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Abstract—The landslide is a widespread and devastating natural
disaster, posing serious threats to human life, security, and natural
assets. Investigating efficient methods for accurate landslide de-
tection with remote sensing images has important academic and
practical implications. In this article, we proposed an LS-YOLO, a
novel and effective model for landslide detection with remote sens-
ing images. We first built a multiscale landslide dataset (MSLD) and
introduced random seeds in the data augmentation to increase data
robustness. Considering the multiscale characteristic of landslides
in remote sensing images, a multiscale feature extraction module
is designed based on efficient channel attention, average pooling,
and spatial separable convolution. To increase the receptive field of
the model, dilated convolution is employed to the decoupled head.
Specifically, the context enhancement module consisting of dilation
convolutions is added to the decoupled head regression task branch,
and then the improved decoupled head is to replace the coupled
head in YOLOv5s. Extensive experiments show that our proposed
model has high performance for multiscale landslide detection and
outperforms other object detection models (faster RCNN, SSD,
EfficientDet-D0, YOLOv5s, YOLOv7, and YOLOX). Compared
with the baseline model YOLOv5s, the AP of the LS-YOLO for
detecting landslides has increased by 2.18%–97.06%.
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I. INTRODUCTION

LANDSLIDES are one of the most common and destructive
disasters in mountainous regions [1], [2], [3], [4]. Often

triggered by earthquakes or heavy rains, they not only damage
infrastructure, such as roads, bridges, and electricity lines, but
also destruction of vegetation and soil, causing land degradation
[5]. In China, the vastness of the country, the large number of
mountains, and the abundance of year-round rainfall in a large
part of the country have led to a significantly higher frequency
of landslide disasters than in other countries. In particular, the
mountainous regions of Yunnan, Guizhou, and Sichuan in China
often experience large numbers of landslides. Thus, the accurate
detection of landslides is essential to prevent and respond to
landslide disasters [6].

Remote sensing imaging allows for real-time imaging of the
Earth due to its high spatial resolution and extensive coverage.
Landslide detection methods with remote sensing images can
be roughly divided into two categories: manual visual interpre-
tation and methods based on computer vision [1]. The manual
visual interpretation is performed by geological experts who
discriminate landslides based on their geometric, textural, and
other features in remote sensing images [7]. Although manual
visual interpretation of landslides has a high accuracy, it has
the disadvantages, such as being time-consuming, dependent on
the expertise of experts, and erroneous quantitative descriptions.
Thus, the manual visual interpretation makes meeting the re-
quirement for rapid landslide detection challenging [8], [9], [10].
The use of computer vision methods to identify natural disasters,
such as landslides, earthquakes, and glacial movements, with
remote sensing images has become a research hotspot with the
rapid development of remote sensing technology [11], [12], [13],
[14].

The methods based on computer vision provide promising
solutions to address the above problems and deep learning
being the most representative approach [15]. In recent years,
deep learning, a type of artificial neural network model, has
made remarkable strides in the field of object detection [16].
As deep learning advances, methods based on computer vision
have become the most widely used technique in the area of
landslide detection [12], [17], [18], [19], [20]. The deep learning
models have two categories: one-stage and two-stage models,
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depending on whether they require the generation of proposal
regions. Two-stage models make use of either a selective search
algorithm or the region proposal network to generate region
proposals, which are then employed for object detection. Rep-
resentative two-stage models are RCNN [21], fast RCNN [22],
faster RCNN [23], and mask RCNN [24]. One-stage models
consider all the positions of the input image as potential objects
and, subsequently, endeavor to classify each interesting area as
either the background or an object class. One-stage models are
faster and more efficient than two-stage models. Representative
models of one stage include SSD [25], EfficientDet [26], and
the series of YOLO [27], [28], [29], [30]. These techniques
have shown a remarkable enhancement in the precision and
speed of object detection when compared with the conventional
approaches.

Many scholars have explored the application of deep learning
methods to identify landslides. Li et al. [12] designed an inno-
vative graph convolutional network to detect landslides. Their
approach draws inspiration from the attention mechanism’s
capacity to focus on specific information, complemented by
different channels. Niu et al. [11] proposed the Reg-SA-Unet++
for landslide detection, which was based on Unet++. Their
model was improved by removing deep supervised pruning,
employing RegNet to replace the convolutional blocks, and
adding attention modules at each layer. Ghorbanzadeh et al. [31]
proposed a ResU-Net model and constructed a basic rule-based
OBIA to detect landslides. Ullo et al. [32] exploited the mask
R-CNN to detect landslides. Sameen and Pradhan [33] con-
ducted a comparison between a one-layer convolutional neural
network (CNN) and two corresponding deeper counterparts, as
well as residual networks to identify landslides. Cheng et al. [34]
proposed the YOLO-SA based on the group convolution, ghost
bottleneck, and attention mechanism to detect landslides.

Research on landslide detection using computer vision meth-
ods has achieved great progress. However, there are still some
problems that need to be further investigated. First, in the
existing publicly accessible landslide datasets, the landslide
samples are limited, the intraclass variation is small, and the
background is simple, making it challenging to effectively train
the models. Second, previous research on detecting landslides
using computer vision methods did not fully integrate landslide
features, such as a wide-scale range of landslide scale and diverse
shapes, resulting in poor accuracy of landslide detection and
difficulty meeting practical needs.

A novel landslide detection model (LS-YOLO) is proposed in
this article, which results in excellent performance in multiscale
landslide detection. Our major contributions can be summarized
as follows.

1) A multiscale landslide dataset (MSLD) is created, which
has the advantages of a significant number of landslide
samples, a high degree of intraclass variation, a wide range
of landslide sizes, and complex backgrounds.

2) We proposed the novel multiscale feature extraction
(MSFE) module to adequately extract landslide features
from several receptive fields by five parallel branches.
These branches consist of average pooling or spatial
separable convolution, which increases the depth of the

network and improves the landslide detection accuracy of
the model.

3) We improve the existing decoupled head. We applied
several dilated convolutions in the regression task of the
decoupled head. The combination of different dilated rate
convolutions helps to capture multiscale context informa-
tion and improve the landslide location accuracy of the
model.

The rest of this article is organized as follows. Section II
outlines the specifics of MSLD generation. Section III presents
the LS-YOLO model for detecting landslides. In Section IV,
comprehensive experimental results and analysis are presented.
Section V discusses the advantages and disadvantages of LS-
YOLO and future research work. Finally, Section VI concludes
this article.

II. LANDSLIDE DATASET

The methods based on deep learning to detect landslides
require a lot of landslide image data. However, the accessible
landslide datasets ineffectively train deep learning models due to
limited and similar landslide samples. For this reason, this article
built an MSLD. First, we collected two public landslide datasets,
the first being the Bijie landslide dataset created by Ji et al. [17].
The study area is located in Bijie, a northwestern part of Guizhou
Province, China. The region spans across an area of 26 853 km2

and its altitude ranges from 457 to 2900 m. Bijie is located in
the transitional slope zone between the Tibetan plateau and the
eastern highlands and is one of the most severe landslide areas
in China. The Bijie landslide dataset consists of 770 positive
sample images containing landslides and 2003 negative sample
images without landslides, acquired by the TripleSat series of
satellites between May and August 2018. The images have a
ground resolution of 0.8 m. As shown in Fig. 1(a), the red dots
indicate the spatial location distribution of the landslides.

The labels in the Bijie landslide dataset are used for in-
stance segmentation. Therefore, we research generated landslide
bounding boxes automatically based on the boundary points in
the mask files. This method ensures that generated labels are
suitable for landslide detection. The generation process of the
landslide detection labels is shown in Fig. 2.

The Bijie landslide dataset contains not only a large number
of landslide samples but also abundant negative samples, such as
mountains, villages, roads, rivers, forests, and agricultural lands.
However, all the positive sample images in the Bijie landslide
dataset contain one landslide and no images containing multiple
landslides, making it challenging to assess the performance of
models in multiple landslides detection.

Therefore, we gathered another available landslide dataset
to enrich the diversity and robustness of landslide data
(https://github.com/YhQIAO/LandSlide_Detection_Faster-
RCNN), which is named Southwest landslide dataset. As
shown in Fig. 1(b), this study area is widely distributed
and covers five provinces in southwestern China, including
Gansu, Sichuan, Guizhou, Yunnan, and Tibet. It is located
between 90°23′–106°39′E and 22°27′–33°56′N, and has
typical subtropical monsoon climate and alpine climate. The
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Fig. 1. Spatial distribution of landslides in the two datasets, respectively. (a)
Landslides location in the Bijie dataset [17]. (b) Landslides location in the
Southwest dataset.

Fig. 2. Landslide detection labels generation process for the Bijie landslide
dataset.

terrain’s elevation ranges from 500 to 4500 m, characterized
by interlaced mountains, towering peaks, deep valleys, and
an intricate network of rivers. Heavy rains account for more
than 50% of the annual total precipitation, resulting in frequent
landslide disasters. This landslide dataset consists of 500
positive sample images, each containing one or multiple
landslides. These images are labeled by experts in the field of

remote sensing using the LabelImg software to generate labels
in VOC format.

There are only 1270 images containing landslide in the men-
tioned two landslide datasets, which makes it difficult to train
landslide detection models with excellent performance. Unfor-
tunately, it is difficult to access big data in the landslide detection
domain. To cover these problems, we use a combination of
offline augmentation and online augmentation [35], [36]. First,
we employed offline augmentation on 1270 positive sample
images to significantly increase the diversity of the data and the
size of the dataset. The offline augmentation techniques include
geometric transformations (the clockwise rotation consists of
90°, 180°, 270°, flip operation, Salt noise injection, and Gaussian
noise injection) and color space transformations (image darken-
ing, image brightening, and contrast adjustment). Meanwhile,
to prevent the model from learning augmented data patterns,
this article introduces a random seed in the offline augmentation
process. Each positive sample image randomly selects five of
the above techniques for augmentation. As shown in Fig. 3, the
a-original, b-original, c-original, and d-original are the original
images. The first four rows of images are generated by using
offline augmentation on the four original images. The images e–j
are negative sample images without landslides in MSLD. Then,
we used online augmentation (Mosaic, Mixup, and Copy_paste)
during model training to train landslide detection models better.

The MSLD contains 7620 positive sample images with multi-
ple landslide types and 2003 negative sample images. As shown
in Fig. 4, the first row includes the loess landslide cases and
the second row includes the rocky landslide cases in MSLD. It
can be seen that the color and texture features of landslides in
MSLD are markedly dissimilar. Meanwhile, as shown in Fig. 5,
the shape and size of landslides in MSLD are notably different.

In summary, the MSLD has significant advantages, a large
number of landslide samples, a high degree of intraclass varia-
tion, a wide range of landslide sizes, and complex backgrounds.

III. METHODOLOGY

YOLO is a typical one-stage network model that was proposed
in 2015 by Redmon et al. [37]. After a series of development,
YOLOv2, YOLOv3, YOLOv4, and YOLOv5 were derived [38].
YOLOv5 has four versions, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x. The model size and detection accuracy increase
sequentially. The four versions differ only in the setting of
width and depth factors in the model. YOLOv5 consists of four
parts: input, backbone, neck, and head, respectively. The input
carries out data augmentation, adaptive anchor calculation, and
adaptive image scaling on input images before feeding them
into the backbone. The backbone transforms the input image
into multiscale feature maps and extracts the feature information
of targets. The neck fuses the different scale feature information
extracted from the backbone. The head performs object detection
and confidence calculation and outputs the prediction results of
the network.

Considering the favorable accuracy–size–speed tradeoff,
this article selects the YOLOv5s as the baseline model for
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Fig. 3. Various instances in the MSLD.

Fig. 4. Different landslide cases in MSLD.

optimization and designs a novel model for detecting multiscale
landslides with remote sensing images, called LS-YOLO.

A. LS-YOLO

Given the diversity of landslides in remote sensing images,
directly using the generic object detection model YOLOv5s to
high-precision detect landslides is challenging. To address this
issue, we designed the LS-YOLO model that has outstanding
performance in landslide detection.

As shown in Fig. 6, the features of LS-YOLO include the
following two main areas.

1) An MSFE module was proposed to improve the accuracy
of the model for landslide detection. The MSFE consists
of efficient channel attention (ECA) [39], average pool-
ing, and spatial separable convolution. We introduced the
MSFE into the neck of YOLOv5s.
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Fig. 5. Statistical of landslides shape and size in MSLD. (a) Landslides shape.
(b) Landslides size.

2) The decoupled head was improved to increase the ac-
curacy of the model for landslide locations. The context
enhancement module (CEM) consisting of dilated convo-
lution was employed to replace the 3×3 convolution in the
decoupled head regression task branch. The coupled head
in the YOLOv5s was replaced by our improved decoupled
head.

B. MSFE Module

The complexity and diversity of landslides in remote sensing
images make it difficult to effectively extract landslide feature
information by deep learning models. In this article, we designed
an MSFE module that effectively enhances the adaptability to
scales and nonlinearity of the model, ultimately improving the
performance of YOLOv5s for detecting multiscale targets. As
shown in Fig. 7, MSFE contains two branches, the first one is
a residual connection, which could mitigate gradient vanishing
and speed up model training. The second branch consists of
ECA, average pooling, and spatial separable convolution, which
could fully extract landslide feature information.

1) Efficient Channel Attention: ECA is a versatile plug-and-
play block that enhances the performance of CNNs [39]. ECA
consists of a squeeze module to condense global spatial informa-
tion and an excitation module to achieve channel interactions.
As shown in Fig. 8, after using global average pooling with-
out dimensionality reduction to aggregate features, the ECA
adaptively determines kernel size k. Then, the one-dimensional
(1-D) convolution with kernel size k is conducted on the feature
maps, followed by the Sigmoid function to obtain the channel
attention vector. The output feature maps are obtained by scaling
each channel of the input feature maps by multiplying the
corresponding element in the attention vector. The formulations
of the ECA are given as follows:

w = FECA(X) = σ(Conv1D(GAP(X))) (1)

Y = wX (2)

where σ is the Sigmoid function, and Conv1D denotes the 1-D
convolution with kernel size k. The kernel size k is determined
based on the channel dimensionality C adaptively. w denotes
the channel attention vector. X and Y represent the input feature

maps and the output feature maps, respectively

k = ψ(C) =

∣∣∣∣ log2(C)γ
+
b

γ

∣∣∣∣
odd

(3)

where |x|odd represents the nearest odd number of x. The γ and
b are the hyperparameters. We assigned the values of 2 and 1 to
γ and b.

2) Average Pooling: Average pooling works out the mean of
the pixels in the input feature map relevant area based on the
kernel size. The advantage of average pooling is that there is no
parameter to optimize; thus, overfitting is avoided. As shown in
Fig. 9, the computation of average pooling can be expressed as
follows:

FAP =
1

s× s

s∑
i=1

s∑
j=1

Xij (4)

where s denotes the kernel size, and Xij indicates the pixel value
of the point (i,j) in the computational region.

3) Spatial Separable Convolution: Spatial separable con-
volution splits a standard convolution operation into multiple
small kernel convolution operations in the spatial dimension.
As shown in (5) and (6), the k × k convolution is equivalent to
the branch consisting of k× 1 convolution and 1× k convolution⎡

⎢⎣
w11 · · · w1k

...
. . .

...
wk1 · · · wkk

⎤
⎥⎦
kk

=

⎡
⎢⎣
x1
...
xk

⎤
⎥⎦× [

y1 · · · yk
]

(5)

wij = xi × yj , (1 ≤ i, j ≤ k) (6)

where wij denotes the value of the point (i, j) in the k × k
convolution, xi represents the value of the point (i, 1) in the
k × 1 convolution, and yj denotes the value of the point (1, j)
in the 1 × k convolution. The number of parameters of k × 1
convolution and 1 × k convolution is (k + 1) + (1 + k) = 2k,
which is smaller than the number of parameters of the k × k
convolution when k > 2. Spatial separable convolution reduces
the module parameters, speeds up the model computation, and
increases the model depth. As shown in Fig. 10, the 3 × 3
convolution was decomposed into a 3 × 1 convolution and a
1 × 3 convolution.

In the MSFE module, the feature maps first go through ECA,
which has small parameters but brings significant performance
improvement. Then, the multiscale features of landslides are
fully extracted by five parallel lines, which are as follows:

1) average pooling;
2) 1 × 1 convolution;
3) continuous 3 × 1 convolution and 1 × 3 convolution;
4) continuous 3 × 1 convolution, 1 × 3 convolution, 3 × 1

convolution, and 1 × 3 convolution;
5) continuous 5 × 1 convolution, 1 × 5 convolution, 5 × 1

convolution, and 1 × 5 convolution.
The feature maps output from these five lines are then spliced

by channel, followed by a 1× 1 convolution to fuse the informa-
tion and downscale channels of feature maps. Finally, the output
feature maps of the two branches are summed in the spatial
dimension, which is considered as the output of the MSFE.
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Fig. 6. Overall framework of the proposed LS-YOLO.

Fig. 7. Structure of MSFE.

Fig. 8. Structure of ECA.

C. Improved Decoupled Head

As shown in Fig. 11, YOLOv5s shares parameters between
classification and regression tasks. However, some research has
shown that conflict exists between classification and regression
tasks [40], [41]. The classification task focuses on the texture
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Fig. 9. Calculation process of average pooling.

Fig. 10. Calculation process in 3 × 3 spatial separable convolution.

Fig. 11. Structure of coupled head in YOLOv5s.

information of the target and identifies the extracted features as
more comparable to those of the existing categories. Conversely,
the regression task prioritizes the edge information of the target
and adjusts the anticipated bounding box parameters based on
the positional coordinates of the ground truth. Thus, decoupling
the classification and regression tasks will improve the detection
performance and convergence speed of the model.

In this article, the decoupled head was improved. The structure
of the decoupled head before and after the improvement is
shown in Fig. 12. In the original decoupled head [42], two
parallel branches are used to decouple the classification and the
regression tasks to mitigate conflict. Each branch comprises a
3× 3 convolution and a 1× 1 convolution. Considering the mul-
tiscale characteristic of landslides in remote sensing images, this
article used the CEM [43] consisting of dilated convolutions to
substitute the 3 × 3 convolution on the regression task branch to
improve the model’s location accuracy for multiscale landslides.

As shown in Fig. 13(a), the CEM comprises 1× 1 convolution
and 3 × 3 dilated convolutions with dilation rates of 1, 3, and
5, respectively. The CEM significantly enhances the receptive
field of the model. Fig. 13(b), (c), and (d) demonstrate the three
different fusion scenarios: adaptive fusion, concatenation fusion,
and weighted fusion, respectively.

1) Adaptive Fusion: As shown in (7) and (8), the adaptive
fusion initially conducts separate 1 × 1 convolution on the
three feature maps, followed by concatenation of the feature

maps along channel dimensions. Subsequently, another 1 × 1
convolution and the Softmax are implemented to obtain weights
for the three feature maps. These weights are multiplied with
their corresponding feature maps, and the resulting three feature
maps are summed in the spatial dimension to produce the output

W[1,2,3] = δ(Conv(Cat[Conv(F1),Conv(F2),Conv(F3)]))

(7)

Fout =

3∑
i=1

Wi × Fi (8)

where δ denotes the Softmax, Cat stands for the concatenation
operation along the channel dimension, Conv is the 1 × 1
convolution, and Fout denotes the output feature map.

2) Concatenation Fusion: Concatenation fusion concate-
nates the feature maps of the three branch outputs in the channel
dimension. The number of channels in the output feature map
is three times greater than that of the input feature map. Thus,
we added an extra 1 × 1 convolution after concatenation fusion
to ensure that the input and output feature map channels are
consistent.

3) Weighted Fusion: Weighted fusion directly adds the out-
put feature map of the three branches in the spatial dimension.

The three fusion scenarios improve the generalization and
robustness of CEM. Specifically, the improved decoupled head
first performs a 1 × 1 convolution on the input feature maps
to realize the information interaction between channels and
then carries out the classification task and the regression task,
respectively. The classification task branch consists of a 3 × 3
convolution and a 1× 1 convolution. The regression task branch
consists of the CEM and a 1 × 1 convolution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All experiments in this article were conducted under the same
hardware and software environments, employing PyTorch 1.9
and the 64-bit Windows 10 operating system. The GPU utilized
was NVIDIA GeForce RTX 3070 with a video memory size
of 8 GB and 31.7 GB of RAM. All models were trained for
300 epochs. During the model’s training and testing, both IOU
and confidence threshold were set to 0.5. The three online
augmentation techniques, Mosaic, Mixup, and Copy_Paste, are
applied in real time during model training to improve the model’s
generalization ability. The hyperparameter configurations of the
proposed model in this article are shown in Table I.

The MSLD was divided into the training validation set and
the test set in a 7 : 3 ratio and the training validation set was
divided into the train and the validation sets in a 9 : 1 ratio. The
division of MSLD is shown in Table II. The MSLD includes
9623 images. The train set, validation set, and test set include
6062 images, 674 images, and 2887 images, respectively.

A. Evaluation Metrics

In this article, Precision (P), Recall (R), and AP were used to
quantitatively evaluate the accuracy of the models in landslide
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Fig. 12. Structure of the original decoupled head and the improved decoupled head.

detection. The formulae are given as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =

∫ 1

0

PdR (11)

where TP represents the amount of accurately identified land-
slides, FP denotes the amount of incorrectly identified land-
slides, and FN represents the number of missed landslides. AP
is the area under the P--R curve, which offers a comprehensive
comparison of the Precision and Recall of the model. Greater
values of P, R, and AP represent improved performance in
detecting landslides.

In addition, the number of parameters (Params), floating-
point operations (FLOPs), and frames per second (FPS) were
used to measure the model’s size and the requirement of
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Fig. 13. (a) Structure of CEM. (b) Adaptive fusion. (c) Concatenation fusion.
(d) Weighted fusion.

TABLE I
HYPERPARAMETERS OF OUR MODEL

TABLE II
DIVISION OF MSLD

hardware facilities. The Params refers to the total number of
parameters required for model training, which measures the
space complexity of the model. The FLOPs count the number of
FLOPs performed by the model, measuring the time complexity
of the model. The FPS represents the number of images that the
model can process in a second, which is a metric to quantify the
operational speed of the model.

Fig. 14. Experimental results of different models.

B. Ablation Experiment

We have conducted ablation studies of the proposed model.
Major experimental results are shown in Table III.

Adding the MSFE to the neck of YOLOv5s could improve the
AP to 95.93%, which is an improvement of 1.05%. It proved that
the designed MSFE is effectively improving the performance of
YOLOv5s in landslide detection.

The successive 1 × 1 convolutions and Softmax in adaptive
fusion result in a large number of parameters and computations.
The concatenation operation in concatenation fusion is simple;
however, the 1×1 convolution to ensure that the input and output
feature map channels are consistent leads to extra parameters and
computations. The structure of weighted fusion is simple with
no extra parameters and little computation.

As shown in Table III, replacing the coupled head of
YOLOv5s with the original decoupled head improves the R
and AP by 1.79% and 1.05%, respectively, while keeping the
P nearly unchanged. It demonstrated that decoupling the classi-
fication and regression tasks can improve the landslide detection
performance of the model. Then, we applied the three different
kinds of fusion techniques of CEM to improve decoupled head,
respectively. Using adaptive fusion to improve the original de-
coupled head enhances the P, R, and AP by 0.25%, 0.42%, and
0.25% to 96.69%, 93.30%, and 96.18%. Using concatenation
fusion to improve the original decoupled head enhances the R
and AP by 0.99% and 0.63% to 93.87% and 96.56%; however,
the P decreases by 0.15%–96.29%. Using weighted fusion to
improve the original decoupled head achieves the best result.
It enhances the P, R, and AP by 0.21%, 0.53%, and 0.36% to
96.65%, 93.41%, and 96.29%. These results demonstrated the
effectiveness of using the three fusion techniques to improve the
original decoupled head.

In addition, we conducted sufficient experiments to verify the
compatibility between the improvements in this article. Using a
combination of MSFE and improved decoupled head to improve
YOLOv5s has a greater enhancement than each of the two
modules is used separately. Using a combination of MSFE and
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Fig. 15. Comparison of params, FLOPs, and FPS of different models. (a) Params comparison. (b) FLOPs comparison. (c) FPS comparison.

TABLE III
RESULTS OF ABLATION EXPERIMENTS

TABLE IV
RESULTS OF MODEL’S COMPARISON EXPERIMENTS

adaptive fusion improved decoupled head to improve YOLOv5s
achieves the P, R, and AP at 97.43%, 94.29%, and 96.99%,
respectively. Using a combination of MSFE and concatenation
fusion improved decoupled head results in the P, R, and AP at
97.41%, 94.44%, and 96.96%, respectively. The improvement
of adding MSFE and weighted fusion improved decoupled head
into YOLOv5s at the same time is the most significant, and all
the metrics are the best in ablation experiments. Compared with
YOLOv5s, the P is improved by 1.03%–97.60%. R is improved
by 3.47%–94.56%, and AP is improved by 2.18%–97.06%. The

ablation experiments have provided evidence of the mutually
reinforcing effect between MSFE and the improved decoupled
head, which demonstrates the effectiveness of the work pre-
sented in this article.

C. Model Comparison Experiment

To conduct an impartial performance assessment of the
proposed LS-YOLO for landslide detection, we compared it
with other six widely used and recently proposed models:
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Fig. 16. Comparison of landslide detection results of different models.

faster RCNN, SSD, EfficientDet-D0, YOLOv5s, YOLOv7, and
YOLOX. All seven models are trained for 300 epochs on the
train set and tested on the test set of the MSLD. We used P,
R, AP, Params, FLOPs, and FPS to evaluate the performance of
models in landslide detection.

As shown in Fig. 14 and Table IV, the LS-YOLO achieves
state-of-the-art performance in multiscale landslide detection.
The P of LS-YOLO for landslide detection is 97.60%, which is
0.57% higher than the 97.03% of the second-place YOLOX. The
recall of LS-YOLO in detecting landslides is 94.56%, which is
1.23% higher than the 93.33% of the second-place faster RCNN.
The AP of LS-YOLO in detecting landslides is 97.06%, which
is 1.51% higher than the 95.55% of the second-place YOLOX.
Compared with the baseline model YOLOv5s, LS-YOLO

improved the P, R, and AP in landslide detection by 1.03%,
3.47%, and 2.18%, respectively.

Due to the decoupled classification and regression tasks in the
model, the LS-YOLO is more complex in structure and slower
in running speed. As shown in Fig. 15 and Table IV, compared
with the baseline model YOLOv5s, the parameters and FLOPs
of LS-YOLO are increased from 7.0 M and 15.8 G to 22.6 M
and 42.5 G, and the FPS of LS-YOLO is decreased from 100
to 62. However, LS-YOLO has a significant advantage in model
size compared with faster RCNN, SSD, YOLOX, and YOLOv7.
The running speed of LS-YOLO is just below YOLOv5s and
YOLOv7, thus is more suitable for real-time landslide detection.

We noted some interesting results. The parameters and FLOPs
of EfficientDet-D0 are 3.8 M and 7.4 G, respectively, which is
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optimal among all the models. However, its running speed is the
slowest with the FPS of 26. The main reason for this interesting
phenomenon is that EfficientDet-D0 has high computational
density and the need for frequent memory accesses. The model
size of the two-stage model faster RCNN is large, with a much
larger number of parameters and FLOPs than one-stage models.
However, the precision of faster RCNN in landslide detection
is just 72.09% and significantly lower than other models. Faster
RCNN has lots of incorrect results in multiscale landslide de-
tection. Thus, the detection accuracy and running speed of the
model are not directly related to the model size.

Fig. 16 shows the comparison results of different models in
landslide detection. The green boxes and red boxes denote the
ground truth and the detection results of the models, respectively.
Meanwhile, to achieve a more accurate analysis, we used blue
boxes and yellow boxes to respond miss detected landslides and
incorrectly detected landslides.

1) Individual Landslide Detection Results: As shown in the
left half of Fig. 16, when faced with the presence of indi-
vidual landslides in remote sensing images, faster RCNN and
YOLOv5s have many misdetected results and easily misdetect-
ing rivers, valleys, etc., as landslides. YOLOv5s and YOLOv7
have some missed results and poor performance in detecting
landslides, making it difficult to effectively detect landslides.
SSD, EfficientDet-D0 YOLOX, and LS-YOLO have fewer mis-
detected and missed results; however, the accuracy of landslides
localization of SSD, EfficientDet-D0, and YOLOX is lower than
our proposed model LS-YOLO.

2) Multiple Landslides Detection Results: As shown in the
right half of Fig. 16, when faced with the presence of mul-
tiple landslides in remote sensing images, EfficientDet-D0
and YOLOv7 have a high number of missed landslides, and
YOLOv5s has some misdetected landslides. Although faster
RCNN, SSD, YOLOX, and LS-YOLO have fewer misdetected
and missed landslides, the LS-YOLO is more accurate in land-
slide location than the other models.

Following the experimental analysis, it is evident that the
proposed model LS-YOLO displays considerable advantage
in both detecting individual landslide and multiple landslides
in remote sensing images when compared with the existing
models. The LS-YOLO achieves state-of-the-art performance
in landslide detection that could fulfill the necessities of applied
industrial demands.

V. DISCUSSION

The main problem in landslide detection with remote sensing
images is that landslides vary greatly in shape and size. It
is difficult for general object detection models to effectively
capture multiscale landslide features. In this article, we proposed
a novel and high-performance LS-YOLO for landslide detection
based on YOLOv5s. The main strength of LS-YOLO lies in its
capability of capturing multiscale features of landslides through
spatial separable convolution and dilation convolution. The pro-
posed MSFE enhances receptive fields by successive spatial
separable convolutions and improves the multiscale landslide
detection accuracy of the model. The improved decoupled head

Fig. 17. Some failure cases using the LS-YOLO.

decouples the classification and regression tasks and captures
multiscale context information by different dilated rate convo-
lutions. The experimental results show that the proposed model
LS-YOLO significantly improves the accuracy of landslide de-
tection and location.

However, the current LS-YOLO still has some limitations.
Compared with the baseline model YOLOv5s, the LS-YOLO
is more complex in structure and slower in detection speed.
The parameters and FPS of YOLOv5s are 7.0 M and 100,
whereas LS-YOLO are 22.6 M and 62. Meanwhile, as shown
in Fig. 17, LS-YOLO results in inadequate performance in
detecting landslide under complex backgrounds. Especially with
the interference of the river channels and houses, it produced
some incorrect and missed results, and the accuracy of landslide
localization is also low. In the future, we will focus on reducing
the size and improving the robustness of our model in landslide
detection.

Another limitation of the LS-YOLO is that it requires the
creation of a fully annotated landslide dataset for the training
process. Unfortunately, this is a costly and time-consuming en-
deavor that requires the expertise of specialists in remote sensing
and landslide, and consumes considerable human and financial
resources. To mitigate these costs, we plan to employ some
semi-supervised learning techniques to our method in future
work, which could help to transfer knowledge from limited
labeled data to unlabeled data [44], [45].

VI. CONCLUSION

In this article, the MSLD was built using the Bijie landslide
dataset together with 500 additional landslide images. Random
seeds were used to promise each image randomly selected data
augmentation techniques. The LS-YOLO was proposed to detect
multiscale landslides with remote sensing images. The MSFE
module based on ECA, average pooling, and spatial separable
convolution is designed to improve the accuracy of the model
in landslide detection. The decoupled head was improved using
dilated convolution to enhance the precision of the model in
landslide locations. Extensive experiments have demonstrated
that our proposed model for detecting landslides performs better
than the existing models. Compared with the baseline model
YOLOv5s, due to the addition of the MSFE and the improved
decoupled head, LS-YOLO detects and locates landslides more
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accurately. In the future, we plan to propose a more efficient
landslide detection model using lightweight modeling methods.
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