
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 5193

Weighted Pseudo-Labels and Bounding Boxes for
Semisupervised SAR Target Detection

Zhuangzhuang Tian , Wei Wang , Kai Zhou , Xiaoxiang Song , Yilong Shen , and Shengqi Liu

Abstract—Synthetic aperture radar (SAR) image target detec-
tion methods based on semisupervised learning, such as the mean
teacher framework, have shown promise in diminishing the issue
of limited labeled data. However, several challenges exist in current
methods. First, data augmentation techniques designed for optical
images may not be suitable for SAR images due to differences in
imaging methods. In addition, the contribution of pseudo labels
remains constant during the initial retraining stage can lead to
degradation in prediction results. Moreover, the low quality of
predicted bounding boxes poses a challenge for effective retraining.
To address these challenges, we propose an end-to-end semisuper-
vised detection method based on the mean teacher framework.
To enhance the robustness of training, we first introduce SAR-
specific data augmentation techniques, including multiplicative
noise, which effectively increase the diversity of training samples.
Second, we propose a method that weights the losses of pseudo-
labeled data using a hard-sigmoid function, gradually improving
the importance of pseudo-labeled data during retraining, thereby
alleviating their potential negative impact on the training process.
Finally, we propose an IoU-aware subnetwork to incorporate high-
quality pseudo-labeled bounding boxes into retraining, allowing
them to contribute to network adjustments while mitigating the
impact of low-quality samples. Experimental evaluations on pub-
licly available SAR image datasets demonstrate the effectiveness of
our proposed method in improving the target detection capability
of semisupervised SAR target detection.

Index Terms—Convolutional neural networks (CNNs), deep
learning, object detection, semisupervised learning, synthetic
aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active microwave
remote sensor that provides high-resolution and super-wide

remote sensing images in all-day and all-weather conditions.
SAR automatic target recognition (ATR) has rapidly developed
alongside advancements in SAR imaging technology. Accurate
target detection in SAR images is a significant and valuable
research area.
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In recent years, deep learning-based methods, particularly
convolutional neural networks (CNNs), have demonstrated su-
perior performance in computer vision and natural language
processing, thanks to the increase in data size and computa-
tional capabilities. Similarly, CNN-based methods have shown
promising results in various fields of SAR images due to their
powerful feature extraction capabilities [1], [2].

Andrews [3] explored the use of active learning to selectively
label “most helpful” samples, thereby reducing the amount of
data required for training. Jahan et al. [4] utilized a cross-modal
knowledge distillation framework for learning SAR image clas-
sification from an electro-optical image classification model,
and designed a sampling strategy to balance the instance and
class sampling, thus to improve the performance on tail classes.
Inkawhich [5] proposed to obtain a global representation model
by self-supervised learning on a large pool of diverse and unla-
beled SAR data, and the model is then used as a fixed feature
extractor. A classifier is trained to partition the feature space
given the few-shot support samples. Cui et al. [6] proposed
incorporating attention mechanisms into FPN and adopting
dense connections to improve detection performance in complex
scenes. Some researchers have made advancements in target
detection for SAR ships by improving different variants of
YOLO [7], [8]. In addition, for inshore SAR ships with complex
background, especially ports that are closely distributed and
arbitrarily oriented, rotated target detection has also received
the attention of researchers. Liu et al. [9] integrated the global
multiscale features with an attention mechanism, and proposed
an rotation target detection method.

Although the above CNN-based methods have shown positive
results in SAR target detection, most of them rely on fully
supervised learning, which requires large-scale labeled training
samples. However, labeled SAR images at the target-level are
scarce in real-world situations, despite the abundance of SAR
images. Labeling SAR images requires experienced laborers and
material resources. The lack of labeled training data can degrade
detection performance. As a result, semisupervised learning
methods have recently gained attention from researchers [10].
These methods require only a small amount of labeled samples
and focus on utilizing unlabeled or weakly labeled samples to
improve detection performance.

In the context of semisupervised target detection, we are inter-
ested in semisupervised approaches that generate pseudo-labels
and employ data augmentation. In this approach, detectors are
initially trained using limited labeled samples and then used to
predict pseudo-labels for unlabeled samples. The detectors are
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subsequently retrained based on these pseudo-labeled unanno-
tated samples. Data augmentations are applied to improve the
generalization and robustness of the detectors, with the mean
teacher framework [11], [12] enhancing training stability by
gradually evolving the teacher model and guiding the learning
of the student model.

However, the mean teacher frameworks still face three chal-
lenges in SAR image target detection. First, SAR imaging
methods differ from those used in optical images, making data
augmentations designed for optical images potentially unsuit-
able for SAR images. Therefore, it is necessary to find suitable
data augmentations for SAR images.

Second, the existing method [13], [14], [15] treats the loss of
both real and pseudo labels with a fixed ratio during the retraining
phase. However, we have observed that the inclusion of pseudo-
labeled data can deteriorate prediction results at the beginning
of retraining. Therefore, the utilization of a fixed ratio between
real and pseudo labels poses a potential risk of compromising
the training process.

Finally, the low quality of predicted bounding boxes poses
a dilemma for retraining. Some methods do not consider the
pseudo label of the bounding boxes during retraining, resulting
in the network being unable to adjust its parameters based on the
losses of the bounding boxes. Conversely, directly incorporating
the bounding boxes can degrade the retraining process.

To address these issues, we propose an end-to-end semisuper-
vised detection method based on the mean teacher framework.
First, considering the characteristics of SAR images, we intro-
duce data augmentation methods such as multiplicative noise.
Data augmentation is applied to the input data of the student
network to enhance training robustness. Second, due to the
instability of pseudo-labeled data in the initial retraining stage,
we propose a method to weight the losses of pseudo-labeled
data using a hard-sigmoid function. This gradually improves
the importance of pseudo-labeled data during retraining. Finally,
to incorporate high-quality pseudo-labeled bounding boxes into
retraining, we propose an IoU-aware subnetwork that adjusts
the participation of the bounding boxes based on their qualities.
This allows high-quality pseudo-labeled samples to contribute to
network adjustments while reducing the impact of low-quality
ones. Experiments on publicly available SAR image datasets
demonstrate that our proposed method effectively improves the
target detection capability of semisupervised target detection.

II. RELATED WORK

A. Target Detection

CNN-based target detection methods can be categorized into
two types based on their detection process: 1) two-stage detec-
tors and 2) single-stage detectors. Two-stage detectors, such as
faster R-CNN [16] and FPN [17], follow a sequential approach.
They first extract region proposals, which are candidate regions,
from the input image. These detectors then classify the objects
and regress the bounding boxes based on these regions. On
the other hand, single-stage detectors, including the YOLO se-
ries [18], [19], [20] and single shot multibox detector (SSD) [21],

directly predict the classification and bounding boxes without
the need for region proposals. These methods have gained
widespread adoption in SAR images and have demonstrated
promising results.

Moreover, the transformer-based target detection method
known as DETR [22], [23], [24], [25] has gained significant
popularity as a research focus in recent years. DETR tackles
object detection as a direct set prediction problem, employing a
Transformer encoder–decoder architecture [26]. It encompasses
a set-based global loss that enforces unique predictions through
bipartite matching. By leveraging a fixed, small set of learned
object queries, DETR analyzes the relationships between objects
and the overall image context, enabling it to generate the final set
of predictions in a parallel manner. This parallel nature endows
DETR with remarkable speed and efficiency.

B. Semisupervised Learning in Classification

Semisupervised learning methods leverage both labeled and
unlabeled data during the training process. In the domain of im-
age classification, these methods can be broadly categorized into
two main approaches: 1) consistency regularization and 2) self-
training. Consistency regularization assumes that the model’s
predictions should remain consistent when small perturbations
are introduced to the unlabeled data. Commonly used perturba-
tions include image augmentations [27], [28], [29], adversarial
training [30], [31], and model-level perturbations [11], [32]. On
the other hand, self-training methods treat the predictions on
unlabeled data as pseudo labels, which are then incorporated
into the retraining process. Commonly used methods, such as
MixMatch [33], FixMatch [34], and debiased self-training [35],
employ the aforementioned steps to accomplish their objectives.

C. Semisupervised Learning in Detection

Semisupervised target detection methods draw inspiration
from semisupervised classification and can also be classified
into consistency regularization and self-training approaches. In
current detection frameworks, such as STAC [13], Unbiased-
Teacher [14], [36], Soft-Teacher [15], and LabelMatch [37],
these two techniques are often combined. STAC employs a
pretrained model to generate highly confident pseudo labels, and
subsequently fine-tunes the network model by enforcing con-
sistency using strong data augmentation. Mean Teachers [11],
on the other hand, update the teacher model by employing
an exponential moving average (EMA) of the student model’s
predictions over different iterations. This EMA technique en-
hances the stability of the teacher model and improves the
quality of the predicted pseudo labels. Soft Teacher predicts the
confidence of the pseudo-labels and selects retraining samples
while weighting their losses based on the confidence scores.
LabelMatch framework introduces redistribution mean teacher
and label assignment mechanism to address the label mismathch
problems during self-training. However, it is worth noting that
the existing research on these methods primarily focuses on the
classification task, with limited attention given to the localization
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Fig. 1. Overview of the proposed semisupervised end-to-end detection framework.

task, which is an integral part of target detection and cannot be
overlooked.

III. METHODOLOGY

The framework of our end-to-end detector is presented in
Fig. 1. The detector consists of two models: 1) the teacher
model and 2) the student model. The learning process can be
divided into three stages: 1) supervised learning, 2) pseudo-label
generation, and 3) semisupervised learning. Initially, we train the
teacher model using the available labeled training samples and
utilize it to generate pseudo labels for the unlabeled training
samples. Subsequently, the student model is trained using a
combination of labeled and pseudo-labeled training data. It
is important to note that distinct data augmentation strategies
are employed for pseudo-label generation and student model
training. Furthermore, the teacher model is an EMA of the
student model over a certain number of iterations. The fol-
lowing paragraphs provide detailed explanations of data aug-
mentations, hard-sigmoid weighting and adaptive target box
involvement.

A. End-to-End Detection Framework

The proposed end-to-end pseudo-labeling method is based on
the mean teacher framework. The method comprises a teacher
model and a student model, which facilitate the joint training of
labeled and unlabeled data using a specified data sampling ratio.
In each training iteration, the teacher model generates pseudo
labels for weakly augmented unlabeled images. Subsequently,
the student model is trained using both the labeled images
with ground-truth labels and the strongly augmented unlabeled
images with pseudo labels. As a result, the overall objective
loss, denoted as L, consists of a supervised loss Ll, and an

unsupervised loss Lu. Specifically, it can be defined as follows:

L = Ll + αLu
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whereLcls represents the classification loss,Lreg denotes the box
regression loss. Meanwhile, xl and yl are the labeled image and
the corresponding label, respectively, xu and yu correspond to
the labeled image and its corresponding label, respectively. Nl

and Nu represent the total number of labeled and unlabeled
images. The weight α is used to control the contribution of
the unsupervised loss. In addition, wi

cls and wi
reg represent the

weights used to balance the classification loss and box regression
loss during the unsupervised learning phase.

At the outset, both the teacher and student models are ini-
tialized with random weights. During the training process, the
weights of the teacher model are progressively updated from the
student model utilizing an EMA strategy. This approach ensures
that the teacher model assimilates the accumulated knowledge
of the student model over the course of training. The overview
of semisupervised end-to-end detection framework is shown in
Fig. 1.

B. Data Augmentation

The proposed detection framework employs two augmenta-
tion strategies, weak and strong augmentation, for the teacher
model and student model, respectively. This approach introduces
a form of consistency regularization widely utilized in semisu-
pervised learning algorithms. Weak augmentation involves a
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standard flip augmentation, randomly flipping images horizon-
tally with a 50% probability. In contrast, strong augmentation
offers greater diversity.

Numerous strong data augmentation methods have been de-
veloped for optical images and achieved good results. The com-
monly used methods include exposure adjustment, sharpness
adjustment, color jitter, defocus, and so on. However, their effec-
tiveness may not extend to SAR images due to the fundamental
differences in imaging mechanisms between SAR and optical
sensors. SAR images possess distinct characteristics that set
them apart from optical images, rendering the aforementioned
augmentation methods less applicable.

In SAR imaging, electromagnetic waves scatter in various di-
rections and interfere with each other after hitting the target sur-
face. This interaction of back-scattered electromagnetic waves
engenders variations in pixel intensity, resulting in speckle noise.
Typically, speckle noise is modeled as multiplicative noise.
In consideration of the unique properties of SAR images, we
propose the following data augmentation methods for the student
model.

1) Pixel Dropout: In SAR images, the echo waves within the
same resolution cell typically exhibit different phases, resulting
in enhanced or weakened signals during coherent integration.
Consequently, speckle noise manifests as random variations at
the pixel level. Inspired by the concept of cutout [38], we propose
the utilization of pixel dropout as a data augmentation technique.
Specifically, pixel dropout involves randomly setting a fraction
of pixels in the images to zero.

Cutout and pixel dropout differ primarily in terms of the
occluded size in the spatial domain of the image. Cutout involves
removing contiguous sections of the input images, resulting in
rectangular occluded areas of relatively larger size. In contrast,
pixel dropout selectively eliminates certain pixels in the input
images with a given probability, resulting in randomly dispersed
occluded areas.

Pixel dropout serves two key purposes. First, it simulates the
variations caused by coherent integration, replicating the speckle
noise phenomenon. Second, it encourages the model to reduce
reliance on specific prominent features, enabling generalization
to more complex scenarios. By introducing pixel dropout as a
data augmentation technique, we seek to enhance the robustness
and adaptability of the model.

2) Multiplicative Noise: Speckle noise in SAR images can
be effectively modeled as multiplicative noise [39], where the
resulting SAR image can be seen as the product of the original
signal and the speckle noise. The presence of speckle noise
directly influences the gray values of the image, with larger
variances indicating a greater impact on the gray values. To
incorporate this characteristic into data augmentation, we in-
troduce multiplicative noise.

By applying multiplicative noise as a data augmentation
technique, we aim to fine-tune the signal-to-noise ratio of SAR
images. This process involves multiplying all pixels in the image
by random values within a predetermined range. This injection
of multiplicative noise serves two purposes: first, it encourages
the network to learn more robust features by randomly adjusting
pixel values with a given probability. Second, it enables the

Fig. 2. Impacts of the introduced data augmentation methods. (a) Original ex-
ample image. (b) Effect after pixel dropout processing. (c) Effect after applying
multiplicative noise processing.

student model to adapt to SAR images with varying noise
intensities, enhancing its generalization capability.

Fig. 2 depicts the impacts of pixel dropout and multiplicative
noise on a sample SAR image, showcasing the processing effects
of the introduced data augmentation method.

In addition to the aforementioned methods, SAR images from
different sources may undergo contrast enhancement through
different methods. To account for this variability, we further
include commonly used brightness jitter and contrast jitter as
data augmentation techniques. These methods help the student
model adapt to SAR images with diverse contrast characteristics.

C. Hard-Sigmoid Weight

Semisupervised learning incorporates both real labeled data
and pseudo-labeled data. In the initial stages of training, the
quality of pseudo-labels is typically lower compared to the real
labels. The loss value based on pseudo-labels stays consistent
throughout the semisupervised learning progress can result in
a deterioration of the training effect. Kihyuk Sohn et al. [34],
argued that by screening the generated pseudo-labels, the model
can acquire more high-confidence pseudo-labels during training,
thereby obtaining a natural curriculum “for free.” However,
this method still overlooks the balance between real labels and
pseudo-labels, as well as the network’s adaptation to the data
source during fine-tuning. Hence, it is necessary to devise a
weighting method for pseudo-label data.

In designing the weighting method, we adhere to the following
guidelines. First, since pseudo-label data is the predominant
training data in semisupervised learning, it should be involved
in the training process from the outset. Second, the accuracy
of pseudo-labels should progressively improve as training pro-
gresses, and their weights should also increase accordingly,
without surpassing those of the real labeled data. Finally, the
generation of weights should be computationally efficient and
not overly resource-intensive

α =

⎧⎪⎨
⎪⎩

α1, t < t1

α1 +
(1−α1)(t−t1)

t2−t1
, t1 ≤ t ≤ t2

1, t > t2.

(2)

Based on the aforementioned considerations, we propose the
utilization of a hard-sigmoid weight, represented by the formula
shown in (2), where t indicates the tth iteration. The hard-
sigmoid weight function divides the entire training process into
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Fig. 3. Diagram of the hard-sigmoid weight.

three distinct stages. During the first stage, denoted by t < t1,
the hard-sigmoid function assigns a fixed low weight, denoted
as α1, to the loss values derived from the pseudo-labeled data.
This allows for the inclusion of pseudo-labeled data from new
data sources in the training process, while minimizing its impact
on the training results compared to the original real-labeled data.
Consequently, this mitigates the potential degradation of training
caused by the lower quality of pseudo-labeling in the initial
stages. As the training progresses into the second stage, which
occurs when t falls within the range of t1 to t2, we assume
that the network has undergone gradual fine-tuning to adapt to
the unlabeled data source, thereby leading to an improvement in
the quality of pseudo-labels. The hard-sigmoid function linearly
increases the weight value assigned to the pseudo-labeled data.
Once the weight value reaches 1, it no longer undergoes further
increment and the training enters the third stage. During this
stage, we posit that the network has fully adapted to the unlabeled
data source, and therefore, both the pseudo-label data and the
real-label data should be assigned equal weight. The weight
value remains fixed at 1 until the conclusion of the training
process. The variation of the hard-sigmoid weight in relation
to the epochs is depicted in Fig. 3.

The hard-sigmoid weight in our proposed method allows
for manual adjustments of the initial weight values, as well as
the rise epoch and duration epochs. These adjustments can be
made based on the specific training scenario and the dissim-
ilarities between the two data sources. It is worth noting that
the hard-sigmoid weight does not rely on the outcomes of each
epoch, which enables its predefinition and direct application
during training, resulting in minimal computational resource
requirements. However, one drawback of this approach is the
absence of adaptive adjustment capabilities.

D. Soft Box Weight

The performance of the detection method heavily relies on
the quality of the pseudo-labels. Empirically, we anticipate that
high-quality pseudo-labels would exert more influence during
training, thereby yielding superior training results. However,

TABLE I
COMPOSITION OF THE PROPOSED IOU PREDICTION BRANCH

most existing semisupervised target detection frameworks, de-
rived from recognition tasks, often evaluate pseudo-label quality
solely based on the utilization of classification scores. Further-
more, it has been observed in [15] that employing the intersection
over union (IoU) between student-generated box candidates
and teacher-generated pseudo boxes to assign foreground and
background labels, with reference to real-label data, can in-
advertently misclassify certain foreground box candidates as
negatives. This misclassification can hinder the training process
and impair overall performance. In practice, we have also noted
that directly leveraging the regression loss of target boxes during
semisupervised training can lead to a reduction in the final
detection performance.

Some target detection frameworks choose not to incorporate
the regression loss of the bounding boxes in semisupervised
training, thereby mitigating the impact of inaccurate pseudo-
labels. However, since the detection task encompasses both
classification and localization, this approach prevents the target
boxes from actively participating in the semisupervised learning
process, potentially diminishing the efficacy of the localization
task.

Through our experiments, we have observed that the weight
value assigned to the target box loss function significantly influ-
ences the detection performance. For instance, a weight value of
2 results in pronounced degradation effects, whereas a weight
value of 0.5 considerably mitigates these effects. Consequently,
we propose utilizing weight values to adjust the loss function
of the target boxes. Given the varying quality of the boxes,
weight values should be set individually. Higher quality boxes
are assigned higher weight values to encourage their greater
involvement in training, and vice versa. Traditionally, IoU has
been employed as the evaluation criterion for box quality. How-
ever, as previously mentioned, the accuracy of teacher-generated
pseudo boxes cannot be guaranteed, rendering the obtained IoU
unsuitable for reflecting box quality and potentially exacerbating
results.

To address this issue, we present a box quality evaluation
method based on predicted IoU. Specifically, we introduce an
additional IoU prediction branch besides the classification and
localization subnetworks, enabling the prediction of IoU be-
tween the predicted box and the real box. The IoU prediction
branch network shares similarities with the classification and
localization subnetworks, and its specific composition is de-
picted in Table I. To optimize parameter usage during training,
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Fig. 4. Diagram of the soft bbox weight.

we reuse the first two fully-connected layers in conjunction with
the classification and localization subnetworks, thereby reducing
the overall number of parameters required.

During supervised training, we utilize the IoU between the
predicted box and the real box as the training label. Subse-
quently, we employ the focal loss to calculate the loss function
between the predicted IoU and the real IoU label. This loss
function effectively addresses the imbalance inherent in difficult
and easy samples. Focal loss Lf is calculated, as shown in (3),
where IoUp is the predicted IoU, IoU is the real IoU, γ is an
adjustable factor that regulates the contribution of boxes with
different qualities to the loss, and Lb is the binary cross entropy
loss. As IoUp gets closer to IoU, it decreases the loss function
value, and vice versa. By reducing the loss for easier regression
samples, the training process becomes more focused on chal-
lenging samples with larger prediction errors. Simultaneously,
the real IoU value is employed to weight the regression loss of
the target box. Conversely, when training on unlabeled data, we
directly employ the predicted IoU values to weight the regression
loss. The diagram of the soft box weight is shown in Fig. 4

Lf (IoUp, IoU) = −β|IoU − IoUp|γLb(IoUp, IoU). (3)

The proposed method offers two key advantages. First, it
enables the weighting of the regression loss of the target box
based on the accuracy of the predicted target box. This approach
retains the target box in the training process, reducing the impact
of training degradation caused by low-quality boxes. Second,
the proposed method incorporates the accuracy of the target box

as one of the objective functions during training, resulting in
improved target box accuracy.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental results to evaluate the
detection performance of the proposed method. To provide a
comprehensive assessment, we introduce the dataset utilized,
the evaluation criteria employed, and share relevant imple-
mentation details. Subsequently, we present the experimental
results obtained and provide a thorough analysis to evaluate the
performance of the proposed method.

A. Datasets

The dataset utilized in our experiments is partitioned into
three nonoverlapping subsets: 1) the labeled training set, 2) the
unlabeled training set, and 3) the test set. The labeled training
set is exclusively employed for early supervised learning, while
both the labeled and unlabeled training sets are jointly utilized
for subsequent semisupervised learning. Finally, the test set is
employed to evaluate the overall performance of our method.

The dataset employed in our experiments is derived from
the publicly available HRSID dataset from the University of
Electronic Science and Technology of China [40]. This dataset
is collected from Sentinel-1B, TerraSAR-X, and TanDEM. The
image size is 800 × 800 and the resolutions contain 0.5, 1, and
3 m. There are 3642 images in the training set and 1962 images
in the test set. To ensure a fair and unbiased evaluation, we
randomly divided the training set into two parts in a ratio of
3:7, designating them as the labeled training set and unlabeled
training set, respectively.

B. Evaluation Criteria

In order to comprehensively evaluate the performance of the
different methods, we adopt the average precision (AP) and
average recall (AR) as the evaluation metrics.

The detection results can be grouped into three categories, in-
cluding true positive (TP), false positive (FP), and false negative
(FN). Specifically, TP means that the IoU between the predicted
box and the true box exceeds the threshold, and FP means that the
IoU does not exceed the threshold. If the real box does not have
a corresponding predicted box, then it is defined as FN. Thus,
the precision P measures the proportion of TP in all detection
results, and the Recall R measures the proportion of correctly
identified positives in all positives. P and R are defined as

P =
TP

TP + FP

R =
TP

TP + FN
. (4)

The AP computes the average value of P over the interval
from R = 0 to R = 1. A high AP value means better detection
performance and vice versa. According to the IoU between the
predicted and real target boxes and the size of the target, AP can
be further subdivided into AP50, AP75, APS, APM, and APL.
Among them, AP50 and AP75 mean that a detected box can be
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regarded as target when the IoU is greater than 0.5 and 0.75,
respectively. The higher the IoU, the higher the requirement for
the accuracy of the prediction box position. The AP50:95 means
that the IoU threshold is taken from 0.5 to 0.95 at intervals of
0.05 and averaged. This can more comprehensively reflect the
results of the accuracy of the detection box under different IoU
thresholds. APS, APM, and APL represent the detected targets
of different sizes, where APS counts the results of the target
area less than 32 × 32, APM counts the results of the target area
between 32 × 32, and 96 × 96, and APL counts that greater than
96 × 96.

The AR signifies the average value of the recall metric,
denoted asR, across the range of IoU thresholds from 0.5 to 0.95.
Specifically, AR100 represents the AR value calculated when
100 detections are provided per image. In addition, ARS, ARM,
and ARL correspond to the AR values specifically computed for
small, medium, and large objects, respectively.

C. Implementation Details

The faster R-CNN equipped with FPN is adopted as the
default detection framework in the proposed method. The back-
bone network of faster R-CNN is the ResNet-50 [41] pretrained
on ImageNet dataset [42]. The strides of anchor are 4, 8, 16,
32, and 64, and the ratios of anchor are 0.5, 1.0, and 2.0. RoI
pooling uses the RoIAlign with an output size of 7 × 7. The
network adopts the stochastic gradient descent algorithm with
momentum. In the initial supervised learning phase, the learning
rate, momentum and weight decay are 0.0025, 0.9, and 0.0001,
respectively. In semisupervised learning phase, the learning
rate is reduced to 0.00125, and the momentum and weight
decay remain unchanged. The total number of parameters in
our networks amounts to 41.349 M, with the backbone network
accounting for 23.508 M parameters. During semisupervised
training, we maintain a ratio of 1:1 between pseudo-labeled
samples and real labeled samples.

D. Comparison With the State of the Art

In order to evaluate the performance of the proposed method,
we conducted a comparative analysis with several representative
semisupervised target detection methods. The selected methods
for comparison are as follows: STAC, Unbiased Teacher, Soft
Teacher, and LabelMatch.

STAC [13] is a semisupervised learning framework along with
data augmentation. STAC chooses the highly confident pseudo-
labels of localized objects from the unlabeled image and updates
the model by enforcing consistency via strong augmentation.

Unbiased Teacher [14] trains teacher and student network
jointly. Two networks are given different augmented input im-
age. The student gradually updates the teacher network via
EMA. By applying EMA and focal loss, Unbiased Teacher
solves the preudo-labeling bias caused by class-imbalance.

Based on the teacher–student framework, Soft Teacher [15]
assesses the reliability of each box candidate generated by stu-
dent network to be a real background. The reliability is then used
to weigh the corresponding background classification loss. In
addition, Soft Teacher samples jittered boxes around pseudo box

candidates, and regresses them several times in teacher network.
The box regression variance is defined as localization reliability
and used to select the training sample for student network.

LabelMatch [37] recognizes that the semisupervised detection
framework faces challenges related to label mismatch at both
the distribution level and the instance level. To address this
problem, LabelMatch introduces a redistribution mean teacher
and a proposal self-assignment scheme. These mechanisms aim
to align labels at the distribution level and assign appropriate
labels to instances.

As a baseline, we employ the widely used faster R-CNN
framework, which shares the same network architecture as our
proposed methods. The key distinction lies in the fact that the
baseline network is trained only using labeled data, without any
semisupervised learning.

All of the aforementioned methods utilize the same backbone
network and parameters as the proposed method. The main
differences lie in their respective semisupervised training strate-
gies.

The target detection results of the proposed method and the
compared detection methods on SAR images are presented in
Table II. It is evident from the table that all semisupervised
learning methods exhibit improvements in Precision and Recall
when compared to networks trained solely with labeled data.

Regarding Precision, enhancements are observed across dif-
ferent target sizes. Specifically, LabelMatch demonstrates higher
Precision for large targets, while the proposed method excels in
detecting small and medium-sized targets. Overall, the proposed
method achieves the highest detection performance in terms of
AP50, AP75, and AP50:95, with improvements of 0.059, 0.103,
and 0.075, respectively, compared to the supervised method.

In terms of Recall, improvements are also observed for targets
of various sizes compared to the supervised learning method.
Similar to Precision, LabelMatch exhibits better recall rates
for large targets, while the proposed method performs well for
small and medium-sized targets. The proposed method achieves
an overall recall rate improvement of 0.058 compared to the
supervised method.

E. Ablation Study

In ablation study, we conduct detailed experiments to verify
our key designs. All ablation studies are conducted on the same
datasets.

Effect of Different Data Augmentation Methods: In addition
to the classical brightness adjustment, contrast adjustment, and
Gaussian blur, the proposed method also utilizes pixel dropout
and multiplicative noise as strong augmentation of the student
network. We compare the effects of different data augmentation
methods on the final detection performance, and the results are
shown in Table III. The results presented in Table III demonstrate
the impact of the introduced data augmentation methods on
the AP50, AP75, AP50:95, and AR100 metrics. Without the two
proposed augmentation methods, the values for AP50, AP75,
AP50:95, and AR100 are 0.738, 0.557, 0.485, and 0.564, respec-
tively. However, with the inclusion of pixel dropout, we observe
improvements of 0.008, 0.004, 0.006, and 0.001 in AP50, AP75,
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TABLE II
OVERALL EVALUATION OF DIFFERENT TARGET DETECTION METHODS

TABLE III
EFFECT OF DIFFERENT DATA AUGMENTATION METHODS

AP50:95, and AR100, respectively. Moreover, the application of
multiplicative noise further enhances these metrics by 0.002,
0.004, 0.004, and 0.003, respectively.

In addition to the two proposed methods, we also tried random
shadow and down scale. Random shadow simulates shadows
randomly in the image, while down scale decreases the image
quality by first downscaling and then upscaling the image.
However, both methods deteriorate the detection effect, as shown
in Table III.

In Table III, PD denotes pixel dropout, MN denotes multi-
plicative noise, RS denotes random shadow, and DS denotes
down scale.

Effect of Pseudo-Labeled Data Weight: To understand the
effect of the weight value of the pseudo-labeled data on
the training, we compare the detection results for the cases where
the weight values are 0, 0.5, 1.0, and 2.0, respectively. Mean-
while, we also compare the linear increase strategy, namely, the
weight value is increased linearly with the epoch.

In contrast to the linear increase strategy, which changes the
weight values of pseudo-labeled data throughout the training
process without finer adjustments for different stages, our pro-
posed hard-sigmoid offers greater flexibility in weight adjust-
ment, catering to the specific requirements of various training
stages. The experimental results are shown in Table IV. Our
findings indicate that the optimal results were obtained when the
weight value was set to 0.5. Conversely, using larger constant
values for the weights, along with a linear increase strategy,
negatively impacted the detection results. The proposed hard
sigmoid weight exhibited superior detection results in compar-
ison, underscoring the efficacy of our proposed method.

TABLE IV
EFFECT OF PSEUDO-LABELED DATA WEIGHT

TABLE V
EFFECT OF BBOX LOSS WEIGHT

Effect of Bbox Loss Weight: To assess the influence of different
box weights on the training outcomes, we varied the box weights.
Specifically, we set the weights to 0, 0.5, 1.0, and 2.0, respec-
tively, and evaluated their impact on the training results. The
experimental outcomes are presented in Table V. We observed
that the most favorable results were achieved when the box
weight was fixed at 0. This finding suggests that employing
a fixed positive weight may have a detrimental effect on test
performance. In contrast, the proposed soft box weight exhibited
an improvement in the training of semisupervised learning,
thereby providing a best detection results.

Detection Result Instances: Fig. 5 illustrates two distinct
scenarios: 1) the sea surface scenario in the top row and 2) the
near-shore scenario in the bottom row. In the figure, correctly
detected targets are represented by blue boxes, incorrectly recog-
nized targets by red boxes, and undetected missed targets by yel-
low boxes. It is evident that the proposed method demonstrates
effective ship detection in the simpler sea scene. However, in the
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Fig. 5. Examples of the detection results on HRSID dataset.

near-shore scenario, some false alarms and missed targets are
still present. This highlights the ongoing difficulty in detecting
SAR ship targets in near-shore scenarios, which will serve as a
crucial area for future method enhancements.

V. DISCUSSION

Despite the demonstrated superiority of the proposed method
in addressing SAR image target detection, a notable challenge
remains. Currently, there is a scarcity of data augmentation
techniques specifically designed for SAR images through digital
image processing. In our experiments, we randomly selected
labeled training samples. However, to bridge this gap, future
research endeavors should prioritize the identification of ap-
propriate training samples and the exploration of suitable data
augmentation methods for SAR images. Furthermore, in the case
of SAR ships, rotating boxes offer a more refined approach for
target labeling compared to horizontal boxes. Consequently, fu-
ture research should aim to explore the extension of the semisu-
pervised learning method to accommodate rotating boxes.

VI. CONCLUSION

In this article, we proposed an end-to-end semisupervised
detection method based on the mean teacher framework for SAR
image. We introduce data augmentation techniques, such as mul-
tiplicative noise, tailored to the characteristics of SAR images
to enhance training robustness. We also propose a weighting

method that utilizes a hard-sigmoid function to gradually in-
crease the importance of pseudo-labeled data during retraining,
mitigating the instability observed in the initial stages. Fur-
thermore, we introduce an IoU-aware subnetwork that selec-
tively incorporates high-quality pseudo-labeled bounding boxes
into retraining, enabling effective network adjustments while
minimizing the influence of low-quality samples. Experimental
results on publicly available SAR image datasets demonstrate
the efficacy of our proposed method in enhancing the target
detection capability of semisupervised target detection.
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