CNN-LSTM model in an end-to-end manner,
allowing extracting features from single-view images while
mining the correlation in the image sequence. Similar to [19], Li
et al. [20] proposed a convolutional-transformer network. In the
beginning, a convolutional auto-encoder is pretrained and serves
as the feature extractor, and the encoder part of the Transformer
is used to explore the intrinsic correlation among feature vectors.

In contrast, the decision-level fusion method focuses on merg-
ing the classification results of the individual target images,
which can be further grouped into two kinds [6]. One is the paral-
lel decision fusion method, which assumes that the target images
from different viewpoints are independent and all classification
results are directly fused. In this regard, Huan et al. [21] applied
principal component analysis (PCA) based and ranking-based
parallel decision fusion methods. The other is the joint decision
fusion method, which utilizes the intrinsic correlation between
different images when calculating the classification results of
the images under each azimuth angle and then fuses all the
classification results. A representative work is the literature [5],
where Zhang et al. applied joint sparse representation (JSR) for
multiview SAR ATR. For simplicity, the multiview classification
in this article adopts the parallel decision-level fusion method,
where the classification results of all individual target images
are fused by summing.

B. Active Target Recognition

AcTR or active object recognition (AOR), an important
branch in active vision, is a continuous decision-making process
during which the observation platform reduces the uncertainty of
target recognition by adjusting its position or observation angle
to obtain more favorable information for target recognition. On
the other hand, actively observing targets can focus imaging
resources on the images with more discriminative features,
thus improving the efficiency of the observation platform in
performing the recognition task.

Since the introduction of the pioneering work [22], AcTR
has received extensive attention, and researchers have leveraged
tools such as attention mechanism [23], information theory [24],
[25], and RL [12] to preferentially select target observation
perspectives to reduce the uncertainty of the target identity.
Among them, the basic idea of the information theory method
is to select the target image that can bring the maximum in-
formation gain. Methods such as Monte Carlo sampling [25],
Gaussian process regression [26] can be used to estimate the
information gain of different viewpoints. Paletta and Pinz [12]
modeled the observation viewpoint selection problem as an
MDP, where the reward function is designed based on the
reduction of Shannon’s entropy, and the state is defined as
the fusion of the previously observed images’ features. The
Q-learning algorithm is used to help learn the viewpoint se-
lection strategy, which guides the agent to search for the ob-
servation viewpoints that can bring out the most discriminative
information.

The methods mentioned above are based on handcrafted fea-
tures. With the revival of deep learning, DRL starts to shine in the
active vision field. Malmir et al. [27] first used DRL to solve the
AOR problem by enabling the agent to learn viewpoint selection
strategies directly from raw image sequences. However, their
feature extraction module was obtained by pretraining on the Im-
ageNet dataset instead of training in an end-to-end manner along
with the overall model. In contrast, Jayaraman and Grauman
[16] proposed an end-to-end AcTR framework, where single-
view processing, information fusion, and decision-making mod-
ules are trained simultaneously; however, to improve the sample
efficiency of training, the authors also used a pretrained feature
extraction module during the actual experiments. By reviewing
literature [12], [13], [14], [15], and [16], we can find that all
their single-view image representations are directly borrowed
from that used for class identification, blurring the differences
among the individual target images within a single category.
For a well-trained agent, it selects the action based on the state
observed, and the state is constructed from multiple single-view
features. The representation method may succeed in the AOR
task facing optical images, since the training and testing data
usually share the same distribution, while in the sim-to-real
context, there is always a distinct distribution gap between these
two kinds of data (see [17] for graphic proof) so it is much
harder to match the feature representations, in this way, the agent
that has been trained in the training environment would easily
mistake the state representation and take the wrong action in the
test environment.
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The key to this feature mismatch problem is to distinguish
each individual target image, which is similar to the instance
of discrimination in computer vision. To achieve this, the con-
trastive unsupervised learning method is utilized in this article.

C. Azimuth Estimation for Targets in SAR Imagery

Target azimuth estimation can provide important informa-
tion for SAR image target recognition or other interpretation
tasks [28]. For example, template-based recognition algorithms
need to match the samples with all possible templates, which
imposes a huge computational burden. However, if the azimuths
of the test samples are known, the amount of algorithmic com-
putation required can be greatly reduced [29]. Wen et al. [30]
used target azimuth information as a self-supervised signal to
help CNN learn the representation with better generalization
ability for target recognition. Common target azimuth estimation
methods for SAR images include sparse representation [29],
corner point estimation [31], and so on.

The view-matching task designed in this article is similar to
but also different from the target azimuth estimation task. Both
must be trained to distinguish the target images under different
azimuth angles to make viewpoint selections or label them. If
the total number of decision steps in the task equals 1, the two
tasks are essentially the same. However, when this number is
greater than 1, the former becomes a sequential decision-making
problem, which cannot be well solved by azimuth estimation
alone. Instead, the agent needs to learn an effective policy to
maximize the expectation of reward summation after multiple
decisions, i.e., return.

III. METHODOLOGY

This section focuses on the proposed AaDRL framework.
First, in Section III-A, the scenario of active SAR target recog-
nition and the details concerning MDP modeling are described.
Section III-B provides a general introduction to the proposed
AaDRL framework. Sections III-C and III-D introduce the fea-
ture extraction module for single-view processing and the train-
ing process of the agent using the RL algorithm, respectively.

A. Problem Formulation

The assumed practical scenario is shown in Fig. 2. Consider-
ing the UAV’s advantages of mobility and flexibility, the UAV
airborne SAR imaging platform is adopted as the autonomous
decision-making agent in the RL framework, and the action
selection corresponds to the change of the UAV’s azimuth angle
when observing the target. The agent mainly consists of two
functional modules: the classifier and the decision-maker. The
former is fine-tuned on a small number of labeled measured
samples, and the decision maker is trained in an environment
built from a mixup of both measured and synthetic SAR images.

Suppose that the number of target classes is N , and we denote
the measured target image slice of the nth class at azimuth
angle θ as xn

θ , and its synthetic counterpart is denoted by x̂n
θ .

Assuming that the depression angles of all target images are
kept constant. The dataset used to train the classifier consists of

Fig. 2. Scene of AcTR using the SAR-equipped UAV platform. By sequen-
tially altering the observing azimuths, the well-trained agent can obtain multiple
target images, based on which it continues to make the next decision. The final
recognition result is derived from all the newly collected images.

a small number of measured samples, which is defined as

Dtrain = {xn
θ |n ∈ {0, 1, . . ., N − 1}, θ ∈ {θ̃n1 , . . ., θ̃nM}} (1)

where M is the sample number for each class of target, θ̃nm
denotes the azimuth angle corresponding to the mth sample
of the nth class. For simplicity, we uniformly discretize the
interval [0, 360◦) into an azimuth angle set Π, and the minimum
interval between adjacent azimuth angles is Δθ. The classifier
can be trained by fine-tuning or other few-shot learning meth-
ods. For simplicity, the article adopts fine-tuning the pretrained
ResNet18 [32] on Dtrain to obtain the classifier. When used
for multiview recognition, the unnormalized log probability
vectors corresponding to single-view images are summed and
fed into the softmax layer, deriving the result of multiview target
recognition.

The dataset used for the agent’s training includes both the
measured and simulated data, which is defined by

DRL
train = {x̂n

θ |n ∈ {0, 1, . . ., N − 1},
θ /∈ {θ̃n1 , . . ., θ̃nM}, θ ∈ Π} ∪Dtrain. (2)

And the test set for the agent is written as

DRL
test = {xn

θ |n ∈ {0, 1, . . ., N − 1}, θ ∈ Π}. (3)

The training and test environments of the agent are constructed
based on DRL

train and DRL
test, respectively, and the azimuthal distri-

butions of the target images in the two environments are iden-
tical. Before training, the AcTR task needs to be modeled as a
MDP, which is commonly represented by a tuple 〈S,A, P, r, γ〉,
whereS andA denote state space and action space, respectively.
P (s′|s, a) represents the state transition function, which indi-
cates the probability that the state shifts to s′ after taking an
action a at the state s, and r(s, a) denotes the reward function,
used to calculate the reward value fed back from the environment
after the agent takes an action a at the state s. γ means the
discount factor and its value could reflect the preference for the
reward at present over the future reward. To help understand
the MDP modeling, a simple flowchart concerning the interac-
tion between the agent and the environment is given in Fig. 3.
The subscripts of each letter in the figure indicate the time step.
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Fig. 3. Flowchart concerning the interaction between the agent and the en-
vironment. At the time step t, the agent forms the state st by extracting and
aggregating the features from the historical image sequence, based on which
the decision maker selects the action at t+ 1 time step. Next, the environment
feeds the new observation ot+1 and the reward rt+1 back into the agent. This
loop is ended when the time allowed is used up.

Fig. 4. Classification performances versus azimuth angle concerning four
types of targets in the test environment. The green bar denotes whether the
image is correctly recognized, with 1 for successful recognition and 0 referring
to the opposite. The yellow solid line indicates how far the classification results
deviate from the correct labels. Let the number of training samples be M = 1
per class, and the corresponding azimuths of these training samples are labeled
with red arrows in the figure. The classifier can easily recognize those images
sharing the same or a similar azimuth angle with the training samples in DRL

train,
while it is very uncertain to classify the images at other azimuths correctly. (a)
2S1. (b) BMP2. (c) BTR70. (d) T72.

For instance, ot refers to the target image observed at the tth
time step.

The purpose of changing the observing angle of the UAV is
to provide the classifier with more recognizable target images,
based on which we can design the reward function. To this end,
we first analyze the classification performance of the classifier
with the variation of the azimuth angle. Fig. 4 gives several in-
stances for the qualitative analysis, presenting the classification
results of the four types of targets (2S1 rocket launcher, BMP2
infantry fighting vehicles, BTR70 armored personnel carriers,
and T72 tanks) in the test set DRL

test. The green bar denotes
whether the image is correctly recognized, with 1 for successful
recognition and 0 referring to the opposite. The yellow solid
line indicates how far the classification results deviate from the

correct labels. Let the number of training samples be M = 1 per
class, and the corresponding azimuths of these training samples
are labeled with red arrows in the figure. It is obvious that
during the inference process, when the classifier encounters the
target image under the same azimuth as the training sample’s,
it can recognize the target easily, while for the rest of the target
images, whether the target can be recognized is quite uncertain.
In addition, it can be found that the target images “adjacent” to
the training samples, i.e., images with the azimuths close to that
of the training samples, have a much higher probability of being
recognized successfully.

Based on the findings above, we design the view-matching
task, through which the agent is guided to search for target
images that are closer to or even equivalent to the training
samples, and the reward function for the target of the nth class
is given by

r(st, at+1) =
1(

min
m

∣∣∣θt+1 − θ̃nm

∣∣∣+ a
)2 − b

+ check_redundance(θt+1, (θ1, . . ., θt)) (4)

where θt denotes the azimuth angle of the target image obtained
at the tth time step, and the azimuth angle of the mth training
sample is θ̃nm ∈ {θ̃n1 , . . ., θ̃nM}. a and b are the hyperparameters
that adjust the differences among various reward values and the
preference for azimuthal interval, respectively. In addition, given
that the performance of multiview recognition is better than
that of single-view recognition from the perspective of average
recognition rate, we use a check_redundance(·) function to
avoid redundancy in the observation sequence. If the newly
obtained image shares the same azimuth angle with a certain
one in the historical observations, then a penalty of−1 is given;
otherwise, the function value is set to 0.

Next, we are going to define the state in the MDP. According
to the Markovian property, the state st+1 only correlates with
the former state st, regardless of the states before. Besides, a
proper state’s definition is supposed to conclude all the relevant
factors except action that would influence the reward r(st, at+1).
Therefore, the state is defined by the aggregation of the features
of all the previously observed SAR image slices. Specifically, it
is written as

st = aggregator(f(o0), f(o1), . . ., f(ot)) (5)

where f(·) represents the single-view feature extractor, and
aggregator(·) stands for the feature aggregator, used to merge
the features of historical observations, which is realized by
using LSTM network or vector concatenation. Considering the
number of time steps in an episode is relatively small, we use
the latter for simplicity. Suppose there are T time steps in one
episode, and the length of a single-view feature is L. Then, the
state vector’s length is TL. For time step t, if t < T , the state
vector is padded with zeros to ensure the same length of TL.

In the scenario shown in Fig. 2, the agent’s action is defined
as the UAV platform selecting the next azimuth angle from the
set Π based on the current state and then planning the trajectory
to image the target from the expected aspect. For simplicity,
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Fig. 5. Inference flowchart of the proposed AaDRL framework. The top row depicts the high-level inference workflow of the AaDRL framework, which is also
another demonstration for Fig. 2. The bottom part describes the details of imaging, feature extraction, aggregation, and taking action within a single time step.
The single-view feature extractor, pretrained with the contrastive learning method, is used to process the newly and historically acquired target images. According
to the feature fusion result, namely the state st, the policy network computes a probability vector. At training time, the action at+1 is stochastically sampled by
the probabilistic distribution, and the policy net, along with the aggregator, is trained using the PPO-clip algorithm accordingly. In the test phase, the action at+1

corresponds to the maximum’s index of the probability vector.

the action space is assumed to be discrete, and the minimum
difference between the different azimuth angles is set to be Δθ.
In this way, we can guarantee that the image obtained after
taking action still exists in the mastered training set. Action a is
expressed by

a
Δ
= iΔθ, i = 0, 1, . . .,

⌊
2π

Δθ

⌋
. (6)

Suppose the error of UAV flight control is ignored, then the
state transition in the environment becomes deterministic, and
the relationship between the azimuths of the target images before
and after the action is given by

θt+1 = (θt + at+1) mod 2π, θt,θt+1 ∈ Π. (7)

Considering that the target images collected at all time steps
contribute the same to the final recognition result, the discount
factor γ is set to 1. At last, based on the MDP modeled above, the
AcTR problem in SAR imagery is transformed into the sequen-
tial decision-making problem, whose optimization objective is
written as

π∗ = argmax
π

E(s,a)∼ρπ

[
T−1∑
t=0

γtr(st, at+1)

]
. (8)

π denotes the agent’s policy, and ρπ means the occupancy
measure corresponding to π, namely, the joint probability dis-
tribution of state-action pair (s, a) influenced by policy π and

the environment model. Targeting this optimization objective,
we could apply the existing DRL algorithms to help learn the
optimal policy π∗ based on the training set and transfer it to the
test environment.

B. Overview of the AaDRL Framework

Based on the MDP modeled above, an AcTR framework for
SAR imagery is proposed, which mainly includes four modules:
single-view feature extractor, feature aggregator, classifier, and
policy network. The forward inference flowchart of the AaDRL
is demonstrated by Fig. 5. Assume there are T time steps in an
episode, and the agent is going to make T − 1 times decisions
after the initial observation and obtain T − 1 new images ac-
cordingly. Considering that the azimuth of the initial observation
is randomly distributed, its contribution to target recognition is
very uncertain. Hence, we only adopt the latter T − 1 images as
the classifier’s input.

In the proposed framework, the single-view feature extractor
is purely composed of convolutional networks, constructed by
modifying the last layer of A-ConvNet [2], which is proved to
be efficient in SAR image feature extraction. As illustrated in
Fig. 5, in the tth time step, the state st is derived through feature
extraction and aggregation, and the policy network computes
the action probability vector based on the state input and selects
the action thereby.
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Algorithm 1: The Active Target Recognition Algorithm
Derived Under the AaDRL Framework.

Input: the initial observation o0, imaging function im(o, a),
the number of time steps T per episode

Output: the predicted target label y
1: state s0 = aggregator(f(o0))
2: loop: t = 1, 2, . . ., T − 1
3: at = argmaxa π(a|st−1)
4: ot = im(ot−1, at)
5: st = aggregator(f(o0), f(o1), . . ., f(ot))
6: return o1, . . .,oT−1
7: y ← classifier(o1, . . .,oT−1)

During the training phase, if we rely only on the backpropa-
gation from the RL algorithm to update the feature extractor, the
sample efficiency would be too low to derive an effective rep-
resentation. To this regard, we adopt the pretraining way. In the
scenario of the sim-to-real active SAR target recognition prob-
lem, there are two premises for policy learning and transfer. First,
the image features of different targets under various azimuths can
be distinguished by the policy network; second, for the features
of training and test images, it is supposed that those with the
same target class and azimuth should be matched, i.e., the most
alike. In the existing AOR frameworks [16], [27], the single-view
feature extraction module is usually pretrained by performing
category classification task. However, this kind of practice may
not well fit sim-to-real active SAR target recognition problem in
this article. With the pretraining through category classification,
distinction among target images sharing the same target class
while holding different azimuths is blurred. In addition, there is
usually a distinct distribution gap between the measured and the
simulated data [17]. Hence, the features of the images sharing the
same class and azimuth in the training and test environment can
hardly match each other, which contradicts the second premise.
In contrast, we adopt the contrastive learning method to pretrain
the single-view feature extractor. By enlarging the distances
among all the image features in the training environment, the
policy network can better match the features corresponding
to the same target class and azimuth in the training and test
environment.

The pseudocode for the forward inference of the AcTR
algorithm derived under the AaDRL framework is given by
Algorithm 1.

C. Model Pretraining Based on Contrastive Learning

In this article, we pretrain the single-view feature extractor
under the contrastive learning framework of SimCLR [33].
During the training, each sample corresponds to a target image
of a certain class at a certain azimuth, and the batch size is
Q. The individual sample o could be transformed into ôi and
ôj after the processing of augmentation operations ts and ts′,
respectively, then their features are extracted by the encoder f(·),
next, the extracted features hi and hj are mapped to zi and zj

by a projection layer. ôi and ôj form into a positive sample
pair with each other and negative sample pairs with the other

2Q− 2 transformed samples. By minimizing the InfoNCE loss,
SimCLR can raise the feature similarity in the positive sample
pairs and enlarge the distance in the negative ones. Here, the
similarity means the cosine similarity, e.g., the cosine similarity
between zi and zj is written as sim(zi, zj) and the loss function
is expressed by

li,j = − log
exp(sim(zi, zj)/τ)∑2Q

k=1 1[k �=i] exp(sim(zi, zk)/τ)
(9)

where τ is the temperature coefficient, and 1[k �=i] denotes that
if k �= i, the function value is set to 1, else 0. The InfoNCE loss
regarding the whole batch is given by

Lcl =
1

2Q

Q∑
q=1

(l2q−1,2q + l2q,2q−1). (10)

By minimizing the loss functions above, the single-view
feature extractor could learn a proper representation, so as to
recognize the targets’ characteristics under different azimuths.

The commonly used data augmentation operations for SAR
images include random crop, noise adding, occlusion, rotation,
and so on. Within the AaDRL framework, the representation
learned is also supposed to overcome the cross-domain gener-
alization problem. Since the main difference between the mea-
sured and synthetic SAR images lies in the scatters distribution
and strength within the target and background, we adopt noise
adding as the augmentation operation ts′ while setting the other
operation ts as keeping the input unchanged.

It should be noted that during the upcoming policy learning
process, we keep the parameters of the pretrained feature extrac-
tor constant to guarantee its stable capability of differentiating
among all kinds of targets at different azimuths.

D. Agent’s Policy Learning Based on PPO-Clip Algorithm

The state in MDP could be formed by extracting and aggre-
gating the features from the observed image sequence, based on
which the policy network selects the act. In order to confer the
ability of autonomous decision-making to the agent, we need to
train the policy network based on the interactive experiences be-
tween the agent and the environment. In this article, the PPO-clip
algorithm [15] is adopted for policy learning, which improves
the sample efficiency and training stability of the policy gradient
algorithm through the operations of importance sampling and
restricting the interval for network parameter updating. Because
of its superior performance and wide applicability to various
sequential decision-making tasks, the PPO-clip algorithm often
serves as a baseline in many types of research on RL. Its
optimization objective is written as

max
ξ

E(s,a)∼ρπ
ξ′

[
min

(
πξ(a|s)
πξ′(a|s)A

πξ′ (s, a),

clip

(
πξ(a|s)
πξ′(a|s) , 1−ε, 1+ε

)
Aπξ′ (s, a)

)]
(11)

where ξ′ and ξ denote the policy network’s parameter before and
after a single iteration, and Aπξ′ (s, a) is the advantage function
under the policy πξ′ . clip(·) function restricts the ratio of action
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selection probability within an interval of [1− ε, 1 + ε], where ε
is a hyperparameter used to adjust the interval width for network
parameters updating.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to ver-
ify the effectiveness of the proposed framework in improving
the target recognition accuracy. First, we introduce the paired
synthetic and measured SAR image dataset named SAMPLE.
Next, experiment settings are introduced, and the effectiveness
of the proposed framework is verified by comparing it with
other active data acquisition policies under different testing
conditions. Lastly, the ablation study on the AaDRL framework
is conducted to analyze the effect of the contrastive learning
method on policy learning and transfer.

A. Dataset and Experimental Settings

1) Dataset Description: The SAMPLE dataset, released by
the US Air Force Research Laboratory in 2019, mainly includes
synthetic SAR images of various vehicle targets under differ-
ent observation conditions. Except for the background, target
configuration, sensor parameters, observation depression angle,
and azimuth angle, etc., are kept consistent with those of the
measured SAR images in the MSTAR dataset [34] released by
Sandia National Laboratory. Therefore, the SAMPLE dataset
provides a good benchmark for studying the differences between
simulated and measured SAR images and the recognition algo-
rithms’ transfer. The publicly available part of the SAMPLE
dataset contains the synthetic SAR image slices of ten ground
military vehicle targets (2S1 autonomous rocket launcher, BMP-
2, BTR-70 armored personnel carriers, M35, M548 trucks, M1,
M2, M60, T-72 tanks, ZSU-234 air defense unit), whose azimuth
angles range from 10 to 80°, depression angles range from 15
to 17°. The SAR sensor works at the X-band while imaging,
and the resolution is 0.3 m. The optical images, measured SAR
images, and corresponding synthetic SAR images slices of these
ten types of targets are shown in Fig. 6. In order to reduce the
interference caused by the target background clutter, all the slices
in the dataset are center-cropped to the size of 60 × 60 pixels.

2) Experimental Settings: Since we focus on SAR target
recognition with a few training samples, only M measured
samples per class are chosen from the SAMPLE dataset and
used to form the training set Dtrain for the classifier. Let N = 10
be the number of target classes. Although the synthetic images
can also be used to train the classifier, its gain is influenced by
the discrepancy between the measured and synthetic data. In
addition, we focus on raising the SAR target recognition perfor-
mance from the perspective of active vision instead of improving
the baseline performance, so we omitted the synthetic data while
training the classifier for simplicity. Given that only the images
with azimuth angle between 10 and 80° are made public, the
set Π used in our experiments only cover the azimuth angle
falling into this interval, and the minimal interval between the
neighboring azimuth angles is set to 2°. The DRL

train is comprised
of Dtrain and synthetic SAR images. Since the former only takes
a small part of Π, we correspond synthetic images to the rest of

Fig. 6. Optical and SAR image slices concerning vehicle targets of ten classes
in the SAMPLE dataset. By matching target configurations and sensor parame-
ters, details in the measured and synthetic data, including shadows, orientation,
scatter distribution, and magnitudes, are in good agreement [18]. Since the
producer of this dataset did not align the ground planes of the synthetic and
the measured images, the backgrounds of the former are somewhat darker.

the azimuths. In contrast, the test set DRL
test is purely made of the

measured samples, whose target configuration, azimuth angle,
and depression angle are reciprocally equivalent to those of the
samples in DRL

train. Because we temporarily focus on the policy
generalization from the simulated to the measured environment,
the depression angle of all the data used is simply set to 17°. It
should be noted that although the azimuth angles of the released
part of the SAMPLE dataset are 10 to 80°, there are still some
missing angles in this range, so it is not strictly guaranteed that
the azimuth interval of adjacent images is 2°. To approximate
the ideal condition of uniform azimuthal increasing, we replace
the missing images with the ones holding a larger and the closest
azimuth angle.

For each episode in the training phase, a target image with a
random azimuth is given to the agent at the beginning, several re-
wards are fed back from the environment according to the states
and agent’ actions, and the training loss in the RL algorithm is
computed accordingly. During the test phase, the agent samples
the target images in DRL

test based on the policy learned and sends
the lastT − 1 images to classifier to derive the recognition result.

B. Implementation Details

1) Hyperparameter Settings: In the PPO-clip algorithm, the
hyperparameters a and b of the reward function shown in (4) are
set to 1 and 0.1, respectively. Both the actor’s policy network
and the critic’s value network are a two-layer fully connected
network, with an input dimensionality of 128 and a hidden layer
dimensionality of 128. The output dimensionality of the former
is set to 30, with each output node corresponding to an action
choice in the next step, while the output of the latter is a number
used to evaluate the input state’s value. These two networks
are optimized using the Adam optimizer, and the learning rates
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TABLE I
PERFORMANCES OF VARIOUS POLICIES UNDER DIFFERENT TEST CONDITIONS

used for their updates are lractor = 10−3 and lrcritic = 10−4,
respectively. The hyperparameter ε used to control the param-
eter update interval is 0.2, and λ in the generalized advantage
estimation method is set to 0.95. The total number of the agent’s
interactions with the environment during the training is 300 000,
and the data tuples collected in each episode are used for the
subsequent ten times of network update.

During the training of the single-view feature extractor based
on the SimCLR framework, the projection layer used is a two-
layer fully connected network with the temperature coefficient
τ = 1 in the InfoNCE loss. In the augmentation operation ts′,
Gaussian white noise with meanμ1 = 0 and variance σ2

1 = 0.04
is added to the SAR target images. In addition, we found
that adding a little noise to the training and test sets for the
classifier can effectively improve the testing recognition rate.
Therefore, Gaussian white noise with meanμ2 = 0 and variance
σ2
2 = 0.01 is added in both the training and testing phases for the

classifier.
2) Compared Policies: Since this article is a preliminary

exploratory work in the field of AcTR in SAR images, there are
very few studies available for comparison. The policies added to
the comparison consist of two kinds, the heuristic policy, e.g., the
policy of random sampling [35] and sequential sampling [19],
and the policies derived under other AcTR frameworks [16], [27]
proposed for optical images. Below is the detailed introduction
to these baselines.

1) Random sampling: With this policy, the agent randomly
selects an angle from the available interval Π as the
azimuth of the next observation. To ensure the fairness of
comparison, we add a constraint in the random sampling
process so that the agent will not get duplicate target
images in each episode.

2) Sequential sampling: With this policy, the azimuths of the
selected target images are in a uniformly increasing man-
ner. We set the azimuth interval for sequential sampling
to 4°.

3) Framework A: In the framework proposed by [27], the
state is represented by the accumulated belief in each
time step, i.e., the elementwise-product of the single-view
posterior beliefs over target identity. Framework A repre-
sents the altered AaDRL framework whose single-view
feature extractor is replaced by the corresponding part
used in [27].

4) Framework B: Similar to [16], Framework B denotes
the altered AaDRL framework whose single-view feature
extractor is the backbone of the ResNet18 network, first
pretrained on ImageNet and then finetuned on DRL

train.

C. Policy Comparison

This subsection first compares the performance of various
policies under different conditions. Subsequently, we present
and analyze the training processes of the agent’s policy under
different AcTR frameworks.

Table I demonstrates the target recognition performance com-
parison among various approaches under different test condi-
tions. Since the measured SAR target image is very hard to obtain
in reality, the measured sample amount M per class is usually
a small number in our settings. These approaches are divided
into three kinds: passive, heuristic, and active approaches. The
passive approach means that the classifier takes in the static
single-view image input in both the training and test phases, with
no aid from multiple observations and action planner. Here, we
use the pretrained ResNet18 as the static classifier and finetune it
on the dataset Dtrain. The heuristic approach includes the policy
of random and sequential sampling, whose action selection is
intuitive. In the neural network-based approach, we compare
the proposed AaDRL framework with the other two kinds, and
their differences exist in the single-view feature extraction part.
In the test environment with various settings, all the recognition
methods are run 50 000 times under five random seeds, namely,
10 000 times for each seed, so we can obtain five average recog-
nition results for each method and calculate the mean overall
accuracy and standard derivation thereby. Table I shows that the
policy derived under the AaDRL framework overwhelms the
other policies under all test conditions.

1) Comparison With Heuristic Policies: We visualize the
performance comparison among the first three active data ac-
quisition policies when M = 2; the result is given in Fig. 7.
The height of the blue rectangles in the figure indicates the
single-view target recognition rate of the classifier on the test set
DRL

test. The remaining three colored rectangles correspond to three
policies: random sampling, sequential sampling, and the policy
derived under the AaDRL framework. The heights of the other
three rectangles represent the average multiview classification
performances of the classifier under the corresponding three
policies. The black vertical line at the top of the rectangles
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Fig. 7. Performance comparison among different active data acquisition poli-
cies when M = 2. The policy trained under the proposed AaDRL framework
overwhelms the random and sequential sampling policies. Also, see Table I.

Fig. 8. Performance comparison among different active data acquisition poli-
cies when M = 3. Using the policy learned under the AaDRL framework, the
agent can gain much higher recognition accuracy than the other policies. Also,
see Table I.

represents the fluctuation range of the results, which is expressed
by the confidence interval with a confidence level of 0.95. From
the figure, it can be seen that the random sampling policy is
slightly better than the sequential sampling policy, whereas
the policy learned under the proposed AaDRL framework is
significantly better than the other two active data collection
policies, improving the recognition rate by more than 10%.

Similarly, Fig. 8 presents the comparison result among the
first three active data acquisition policies when T = 3, which
also suggests that the agent using the policy learned under
the proposed framework achieves greater recognition rate gains
compared to the policies of random sampling and sequential
sampling. Another finding is that as the training sample in-
creases, the single-view recognition performance of the classifier
is strengthened, and the advantage of the policy derived under
our framework over others is comparatively weakened.

2) Comparison With Other AcTR Frameworks: In the fol-
lowing, we present and analyze the training processes of the
agent’s policy under different AcTR frameworks. Let the number
of samples for each target type be M = 3, and the total number
of time steps T = 3. As shown in Figs. 9–11, we use three

Fig. 9. Return curves for the agent during the training and test phases under
different AcTR frameworks. In the training phase, the agents can learn effective
control policy under all three frameworks, while in the test phase, for frameworks
A and B, the agent’s policies fail to transfer to the test environment. In contrast,
although it is influenced by the generalization gap, the policy learned under the
AaDRL can successfully improve the return value.

Fig. 10. Average minimum distance curves for the agent in the training and
testing phase under different AcTR frameworks. Corresponding to Fig. 9, all
three curves of average minimum distance gradually decrease with the ongoing
iterations at the training time. However, the policies under frameworks A and
B fail to perform the view-matching task in the test environment, but the policy
under the AaDRL framework can still help the newly acquired target image to
approximate the training samples.

evaluating indicators to reflect their effectiveness, i.e., average
minimum distance, return, and recognition rate. The minimum
distance in the figure denotes the smallest difference between
the azimuth of the newly acquired target image and the azimuths
of the training samples in each time step. Since the agent will
make T − 1 decisions in each episode, we take the average of
the T − 1 smallest distances as the average minimum distance.
As mentioned, return is the expected sum of all rewards obtained
in one episode. In addition, the recognition rate represents the
classifier’s performance in the test environment using active data
collection policy. In Figs. 9–11, to produce these colored curves,
we first set up five random seeds and ran the program under
each seed to get five return curves, respectively. Considering
that the initial curves obtained fluctuate a lot, these five curves
are flattened by the sliding window averaging. Finally, we use
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Fig. 11. Recognition accuracy curves for the agent in the test environment
under different AcTR frameworks. By using the AaDRL framework, the policy
learned can bring the recognition rate gain about 10% when it comes to
convergence, while under the other two frameworks, the recognition rate can
barely be improved by the agent’s policy.

the visualization tool Seaborn to draw the following curves by
integrating the results under the five random seeds, where the
solid lines in the shaded area represent the mean values of the
averaged five curves. The shaded area indicates the fluctuation
range of the data, which is expressed by the confidence interval
with a confidence level of 0.95. The same type of curves in the
following are also obtained according to this method. It should be
noted that when a certain training epoch is finished, the updated
policy would simultaneously be tested in the test environment,
deriving the intermediate test result while training. In this way,
we are able to observe and compare the generalization perfor-
mance of different policies.

Fig. 9 demonstrates the return curves for the agent during the
training and test phasees under different AcTR frameworks. In
the training environment, as the number of episodes increases,
the return values achieved by the policies under three kinds of
frameworks all gradually increase, whereas from the extent of
improvement, the proposed AaDRL framework is superior to
the other two counterparts. In the test phase, for frameworks
A and B, the indicator of return nearly remains unchanged
with the ongoing iteration, reflecting that the policies learned
under these frameworks fail to transfer to the test environment.
For the AaDRL framework, although its return improvement is
weakened compared to that in the training environment, namely,
there is an evident generalization gap in the policy transferring,
its policy can still successfully improve recognition accuracy in
the test environment.

From the other side, recalling (4), it can be inferred that as
the return value rises, the azimuths of the target images newly
obtained after the decision-making would get progressively
closer to the azimuths of the training samples. This hypothesis is
validated by Fig. 10, where all three curves of average minimum
distance gradually go down with the increasing episodes in
the training environment, showing the agent can perform the
view-matching task well under all three frameworks. In the
test phase, although influenced by the generalization gap in
the policy transferring, the policy under the AaDRL framework
can also help the newly acquired target image to approximate

the training samples. However, corresponding to the flat curve
in Fig. 9, the policies under frameworks A and B fail to help
reduce the average minimum distance in the test environment.

Fig. 11 shows the recognition rate curves of the classifier using
different active data acquisition policies in the test environment.
Based on the analysis in the MDP modeling, the value of the
designed reward function is positively correlated with the final
recognition performance, we expect the policies derived under
frameworks A and B would make little impression in improving
the target recognition rate, which is validated by those two flat
curves in the figure. By contrast, with the policy under the
AaDRL framework, the target recognition rate can gain about
10% when it comes to convergence.

From Figs. 9–11, with the increasing training episodes, all the
frameworks successfully help raise the agent’s return and lower
the average minimum distance in the training phase, indicating
the agent could learn a useful policy under each circumstance
in the training environment, whereas from the extent of indicator
improvement, the proposed AaDRL framework is superior to the
other two counterparts. In the test phase, for frameworks A and
B, all three indicators nearly remain unchanged as the number
of training episodes increases, which means the policies learned
under these frameworks fail to transfer to the test environment.
In contrast, although it is influenced by the generalization gap,
the policy learned under the AaDRL can successfully improve
recognition accuracy in the test environment. The key to this dis-
crepancy lies in the representation capability of the single-view
extractor, as explained in the related work part. With only the
single-view extractor directly borrowed from that used for class
identification, the differences among all individual target images
holding different azimuths within a single category would be
blurred, and it is nearly impossible to match the feature represen-
tations of the training and test data sharing the same azimuth. In
this way, the agent trained in the training environment can easily
mistake the state representation and take the wrong action in the
test environment, thus causing the failed policy transfer.

To further illustrate the advancement of the AaDRL frame-
work, we visualize the numerical results in Table I, making the
comparison result more intuitive. Except for the improvement
brought by inputting the multiple observations, the policies
obtained under frameworks A and B contribute little to raising
the recognition performance because of the failure in policy
transfer. From both Figs. 12 and 13, we can tell that the policy
derived under framework A performs slightly better than that of
framework B when T is relatively large, and their performances
are nearly the same when T ≤ 3. By using framework A or B,
there is at most a 3% increase in recognition rate over the policy
of random sampling. In contrast, the recognition performance is
greatly improved with the AaDRL’s active data collection policy
apart from the gain from multiview recognition.

D. Analysis

1) Ablation Study: First, we experimentally verify the ne-
cessity of unsupervised pretraining of the single-view feature
extractor in the AaDRL framework. The framework used for
comparison is generally the same as the proposed framework,
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Fig. 12. Performance comparison among policies derived under three kinds of
AcTR framework when M = 2. The policy trained under the proposed AaDRL
framework is much more effective than the other two policies, with an advantage
of more than 10%. Also, see Table I.

Fig. 13. Performance comparison among different policies derived under three
kinds of AcTR framework when M = 3. Using the policy learned under the
AaDRL framework, the agent can gain much higher recognition accuracy than
the other policies. Also, see Table I.

Fig. 14. Impact of the contrastive unsupervised pretraining on the agent’s
learning under the framework of AaDRL. The comparison above reflects the
necessity of using the contrastive learning method to help the agent learn an
effective policy from the interactions.

except that its feature extraction module is trained from scratch
along with the policy network. Both of them are trained using
the same dataset DRL

train, and the rest of the experimental setup is
consistent with that of Fig. 9.

Fig. 14 demonstrates the impact of contrastive unsupervised
pretraining on the AaDRL framework. When trained from
scratch, the network parameters in the single-view feature ex-
tractor are updated by the backpropagation from the PPO-clip

TABLE II
PERFORMANCE OF ACTR VERSUS THE NOISE’S STANDARD DERIVATION σ1

algorithm. It can be noticed from Fig. 14 that the agent has not
learned an effective policy in this way. There may be two reasons
accounting for this failure. First, the dataset used is not abundant
enough; besides, the distinction between neighboring SAR im-
age slices is slight. Hence, it is fairly hard to extract an effective
representation from the observed image purely depending on
the end-to-end learning. In contrast, with the help of contrastive
unsupervised pretraining, the feature extractor could offer the
policy network an effective representation, enabling the agent
to perform the view-matching task as expected.

Since the representation learned is closely related to the loss
function in the SimCLR framework, which is decided by the
temperature coefficient τ , we conduct an ablation study to see its
effect on the final policy’s performance in both the training and
test environments. Fig. 15(a) and (b) gives the return and average
minimum distance curves for the agent during the training and
test phases under various temperature coefficients, respectively.
The recognition rate curves for the agent in the test environment
under different temperature coefficients is shown in Fig. 15(c).
These subfigures are drawn in the same manner with that of
Figs. 9–11. From the evaluation index of return and average
minimum distance, the agent’s policy is trained with a higher
sample efficiency when τ = 0.1 than in other settings, because
it obtains the largest return value and the smallest average mini-
mum distance after the same iterations. However, its advantage
is erased when evaluated in the test environment, and the policy
with τ = 1 even performs a slightly better than it in terms of the
return value or the recognition rate gain. In addition, the large
performance degradation of all these policies in the test environ-
ment should also be noted. Both the advantage erasion of the best
policy and the performance degradation of all the policies can be
attributed to the generalization gap between the training and test
environment. Hence, if we were to guarantee the effectiveness
of the agent’s policy in the test time, not only the training
sample efficiency, but also the generalization capability should
be focused on and well enhanced. Later, we would explain in
detail how the single-view representation affects agent policy’s
training sample efficiency and generalization capability, from
which we may find how to design a good visual representation
for the agent in the AcTR task.

To further explore the impact of the single-view feature extrac-
tor on the AaDRL framework, we gradually adjust the noise’s
standard derivation σ1 in the operation ts′ while keeping other
experimental parameters unchanged, and then different single-
view feature extractors can be trained at variousσ1 settings under
the SimCLR framework. The eventual agent’s policy also varies
with the feature extractor. Table II demonstrates the average
target recognition results in the test environment corresponding
to various σ1. From the perspective of the mean value, the
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Fig. 15. (a) and (b) Return and average minimum distance curves for the agent during the training and test phases under various temperature coefficients,
respectively. (c) Recognition rate curve for the agent in the test environment under different temperature coefficients. In the training step, some agent’s policies can
achieve higher performance by choosing a proper temperature parameter τ , while their advantage could be erased by the generalization gap between the different
environments. To guarantee the effectiveness of the agent’s policy in the test time, not only the training sample efficiency, but also the generalization capability
should be focused on and well enhanced.

Fig. 16. Feature distributions of the training setDRL
train through different single-

view feature extractors. With the contrastive learning approach, the feature
extraction module can help distinguish the images of various targets at different
azimuths. However, there is some feature overlapping in all four cases, which
would negatively impact the agent’s policy learning.

learned strategy performs best at the time when σ1 = 0.01 and
worst when σ1 = 0.1. The fluctuations in the average target
recognition rate for a given σ1 are caused by the randomness
inherent in the sampling and decision-making processes of the
agent.

2) Impact of Feature Overlapping: Next, we use the feature
visualization tool UMAP [36] to observe the distribution of
image features extracted by the single-view feature extractor,
and by analyzing the visualization result, we try to figure out the
factors constraining the performance of the AaDRL framework.
The training set DRL

train is processed by different single-view
feature extractors, and then UMAP is used to downscale and
visualize the resulting image features in Fig. 16. Each subfigure

Fig. 17. Impact of feature overlapping on policy learning. The states formed
by the mutually overlapped features would be very similar. If the agent takes
the same action facing these similar states but obtains hugely different rewards,
in the PPO-clip algorithm, the critic network’s estimates of these states’ values
would be influenced, thus lowering the performance of the policy learned.

contains ten classes of colored points corresponding to the image
features of the ten classes of targets in the training set, and the
points sharing the same color correspond to the target features of
the same target while holding the different azimuth angles with
each other. From the subfigures in Fig. 16, it can be found that the
feature extraction module obtained by the contrastive learning
approach can help distinguish the images of different targets at
different azimuths. However, there is some feature overlapping
in all four cases, i.e., the image feature of one type of target
at one azimuth gets very close to the image feature of another
type of target at a certain azimuth, which would pose a negative
impact on agent’s policy learning.

Specifically, we use Fig. 17 for illustration, where the red box
on the right shows a local zoom of the feature distribution map
on the left. Within the red box, the orange oval frame contains
two image features of a certain target type, while the blue oval
frame contains the two image features of another type of target.
Suppose the former two features would form the state s during
the training, and the latter two features constitute the state s′. It
can be foreseen that these two states would be very similar. When
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Fig. 18. Feature distributions of T72’s measured and synthetic images through
different single-view feature extractors. The squares represent the features of
simulated images, and the triangles correspond to those of measured images.
Meanwhile, the azimuth angles of target images are reflected by different colors.
Ideally, the squares and triangles of the same color are supposed to be the closest
to each other. However, there is a certain mismatch between them in some
cases. This phenomenon inflects that when the agent is deployed in the test
environment, it may misunderstand its state and consequently take the wrong
action. Therefore, the severer feature mismatch would result in the worse test
performance of the agent’s policy.

facing s and s′, if the agent takes action a on both occasions, it
would get the reward r(s, a) and r(s′, a), respectively. However,
were the distinction between r(s, a) and r(s′, a) very huge,
say, r(s, a) > 0 while r(s′, a) < 0, in PPO-clip algorithm, the
value network’s estimates to the state value V (s) and V (s′)
would be influenced given the high similarity between s and
s′. Therefore, frequent feature overlapping will deteriorate the
estimating accuracy of the critic network, thus lowering the
performance of the policy learned. This viewpoint can also be
confirmed by Fig. 9, where the agent’s policy cannot enable the
average minimum distance to approach 0 or even make it fall
below 1 while reaching the convergence. The phenomenon of
feature overlapping in the training phase may be the bottleneck
that restricts the performance of the agent’s policy, since this
constraint indirectly leads to a lower upper bound of the agent’s
performance in the testing phase.

3) Impact of Feature Mismatch: In addition to the feature
overlapping, the feature mismatch problem in the testing phase
would also challenge the policy learned. Fig. 18 visualizes the
image features of the simulated and measured T72 tank SAR
images extracted by the single-view feature extraction module,
where the squares represent the features of simulated images
and the triangles correspond to those of measured images.
Meanwhile, the azimuth angles of the target images are reflected
by different colors. From the subfigures, it can be seen that
with the help of the contrastive learning approach, for the same
target, the image feature changes orderly with the increase in
azimuth, be it for the simulated or the measured data. However,
the key to the successful generalization of the learned policy
to the test environment lies in that the features extracted are
robust enough to the environment’s change, which means that
the representations of the simulated and measured images at
the same azimuth angle should be as close as possible, i.e.,

the distance between squares and triangles of the same color
is supposed to be the smallest. However, from Fig. 18, it can be
seen that the actual situation is not that ideal, where a square
of one color can be the closest to a triangle of another color,
i.e., there is a certain mismatch between the measured image
features and the simulated image features. This phenomenon
implies that when the agent faces the test environment, it may
misunderstand the azimuth of the target image and consequently
take the wrong action. Therefore, the more severe the feature
mismatch is, the worse performance of the agent’s policy would
be in the test environment. Referring to the four subfigures in
Fig. 18, we can find that the feature mismatch phenomenon is
the most severe under the condition of σ1 = 0.1, which to some
extent can explain why the agent’s policy performs the worst
when σ1 = 0.1 in Table II.

4) Model Complexity Analysis: To perform the AcTR task,
the active view planning module is designed in this article and
it would unavoidably increase the model complexity compared
to the original target recognition model with static observations.
However, according to the statistics, this extra model complexity
is acceptable concerning the benefit of active vision. In terms
of space complexity, the applied ResNet18 classifier contains
11.2 M parameters, while the parameter number in the policy
network is around 0.6 M. The computational burden for making
one single action prediction is 34.7 M FLOPs, as for the clas-
sifier, its time complexity is 286.3 M FLOPs. At about 300 K
iterations between the agent and the environment constructed by
the training set DRL

train, the policy optimization process comes to
convergence. In the test phase, the mean inference time for the
policy network and the classifier is 1.6 and 5.1 ms, respectively.
All these statistics we report are calculated with an image slice of
60× 60 pixels and the experiments in this article are conducted
on a single RTX3060 GPU.

V. CONCLUSION

This article proposes an AcTR framework for SAR images
based on DRL for the first time, which effectively improves the
target recognition accuracy from the perspective of active vision.
We use synthetic SAR images and a small number of measured
samples to build a relatively complete and close-to-reality train-
ing environment for agent training. Second, a view-matching
task is designed in the proposed framework to guide the agent to
learn how to seek the target image that is as similar as possible
to the training sample based on historical observations, and
this kind of design can help avoid policy failure in the test
environment. In addition, the contrastive learning method helps
the agent learn an effective state representation that enables it to
recognize the characteristics of different targets under different
azimuths, laying a foundation for the agent’s policy learning and
transfer. Finally, the experiments’ results demonstrate that the
proposed framework can greatly improve the target recognition
accuracy under the small sample condition. In future work, we
will seek a more appropriate way to better the state representa-
tion for the policy network. In this way, the problem of feature
overlapping and mismatch could be alleviated so as to enlarge
the gain for SAR target recognition.
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