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MMPhU-Net: A Novel Multi-Model Fusion Phase
Unwrapping Network for Large-Gradient

Subsidence Deformation
Yandong Gao , Jiaqi Yao , Nanshan Zheng , Shijin Li , Hefang Bian, and Yu Tian

Abstract—The problem of phase unwrapping (PhU) in the large-
gradient deformation areas is the bottleneck problem of interfero-
metric synthetic aperture radar (InSAR) data processing. How-
ever, the extraction of large-gradient deformation areas is one
of the key issues in coal mining deformation monitoring. Here,
we propose a novel multimodel fusion PhU Network, abbreviated
as MMPhU-Net, and apply it to the extraction of large-gradient
deformation areas. The major advantages of MMPhU-Net are as
follows: First, MMPhU-Net combines the advantages of different
basic network models, which can improve the model convergence
speed and phase gradient estimation accuracy. MMPhU-Net can
improve the lack of recognition effect of a single basic model. Sec-
ond, different from existing deep learning PhU methods, MMPhU-
Net directly estimates the gradient ambiguity numbers, k, so its
phase gradient estimation completely breaks through the (−π, π)
limitation. Therefore, MMPhU-Net can obtain ideal PhU results
in large-gradient deformation areas. In addition, optimization al-
gorithm models are used to optimize the estimation results of the
multimodel fusion network. Subsequently, the obtained k and a
novel two-step filtering method are combined to obtain the final
PhU results. Through the verifications of simulated data sets and re-
alistic GaoFen-3 SAR data sets, the proposed MMPhU-Net method
can achieve superior excellent results than the commonly used PhU
method.

Index Terms—Interferometric synthetic aperture radar
(InSAR), large-gradient deformation areas, phase unwrapping
(PhU), the multimodel fusion network, two-step filtering (TSF).

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR) has
been widely used in topographic mapping [1], urban safety

development [2] and coal mining subsidence monitoring [3].
Differential InSAR (DInSAR) is an effective coal mining safety
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monitoring method. DInSAR uses radar satellites to obtain the
phases of the same monitoring area at two different times, and
then performs differential interferometric phases to obtain defor-
mation information [4], [5]. DInSAR can obtain the deformation
of mining subsidence with high efficiency and high precision,
so it has been favored in practical engineering applications
[6]. However, the complexity of coal mining conditions and
the diversity of subsidence changes make DInSAR subject to
many restrictions in mining subsidence monitoring. The extrac-
tion of large-gradient deformation has become one of the key
issues of DInSAR in mining subsidence monitoring [7]. The
large-gradient deformation areas can violate the phase continuity
assumption, and the interferometric fringes are prone to mixing.
Therefore, the large-gradient deformation areas will affect the
phase unwrapping (PhU) accuracy, and even lead to PhU failure
[8], [9]. As we all know, the accuracy of PhU is critical to obtain
the final DInSAR deformation product [10]. However, in many
coal mining subsidence monitoring processes, it is challenging
to obtain the deformation of the coal mine collapse center
[11], [12].

In recent years, numerous researchers have conducted ex-
tensive studies on the extraction of large-gradient deformation
in coal mining subsidence, categorically classified into three
main groups [13]. Wu et al. [14] used the raised cosine inter-
polation algorithm to perform interpolation and resampling on
the SAR image before the interferometric processing. However,
obtains the estimation of the subsidence center through inter-
polation algorithm cannot fundamentally resolve the challenge
of extracting areas with significant deformation gradients. Ng
et al. [15] proposed a method for extracting large-gradient
deformations in mining areas, which combines three different
imaging modes. However, this method is limited by different
satellite imaging modes. Some scholars applied offset-tracking
to the extraction of large-gradient deformation areas [16], [17].
Chen et al. [18] applied the combination of SBAS and offset
tracking to coal mining large-gradient deformation extraction,
and combined the data of two different sensors to perform
experiments, which can obtain optimal outcomes in areas with
large-gradient deformation. Huang et al. [19] proposed an ad-
vanced pixel tracking technique for monitoring large-gradient
deformation in subsidence caused by mining. Unfortunately,
the accuracy of offset-tracking is low, which is only 1/10 ∼
1/20 of the pixel resolution [20]. The second category is to
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combine other deformation monitoring technologies to obtain
the deformation of mining subsidence with significant gradients.
Bingqian et al. [21] proposed a method that combines SAR data
with three-dimensional (3-D) laser scanning point cloud data to
extract significant deformations in mining subsidence with large
gradients. Yang et al. [22] proposed a method that integrates
InSAR with level to analyze the dynamic subsidence of the
mining subsidence. However, the acquisition of the data required
by these methods is difficult. In addition, the accuracy of these
techniques is often lower than that of InSAR measurements. The
third category has always been considered the most commonly
used method, which applies the mining subsidence model to the
extraction of large-gradient deformation areas. Jiang et al. [23]
proposed an InSAR 3-D surface deformation extraction method
that relies on the dynamic probabilistic integration PhU method.
Diao et al. [11] suggested a prediction-based PhU technique
that mitigates PhU errors at the coal mining subsidence center,
improves the accuracy of the PhU, and obtains large-gradient
deformation in the subsidence caused by coal mining. Yang et al.
[13], [24] conducted in-depth research on the problem of mining
subsidence probability integral prediction model, and proposed
a series of parameter optimization methods. These methods
have obtained relatively ideal results in obtaining large-gradient
deformation. Nevertheless, the deformation derived from these
methods represents only model predictions, rather than actual
and valid observations [25].

To summarize, the retrieval of substantial deformation gra-
dients in coal mining subsidence remains a critical aspect of
research and poses significant challenges [26]. The existing re-
search shows that PhU has a great influence on this problem [27].
Generally speaking, PhU methods can be categorized into two
main groups [28]. The first category is path-following methods
that integrate along different paths to obtain unwrapped results
[29]. This category of methods belong to the local optimization
PhU methods. The second category is the optimization-based
PhU methods represented by minimum cost flow, LP-norm and
statistical cost network-flow [30]. This category of methods
belongs to the global optimization PhU methods. These methods
have been widely used. However, the challenge of PhU in
handling large-gradient changes remains a bottleneck issue [31].
Recently, deep learning has carried out relevant researches in
the PhU problem [32], [33]. However, it is still not possible to
get the ideal result in the large-gradient deformation [34], [35].
Fortunately, deep learning provides novel ideas for extracting
large-gradient deformation in coal mining subsidence [36], [37],
[38], [39].

For the bottleneck problem of existing PhU methods, here, we
propose a novel multimodel fusion PhU Network, abbreviated
as MMPhU-Net. Firstly, we examine the characteristics of de-
formation areas caused by mining subsidence. The distribution
characteristics of gradient ambiguity numbers (k) are obtained
through simulation data, and then the simulation data are used
to establish the DInSAR simulation data sets required for deep
learning. Then, the SegNet and U-Net jointly train the simulated
data to obtain the k distribution maps of the deformation areas. In
addition, test time augmentation (TTA) and conditional random
field (CRF) are used to optimize the estimation results to obtain

better k distribution maps. Finally, the final mining subsidence
deformation results are obtained by combining the k distribution
maps and a novel two-step filtering (TSF) method. The proposed
MMPhU-Net method uses the deep learning method to directly
extract the k. Therefore, more ideal results can be obtained in
the large-gradient subsidence deformation areas. We use differ-
ent forms of data sets to validate MMPhU-Net. The proposed
MMPhU-Net can obtain more large-accuracy subsidence results
than the existing PhU methods, especially in the areas with
large-gradient subsidence deformation.

The rest of this article is organized as follows. In Section II, the
processing of DInSAR coal mining deformation monitoring and
PhU are reviewed. Subsequently, the proposed MMPhU-Net is
introduced in Section III. In Section IV, the experimental anal-
yses of different PhU methods are presented. Finally, Section V
concludes this article.

II. DINSAR PROCESSING AND PHU BACKGROUND

A. Review of DInSAR

The deformation value ΔR can be obtained by the following
[2]:

ΔR = − λ

4π
ψdefo (1)

where ψdefo is the absolute phase, λ is the radar incident wave-
length. Through (1) we can get ΔR. However, in the actual in-
terferometric processing, the interferometric phase is composed
of multiple phases. The phase can be expressed as follows:

ϕ = ϕtopo + ϕdefo + ϕflat + ϕatm + ϕnoise (2)

where ϕtopo is the topography information, ϕdefo is the surface
deformation, ϕflat is the flattened phase, ϕatm is the atmospheric
error and ϕnoise is the noise. With the help of digital elevation
model (DEM), the differential phase Δϕ can be obtained by

Δϕ = ϕdefo +Δϕtopo_e +Δϕorbit +Δϕatm +Δϕnoise (3)

where Δϕtopo_e is the residual topography phase caused by
the inaccuracy of DEM data and Δϕorbit is the orbit error
phase. These phase contributions can be weakened by theoretical
formula calculation, model fitting, filtering and other methods.
Furthermore, we can obtain the deformation phase through
the differential phase. However, at this time, the true phase is
wrapped in [−π, π].

B. Mathematical Foundation of PhU

The relationship between ψdefo and ϕdefo is as follows:

ψdefo = ϕdefo + 2kπ (4)

where k represents the gradient ambiguity number. The phase
gradient can be obtained by

Δψdefo(s, s− 1) = ψdefo(s)− ψdefo(s− 1)

= ϕdefo(s)− ϕdefo(s− 1) + 2Δk(s, s− 1)π

= Δϕdefo(s, s− 1) + 2Δk(s, s− 1)π (5)
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Fig. 1. (a) Simulated mining subsidence deformation absolute phase.
(b) Interferogram of (a). (c) Gradient ambiguity numbers distribution map
of (b).

where Δψdefo(s, s− 1) represents the unwrapped phase gradi-
ent, Δϕdefo(s, s− 1) is the wrapped phase gradient. Form (4)
and (5), we can obtain

ψdefo(s) = ψdefo(s− 1) + Δψdefo(s, s− 1)

= ψdefo(s− 1) + Δϕdefo(s, s− 1) + 2Δk(s, s− 1)π. (6)

Consequently, we can obtain the ultimate deformation phase
based on (6).The phase continuity assumption is a key premise of
conventional 2-D PhU methods. The equation can be expressed
in the following manner [8]:

Δψdefo(s, s− 1)

=

⎧⎨
⎩
ϕdefo(s)−ϕdefo(s−1) |ϕdefo(s)−ϕdefo(s−1) |≤π
ϕdefo(s)−ϕdefo(s−1)− 2π ϕdefo(s)−ϕdefo(s−1)>π
ϕdefo(s)−ϕdefo(s−1)+2π ϕdefo(s)−ϕdefo(s−1)< −π

.

(7)

According to (6) and (7), it can be seen that the commonly
used PhU method Δk(s, s− 1) has a value of 0,±1. However,
it is difficult to guarantee the value of Δk(s, s− 1) in areas
characterized by large-gradient deformation caused by coal mine
subsidence. Therefore, the existing PhU methods are difficult
to obtain ideal results in coal mining large-gradient subsidence
areas. It is one of the main factors limiting the extraction of
large-gradient deformation areas in coal mining.

III. MMPHU-NET METHOD

A. Phase Gradient Ambiguity Estimation

According to (4), it is evident that the difference between
the deformation wrapped and the true absolute phase is 2kπ.
In the event that an accurate value for k can be obtained, the
true phase can be accurately obtained. As shown in Fig. 1, it is
evident that the simulated coal mining subsidence deformation
interferogram and the corresponding k distribution map. The
equation for obtaining k is as follows:

k = round

(
ψdefo − ϕdefo

2π

)
(8)

where round(·) is the nearest integer operator. It can be seen
from Fig. 1 that the k corresponding to different interferometric
fringes are also different. The width of the fringes in the k
map can be considered as a buffer for the change of the k.
The k change buffer is smaller in the densely fringes area,
and the k change buffer is larger in the sparsely fringes area.
Therefore, even in the area of large gradient changes, if the k

can be obtained, the accurate PhU results can be obtained. Deep
learning can obtain the required data based on the characteristics
of the data. Moreover, deep learning has been widely used in
classification problems. Fortunately, through analysis, we found
that the extraction of k can be converted into a classification
problem. Therefore, we can use deep learning methods to obtain
k without considering large-gradient deformation areas.

B. Introduction of Network Architecture

In this article, we obtain higher accuracy k by fusing multiple
semantic segmentation models, which is named MMPhU-Net.
The advantage of this MMPhU-Net is to speed up the model
convergence and make the final detection results combine the
advantages of multiple basic models. As shown in Fig. 2, the fu-
sion model network used in this article is composed of U-Net and
SegNet, and they are the classical network structures commonly
used in remote sensing. The models acquire typical features of
images by simple and efficient encoder-decoder. The models
are mainly composed of convolutional layer, pooling layer, up-
sampling layer, soft-max layer, etc. [40], [41]. The U-Net used in
this article is an improved U-shaped structured network based on
FCN [42]. The encoding step is superimposed with the feature
maps obtained by deconvolution in the corresponding decoding
step, which in turn yields more refined category information.
However, jagged contour noise is generated at the edges of the
predicted k. SegNet is a symmetric structure with improved
mapping of the deconvolution layer compared to FCN [43].
SegNet can improve the spatial continuity of the target image,
but there is a certain degree of errors at the edge of the k map
detection area. Therefore, in order to combine the respective
characteristics of the two models, we perform model fusion
(ensemble generation) by means of Adboosting. In addition,
we post-processed the obtained k maps in order to obtain higher
accuracy k maps. TTA and CRF are used in the post-processing
process to optimize the detection effect of k maps [44], [45].

In this article, the model training experiment uses Tensorflow
deep learning framework, which is a deep learning framework
launched by Google in 2015. It encapsulates many deep learning
tools at a high level, such as Estimator, Keras, etc., and provides
good visualization functions [46]. In addition, the experiments in
this article were run under the following environment: Windows,
Intel(R) CPU E31505M v3 @ 2.3 Hz, graphics card NVIDIA
Quadro K2200, and 128G RAM.

The training model process consists of three main parts:
preprocessing, model fusion and postprocessing.

1) Preprocessing: It mainly contains three parts, such as data
labeling, image segmentation and data broadening. As shown
in Fig. 3, the simulated interferograms of different deforma-
tion areas are used as data samples and the corresponding
k-distribution feature maps as data labels, which together form
the initial training set. Considering the training environment,
data prediction scale and other factors, the initial training set
data are uniformly cropped into 64 × 64 size image blocks,
and the number is increased to 10 000 by the data augmentation
function to form the training set.
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Fig. 2. Schematic diagram of multimodel fusion PhU network architecture. (a) U-Net model. (b) SegNet model.

Fig. 3. Part of simulated mining subsidence deformation data used to train the
model in this article.

2) Model Fusion: In the process of multiple rounds of iter-
ative training, if the model recognizes the differences between
categories and typical features within categories more signifi-
cantly, the convergence speed of the model will be accelerated,
the corresponding overall accuracy will also be improved, and
the probability of missing detection and false detection will
gradually be decreased. In this section, we uses the Adboosting
algorithm is employed to realize the integration of multiple ele-
mentary models, thereby improving the accuracy of recognition.
Adaboosting is a machine learning algorithm based on greedy
theory to minimize the upper limit of the loss caused by wrong

classification. In each iteration, the overall training efficiency is
improved by reweighting the wrong samples of multiple weak
classifiers. Quantify the error of the multibasic model in each
round of training through the error loss function, as shown

Errm =

∑N
i=1 wiP (yi �= Gm(xi))∑N

i=1 wi

(9)

whereN is the categories of basic models(N = 2),wi is defined
as 1/N at initialization. Gm(xi) is the classification result.
P (yi �= Gm(xi)) is the probability that themth round of training
the i th basic model predicts a classification error.

Then, based on the model fusion coefficient αm calculated
in the previous step, the reasonable estimation of the weight of
each basic model is realized, as shown in

αm =
1

2
log

1− Errm
Errm

. (10)

Finally, the initial weight of each basic model is redistributed
based on the model fusion coefficient, and the next round of
training is started after updating the parameters, as shown in
(11). Through model fusion, we can improve training efficiency
and combine the characteristics of different basic models

wi(update) = wi · exp(−αm · P (yi �= Gm(xi))). (11)

3) Postprocessing: Although the model gradually converges
and saturates in accuracy after several rounds of training and
iterations, it is still possible to miss detection due to typical
features being partially generalized, etc., just by inputting the
images to be detected into the model. Therefore, it is necessary
to post-process the images to be detected. This section mainly
adopts two methods, TTA and CRF. The overall post-processing
process is as follows.
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a) The image to be detected is rotated, noise is added, etc..
b) The feature probability map output from the model is

inverted by performing the geometric operation in step
a) to recover the image plane coordinates of the image to
be detected.

c) Summing and averaging the nine feature probability maps,
and outputting the final results.

d) Using the original image and the final detection results as
the input to the CRF, the classification results are corrected
according to the energy function.

C. Correction of Unwrapped Results

The results accuracy of MMPhU-Net are higher, however,
there will be a small amount of phase jumps at the intersection of
different gradient ambiguity numbers. Therefore, we introduce
a TSF method to correct the phase jumps and further improve
the PhU results accuracy. The nonlocal means filtering (NLMF)
method has superior edge preservation. Therefore, we use the
NLMF method to initially correct the PhU results. Here is the
equation

ψ′
defo =

1∑
ω

∑
(a,s)∈Q

ω · ψdefo(a, s) (12)

where ψ′
defo is the NLMF result, ψdefo(a, s) is the searched

block, Q is the search scope, and ω is a weighted value,
0 ≤ ω ≤ 1. Traditional NLMF is less efficient. Therefore, we set
the windows of searched phase block and Euclidean distance to
5×5 to improve the efficiency of NLMF. The smoothing factor
is 10. So as to further improve the accuracy of PhU, we perform
a quadratic correction on the residual phase, the equation is as
follows:

ψres = ψdefo − ψ′
defo (13)

ψ′
res = median

∑
(m,n)∈Q

ψres(m,n) (14)

ψ̂defo = ψ′
defo + ψ′

res (15)

where ψres is the filtered residual phase, ψres(m,n) is the
searched phase, and ψ′

res is the recovery phase of the residual
phase. The first step of NLMF has achieved a good result.
Therefore, the second step uses median filtering to correct the
residual phase (window is 7×7) to obtain the loss phase. Finally,
by (15) we can get the final deformation phase ψ̂defo. Form Fig. 4,
it is apparent that the phase accuracy has been significantly
improved after correction.

D. Generation of Training Data

The training data is reasonable or not is affecting the accuracy
of the gradient ambiguity numbers obtained by the deep learning
model. Therefore, in order to fully simulate the DInSAR mining
subsidence deformation monitoring interferograms. We simu-
lated 16 different subsidence deformation interferograms, and
during the model training, these 16 deformation interferograms
were deformed, stretched, and flipped to further increase the

Fig. 4. Comparison of unwrapped phase profiles before and after correction.

Fig. 5. Schematic representation of the proposed MMPhU-net method.

types of training data. Fig. 3 is part of simulated mining sub-
sidence deformation data used in this article. The categories of
simulated mining subsidence deformation interferograms used
in this article are diversified. We use the filtering method of our
previous research to filter the noisy interferograms (see [47]),
and use the filtered interferograms as the input. According to
(8), we can obtain the distribution maps of gradient ambiguity
numbers and use them as the output. In summary, the schematic
representation of the proposed method can be represented by
Fig. 5.

1) Step 1: According to the deformation characteristics of the
mining, the simulated data of the subsidence deformation
are obtained. In addition, hypergeometric noise is added
to the phase of simulated mining subsidence. In order to
obtain more accurate simulation data, we filter the noisy
interferograms, and use the filtered interferograms as the
input of the learning model.
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Fig. 6. Unwrapped results of simulated interferograms. (a) True phase, filtered interferogram, coherence map of sample 1, unwrapped results and unwrapped
errors of different methods. (b) True phase, filtered interferogram, coherence map of sample 2, unwrapped results and unwrapped errors of different methods.
(c) True phase, filtered interferogram, coherence map of sample 3, unwrapped results and unwrapped errors of different methods.

2) Step 2: According to (8), we can obtain the distribution
maps of the k, and use them as the output. Based on this
and step 1, the DInSAR mining subsidence deformation
monitoring data set is established.

3) Step 3: According to step 2, we use DInSAR mining
subsidence deformation monitoring data sets for training
and validating the network. In addition, we combine TTA
and CRF to optimize the training results. The accuracy of
prediction results has been further improved.

4) Step 4: The realistic subsidence deformation interfero-
grams are used as the input, and through step 3 we can
obtain accurate gradient ambiguity numbers distribution
maps. According to (4), we obtain the unwrapped defor-
mation phase of the realistic data. To improve the accuracy
even further, we introduce a TSF method to correct the
unwrapped phase of the deformation, and obtain the final
unwrapped results.

5) Step 5: According to the unwrapped phase obtained in step
4, we can further obtain the real subsidence deformation
result of the mining area.

IV. EXPERIMENTS AND DISCUSSION

In this section, we validate different PhU methods using the
simulated DInSAR mining subsidence deformation data sets and

the realistic SAR data sets. MMPhU-Net is compared with tra-
ditional model-driven methods, DLPU [48] and PUNet [36]. We
use the root-mean-square-error (RMSE) to assess the simulation
data results, which can be represented by the following equation:

RMSE =

√∑T
t=1 (ψt − ψ̂t)

2

T
(16)

where T is the number of pixel, ψt represents the unwrapped
phase, and ψ̂t represents the true phase.

A. Validation Using Simulated Data

Three sets of simulated DInSAR mining subsidence defor-
mation data are employed to examine the results of various
PhU methods. Fig. 6(a) is the experimental data and results of
sample 1. The filtered interferogram has a significant phase dis-
continuity, and the coherence of the deformation center is poor.
Therefore, the results of MCF and PUMA produce noticeable
unwrapped errors in the deformation centers. Although branch-
cut and SNAPHU obtained ideal results in mining subsidence
centers, obvious unwrapped errors occurred in discontinuous ar-
eas. DLPU seems to be able to obtain relatively ideal unwrapped
results. However, it can be seen from the unwrapped errors
that DLPU still produces phase loss in the deformation centers.
Compared to previous methods, PUNet can achieve superior
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unwrapped results. Unfortunately, the center of the subsidence
deformation and its surrounding areas still produce obvious
errors. The results of MMPhU-Net are closest to the true phase,
especially in the center of subsidence deformation. MMPhU-Net
can almost completely obtain the unwrapped phase of the mining
subsidence center. It can be further verified from RMSEs that
the MMPhU-Net method is the best among several methods.
Moreover, the reason why the MMPhU-Net unwrapped result
RMSE is 0.6573 rad is that the error is mainly generated at the
edge of the interferogram, not the subsidence deformation area.
Sample 2 is a mining subsidence area with relatively irregular
deformation, and the filtered interferogram is relatively clear.
However, MCF and PUMA still produce obvious errors in the
mining subsidence centers, and the RMSEs of the errors are
0.8313 and 0.7745 rad, respectively. Similar to the experimental
results of sample1, branch-cut and SNAPHU did not generate
errors in the centers of the mining subsidence, but still produced
obvious unwrapped errors at the edge of the subsidence deforma-
tion area, and the RMSEs of the unwrapped errors were 0.7781
and 0.6694 rad, respectively. The deep learning PhU methods
have better robustness. Therefore, DLPU and PUNet can obtain
superior unwrapped results compared to the previous methods.
Although the RMSE of DLPU is only 0.4332 rad, unfortunately,
DLPU still produces a relatively obvious unwrapped errors in
the center of deformation. The unwrapped results of PUNet in
the center of deformation are significantly better than DLPU.
However, the RMSE of PUNet is 0.5751 rad, which still has
obvious unwrapped errors in the deformation center and sur-
rounding areas. MMPhU-Net can still obtain relatively favorable
results, with a RMSE of the unwrapped error at only 0.2102
rad, representing the best result among several PhU methods.
Sample 3 is a deformation area composed of two adjacent de-
formation. Moreover, the deformation characteristics are more
complex, and the filtered interferogram produces serious phase
discontinuity. It can be seen that all traditional model-driven PhU
methods produce obvious unwrapped errors. In particular, MCF
can hardly accurately obtain the phase of the center. The RMSEs
of branch-cut, MCF, SNAPHU and PUMA are 1.1241d, 20.324,
1.0293, and 1.2961 rad, respectively. DLPU produced relatively
obvious unwrapped errors at the center of the deformation, with
a RMSE of 1.2016 rad. The RMSE of PUNet is 0.5677 rad,
which is the best among the previous methods. However, a small
amount of unwrapped errors is still produced in the deformation
center area. It can be seen that the existing PhU methods have
been unable to obtain ideal results. However, MMPhU-Net can
almost completely obtain the phase of the mining deformation
area, and the RMSE of unwrapped error is only 0.4518 rad,
which further proves that the proposed MMPhU-Net is the best
among several methods.

B. Validation Using Realistic Data

In this section, realistic mining subsidence deformation data
sets of GaoFen-3 SAR are used to verify the performance of dif-
ferent PhU methods. Fig. 7(a) is the distribution map of realistic
GaoFen-3 SAR data experiment. Fig. 7(b) is the DEM of the
realistic data. Fig. 7(c)–(e) are the filtered interferograms in the

Fig. 7. Distribution map of realistic data experiment data. (a) Red rectangle
indicates the coverage of the GF-3 data used for validation. (b) DEM of the red
rectangle. (c)–(e) Filtered interferograms in the red rectangles of (b).

red rectangle of Fig. 7(b). From Fig. 7(c), it is evident that a clear
phase discontinuity exists in the center of the interferogram.
The fringes in the central area of the interferogram in Fig. 7(d)
produce severe aliasing. It can be seen from Fig. 7(e) that the
interferometric fringes in the edge of the subsidence deformation
are relatively clear, but there are obviously serious discontinu-
ities in the deformation center. Fig. 8 are the experimental data of
Fig. 7(c)–(e) and the results of different PhU methods. Fig. 8(a) is
three sets of real data interferograms and coherence maps used to
verify the performance of different PhU methods. The coherence
of the mining subsidence deformation centers is poor, which
will have a more obvious impact on the PhU. From the PhU
results of area 1, it is observable that the traditional model-driven
PhU methods in the edge area of mining subsidence can obtain
relatively ideal results. Nonetheless, noticeable PhU errors are
present in the areas of phase discontinuity. Among the traditional
model-driven PhU methods, only branch-cut can obtain a small
amount of deformation phase, and other methods unable to
obtain accurate PhU results. However, the deep learning PhU
methods of DLPU, PUNet, and MMPhU-Net can still obtain
satisfactory results in the areas of subsidence deformation cen-
ters, which can better reflect the real situation of subsidence. The
deformation center of subsidence in area 2 has obvious interfer-
ometric fringe aliasing phenomenon. Therefore, the unwrapped
results of traditional model-driven methods cannot obtain ideal
PhU in the deformation center of subsidence. DLPU and PUNet
can obtain better PhU results than traditional model-driven meth-
ods. However, comparing the subsidence deformation area, both
methods have different degrees of PhU errors. MMPhU-Net can
take into account the advantages of different network models.
Therefore, MMPhU-Net can obtain favorable results even in the
subsidence center area with large-gradient changes. The fringes
of the mining subsidence deformation area 3 are relatively clear.
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Fig. 8. Experimental results on real data. (a) Interferograms and coherence maps of different samples. (b) Deformations obtained by different PhU methods.
(c)–(e) Profiles through the deformation center.

However, due to the influence of large-gradients or high-noise,
the fringes of the filtered interferogram are more complicated.
Based on the PhU results obtained from the branch-cut method,
it is evident that a small amount of deformation phase in the
mining subsidence center can be obtain, however, it still pro-
duces obvious PhU errors. The PhU errors of MCF, SNAPHU
and PUMA results in area 3 are more obvious. Especially in
the deformation centers, these three methods can hardly obtain
deformation results. DLPU can better reflect the characteristics
of deformation. However, similar to the simulation data results,
DLPU still has obvious phase loss in the center of subsidence
deformation. PUNet and MMPhU-Net method can better obtain
the deformation of subsidence centers, and can more accurately
reflect the actual situation of mining subsidence deformation.
We obtained profiles through the centers of the three mining
subsidence areas. Fig. 8(c) is the profiles of the different PhU
methods results in area 1. It is evident that model-driven PhU
methods can obtain satisfactory unwrapped results along the
edges of subsidence areas; nevertheless, these methods fail to
obtain satisfactory results in the subsidence center. DLPU and
PUNet can obtain part of the deformation amount at the center
of deformation. However, similar to the model data results,
their PhU results will produce obvious phase loss at the center
of deformation. In contrast, the profile of MMPhU-Net can
better describe the deformation characteristics of the mining.
Therefore, it can be proved that MMPhU-Net not only can
solve the PhU problem in the easy area, but also can obtain
satisfactory PhU results in the large-gradient deformation area.
From Fig. 8(d), we can see the results of traditional model-driven
methods are relatively similar, and these methods obviously
produce losses in the deformation center of subsidence. Similar
to the first experiment, both DLPU and PUNet can obtain ideal
results. However, a single deep learning network model is prone

to underestimation, resulting in obvious phase loss at the center
of the deformation. However, the MMPhU-Net method can still
accurately reflect the deformation of the coal mining area. The
profiles of MCF, SNAPHU, and PUMA in Fig. 8(e) are relatively
similar, with noticeable errors apparent in the central subsidence
areas. The profile of branch-cut coincides with the profile of
MMPhU-Net with a small number of points, but branch-cut still
has obvious loss phenomenon. Similar to the previous results,
the general trend of the PhU results of DLPU and PUNet is
similar to that of MMPhU-Net. However, phase loss occurs in
the subsidence center area. MMPhU-Net still can better obtain
the basic characteristics of deformation.

V. CONCLUSION AND DISCUSSION

A novel PhU method based on multilearning network model
fusion named MMPhU-Net is proposed. This method can obtain
the deformation center in mining area, especially the problem
of obtaining the deformation center caused by large-gradient
changes. In this article, the fusion model network is composed
of U-Net and SegNet, and trained the fused multimodel learning
network by using the interferograms as the input and the k distri-
bution maps as the output. Finally, the k distribution maps of the
deformation area are obtained through the trained multimodel
fusion network, and the final deformation phase is obtained by
combining a TSF method. We use three sets of simulated data to
analyze the MMPhU-Net. The results prove that MMPhU-Net
can achieve better results than commonly used PhU methods.

From the three sets of realistic GaoFen-3 SAR substance de-
formation data experiment, in the actual data processing process,
the fringes in the center area of mining substance deformation
are obviously damaged. Existing PhU methods are prone to
unwrapped errors. By expanding the deformation area, it can
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be seen that the existing methods have produced obvious PhU
errors. Although branch-cut can obtain a small amount of defor-
mation of the subsidence deformation centers, it still produces
obvious errors due to high-noise and large-gradient changes.
From the profiles through the centers of the subsidence, it can
be seen that the existing PhU methods can obtain good results
in the deformation edge areas, however, there are obvious errors
in the deformation centers, which caused serious deformation
loss phenomenon. However, the MMPhU-Net proposed in this
article not only achieves the same results as the existing methods
in the deformation edge areas, but also achieves ideal unwrapped
results in the deformation centers.

Semantic segmentation model has gradually become the
leader in the field of weakly supervised classification-pixel
segmentation, and with the introduction of residual module,
attention mechanism and other structures, dozens of network
variants have evolved. But not all of them are suitable for the
research content of this manuscript. In the process of selecting
the basic model, this article mainly considers the following two
aspects: First, the overall computational complexity should not
be too high, and the model parameters should be kept at a low
level to facilitate subsequent algorithm processing and system
deployment. Second, the size and shape of the k to be detected on
the influence are different. The model needs to extract multiscale
features of the target region, and retains high gradient edge
detection accuracy. Based on the above two aspects, we decide to
choose U-Net and SegNet as our basic network structures, and
improve the training effect through Adboosting and the final
extraction effect through postprocessing.
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