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Abstract—Most of the existing remote sensing image super-
resolution (SR) methods based on deep learning tend to learn
the mapping from low-resolution (LR) images to high-resolution
(HR) images directly. But they ignore the potential structure and
texture consistency of LR and HR spaces, which cause the loss
of high-frequency information and produce artifacts. A structure-
texture dual preserving method is proposed to solve this problem
and generate pleasing details. Specifically, we propose a novel edge
prior enhancement strategy that uses the edges of LR images and
the proposed interactive supervised attention module (ISAM) to
guide SR reconstruction. First, we introduce the LR edge map as a
prior structural expression for SR reconstruction, which further
enhances the SR process with edge preservation capability. In
addition, to obtain finer texture edge information, we propose a
novel ISAM in order to correct the initial LR edge map with
high-frequency information. By introducing LR edges and ISAM-
corrected HR edges, we build LR–HR edge mapping to preserve
the consistency of LR and HR edge structure and texture, which
provides supervised information for SR reconstruction. Finally,
we explore the salient features of the image and its edges in the
ascending space, and restored the difference between LR and
HR images by residual and dense learning. A large number of
experimental results on Draper and NWPU-RESISC45 datasets
show that our model is superior to several advanced SR algorithms
in both objective and subjective image quality.

Index Terms—Edge enhanced, interactive supervised attention
module (ISAM), remote sensing image, super-resolution (SR)
reconstruction.
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I. INTRODUCTION

R EMOTE sensing high-resolution (HR) images can ob-
serve clear ground objects, so as to serve the subsequent

image classification [1], [2], detection [3], [4], and recogni-
tion [5], [6] tasks. Limited by remote sensing equipment and
internet bandwidth, satellite observation images usually have
low resolution (LR). In addition, the resolution of satellite
images captured by optical sensors cannot be directly applied
to the analysis of subsequent high-level visual tasks of satel-
lite images due to the influence of undersampling by optical
sensors.

Super resolution (SR) [7], [8], [9], [10], [11], [12], [13],
[14] can reconstruct the HR image that is most similar to the
original LR image by using the LR image captured and the
prior knowledge learned from the sample library, which can
effectively enhance the resolution of low-quality image and
recover the image feature details. The use of the SR method to
improve the resolution of observation targets has always been the
focus of remote sensing research. Subsequently, convolutional
neural networks (CNNs) have achieved success in SR task.
A large number of CNNs-based models have been studied,
including the models in [15], [16], [17], and [18]. As we all know,
an image includes low-frequency information component and
high-frequency information component. The high-frequency in-
formation component refers to the region of the images with
great changes, which contains rich structural information and
texture details of images, such as image edges and gradients.
Inspired by these facts, SR methods based on image edge priors
have been developed greatly [19], [20], [21], [22].

However, these methods are complex and limited. For exam-
ple, Yang et al. [23] first introduced the edge of images into
CNNs as an auxiliary for SR reconstruction. As a pioneering
work, this method still has some drawbacks that lead to poor
performance. First, DEGREE preprocessed the image by bicubic
interpolation before input, which introduces noise and artifacts.
Second, DEGREE directly used the existing edge detector to
obtain the edge of the images, which obtained edge images
are rough. Finally, the edge features learned by DEGREE are
essentially a direct residual learning process. Similar to [23],
Fang et al. [22] introduced the same LR edge map as a com-
plement to texture information, and then, directly calculated the
L1 loss of SRedge and HRedge as a constraint on the total loss
function to generate SR. However, the SR images generated
by this approach are often blurred or too smooth, resulting in
missing details and obvious blurring.
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EEGAN [20] constructed the edge enhancement subnet
(EESN) to extract and enhance image contours by using mask
processing to purify noise pollution components, and com-
bine the restored intermediate image with the enhanced edge.
SPSR [21] uses an adversarial learning mechanism to first intro-
duce LR gradient branches in the generative network, synthesize
the gradients of HR images by the gradients of LR images, and
fuse them to improve the boundary quality of the generated
images. However, in SPSR [21] and EEGAN [20], the authors
used perceptually driven methods to design the gradient loss, but
the results of such methods often suffer from geometric distor-
tion and the generated textures are unnatural or even distorted.
In addition, GAN-based SR could generate some high-fidelity
results, but it also introduces geometric distortions, especially
at edges and fine textures and the stable training of GAN is still
a problem.

GEDRN [19] uses shared source residual structure and non-
local operations to learn rich low-frequency information and
long-distance spatial correlations, and uses gradient loss and
perceptual loss to further improve the perceptual quality. How-
ever, it performs multiscale upsampling of images before feature
extraction and extracts gradient information for the intermediate
step of fusion. However, this preprocessing approach increases
the model computation on the one hand, and introduces erro-
neous edge and texture information on the other hand.

Instead, we know that deep learning has an excellent ability
to handle probabilistic transformations of pixel distributions, so
we build up a mapping of LRedge to HRedge by CNNs. This
edge mapping can be seen as another image, and thus, the
image to image conversion technique can be used to learn the
mapping between the two modalities. The conversion process is
equivalent to transforming the spatial distribution from LRedge

sharpness to HRedge sharpness. Since most of the region of the
edge map is close to zero, CNNs can focus more on the spatial
relationship of contours. As a result, the network may more
easily capture the structural dependencies, and thus, generate
approximate edge maps for SR images. Therefore, based on
the aforementioned considerations, we propose a novel edge
enhancement strategy that differs from previous work in that
we establish a mapping relationship between LR edges and
HR edges. Specifically, LR edges are first introduced as a
complement to texture details, and subsequently, an intermediate
process edge map is obtained after edge enhancement branching
pairs. This intermediate process edge map is edge corrected by
our proposed interactive supervised attention module (ISAM)
and summed with the results of LR edge upsampling to obtain
the final reconstructed edge. This reconstructed edge is finally
used to assist in generating SR results with high confidence and
clear content.

In this article, we propose a novel structure texture dual
preservation (STP) method to solve this problem, which pro-
vides supervised information for SR reconstruction through
edges, thereby reconstructing high-quality remote sensing im-
ages. Specifically, our model consists of structural branches and
texture branches. The structure branch is the SR branch, which
is directly mapped from LR to SR through CNNs to obtain
preliminary reconstruction results. Subsequently, we proposed a
novel edge prior enhancement strategy that does not require the

introduction of additional prior loss. By directly establishing a
prior mapping between LRedge and HRedge using CNNs, precise
edge images can be obtained for SR reconstruction assistance.
Due to the fact that edge images represent the high-frequency
components of the image and are rich in texture information,
they can serve as an important supplement to SR reconstruction.
We introduced LR edge image and designed a texture branch for
it to convert the edge images of LR images into HR images as
auxiliary SR problems. In addition, we have designed an ISAM
to monitor LRedge and supplement high-frequency information
to obtain more accurate HRedge. Through texture branching, we
established edge mapping for LRedge and HRedge, and the final re-
constructed edge was fused with the SR intermediate result to ob-
tain the final SR reconstructed image. For structural and texture
branches, we use the same structure to map the low-dimensional
space of the image to the multiscale high-dimensional space, and
extract multiscale global structural prior information from the
multiscale high-dimensional space of the image as the structural
prior representation of the SR task. Through this guidance, we
not only established a mapping between LR and HR, but also
established a mapping between LRedge and HRedge, maintaining
consistency between LR and HR in spatial and texture structure.

The contributions and innovations of this article can be sum-
marized as follows.

1) We propose a novel edge enhancement strategy, which
differs from previous work in establishing a mapping re-
lationship between LRedge and HRedge. Specifically, LRedge

are first introduced as a supplement to texture details, and
then an intermediate process edge image is obtained after
edge enhancement branch pairing. The edge image of this
intermediate process is edge corrected by our proposed
ISAM and added to the sampled results on the LRedge

to obtain the final reconstructed edge. It can effectively
restore high-frequency information, remove artifacts, and
maintain the sharpness and details of edges.

2) We design two new feature extraction modules called mul-
tiscale global prior extraction block (MGPB) and residual
dense-in-dense block (RDDB) as the basic architecture of
the proposed model. Among them, the MGPB maps LR
images from low-dimensional space to high-dimensional
space for structure and texture information extraction and
multiscale feature fusion, while the RDDB makes full
use of interblock local and global features to assist SR
reconstruction.

3) We construct a model for SR reconstruction of remote
sensing images, called STP. The proposed SR model con-
sists of two branches, one branch is a structure branch for
generating intermediate SR reconstruction results, and the
other branch, called the texture branch, is used to recon-
struct fine HR edge images and provide texture supervision
for SR reconstruction.

II. RELATED WORK

A. Structure Preserving Remote Sensing Image SR

Structure preserving SR methods express and synthesize
the input whole image as a variable, and utilize the overall
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structural nature of the image to enhance the SR reconstruc-
tion performance, which is essentially a global structure-based
approach, such as attention mechanism and multiscale model.
Zhang et al. [24] designed the first SR method based on at-
tention mechanism that biases the allocation of processing
resources toward the most informative part of the input, and
introduced a channel attention mechanism to propose a residual
channel attention network. Afterwards, second-order attention
network [25], holistic attention network [26], non-local sparse
attention [27], efficient long-range attention [28], and hybrid
attention-based U-shaped network (HAUNet) [29] have been
developed for remote sensing image SR. Zhang et al. [30]
proposed a mixed high-order attention network (MHAN) for
solving the problem of under-representation of high-frequency
details and high computational memory cost of first-order at-
tention mechanisms. Wang et al. [29] proposed a new HAUNet
that efficiently explores multiscale features and enhances global
feature representation through hybrid convolution-based atten-
tion. While all of these methods have achieved some results,
the reconstruction results are often too smooth and lack textural
detail.

Multiscale modeling is another strategy. Although multiscale
feature strategies are widely used in the field of remote sensing
SR, the specific technical details are different. MSRN [31],
MRNN [32], and MEN [33] use a combination of convolutional
layers with multiple convolutional kernel sizes to refine the
extraction of multiscale features and learn image multiscale
features adaptively. However, this does not take full advantage
of the multiscale features of the image, instead the larger the
convolution kernel size increases the computational effort of
the model. MSDNN [34] processes input images mainly in two
different downscaling spaces, thus greatly reducing GPU mem-
ory usage. However, for the SR task, the use of downsampling
operations in the feature extraction module results in a severe
loss of structural and texture information of the image, and
thus, this greatly limits the utilization of multiscale information.
LapSRN [35] uses progressive upsampling to directly output
the reconstruction results at multiple scales. However, this is
still essentially a reuse of single-scale features, and does not
achieve multiscale feature fusion. Unlike the aforementioned
approaches, our multiscale strategy specifically maps LR im-
ages from low-dimensional space to high-dimensional space,
performs multiscale feature extraction in the upscaling spaces of
the image, and then, performs multiscale feature fusion. This not
only avoids the loss of structure and texture information in the
downscaling spaces, but also preserves the original multiscale
structure and texture features, and at the same time fuses the
multiscale features of the image, which is robust to SR recon-
struction of images.

B. Texture Preserving Remote Sensing Image SR

In order to better mine the texture information of the image
itself, some scholars have begun to assist in SR reconstruction
by introducing edge or gradient priors of the image. Jiang
et al. [20] proposed a new generative adversarial networks
(GANs) framework based on HR edge vivid enhancement,

called EEGAN. EEGAN uses the edge image reconstructed
from LR to SR as a prior extraction, and guides the final
SR reconstruction through its designed edge enhancer subnet
and edge enhancement mask. SPSR [21] uses an adversarial
learning mechanism to first introduce LR gradient branch in
the generator, synthesize the gradients of HR images by the
gradients of LR images, and fuse them to improve the boundary
quality of the generated images. However, GANs-based GANs
would generate some high-fidelity results, but it also introduces
geometric distortions, especially at edges and fine textures. In
addition, the stable training of GANs is still a problem. Yang
et al. [23] and Fang et al. [22] all used the same idea to design
the loss function. They directly calculated the losses of SRedge

and HRedge as constraints on the total loss function to assist SR.
In addition, for the design of the loss function, the L1 loss is
also directly used as a constraint. However, this loss function
is still essentially a peak signal-to-noise ratio (PSNR)-oriented
method, and the SR images generated by such methods tend to be
blurred or too smooth, resulting in missing details and obvious
blurring. GEDRN [19] used shared source residual structure
and nonlocal operations to learn rich low-frequency information
and long-distance spatial correlations, and used gradient loss
and perceptual loss to further improved the perceptual quality.
However, it performed multiscale upsampling of images before
feature extraction and extracts gradient information for the in-
termediate step of fusion. However, this preprocessing approach
increases the model computation on the one hand, and introduces
erroneous edge and texture information on the other hand.

III. STP REMOTE SENSING IMAGE SR

In this section, we will describe STP in detail. We first intro-
duce the overall structure of STP and its discarding function.
Then, the detailed structure design of the ISAM and struc-
ture/texture branch is introduced in detail. It should be noted
that in this article, the network structure of the structure branch
and the texture branch is the same.

A. Whole Network Architecture of STP

We show the overall framework diagram of STP in detail
in Fig. 1. Let us denote the input LR image as ILR (the size
of ILR is h× w × c), and its corresponding original HR size
is sh× sw × c, where sh and sw, respectively, represent the
height and width of HR, s is the scale factor, and c is the number
of image bands. The purpose of our model is to reconstruct
image ISR from the input degraded image ILR by the end-to-end
manner.

The edge extraction [36] obtains a preliminary edge image
ILRedge through the Laplacian sharpening filter, and the input
image and the edge image enter the network in parallel. We
can define the Laplace operator of LR image ILR(x, y) as the
second derivative as follows:

ILRedge(x, y) =
∂2ILR(x, y)

∂x2
+

∂2ILR(x, y)

∂y2
(1)
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Fig. 1. Proposed STP framework. ILR, ILR
Edge, ISR, and SREdge, respectively, represent input LR image, LR edge image, final SR output, and the SR edge image.

Our architecture consists of two branches, the structure branch and the texture branch. The structure of the structure branch and the texture branch are the same.
The edge image is extracted by the Laplacian operator. The texture branch aims to super resolve LR edge maps to the HR counterparts.

where ILRedge(x, y) represents the LR edge image obtained from
the aforementioned formula. The image edge obtained by mod-
ifying the second derivative can produce a steep zero crossing
because of the isotropy and rotation invariance of the Laplace
operator.

The obtained edge image passes through the texture branch to
obtain the reconstructed edge image ReEdge. The reconstructed
edge image ReEdge and the output of the structure branch are
fused in the fusion block to obtain the final reconstructed SR
image. The fusion block splices the feature maps of the two
branches in spatial dimensions according to the channels, and
uses the 1× 1 convolutional layer to perform spatial dimen-
sionality reduction to obtain the image ISR reconstructed by the
network SR. This process can be expressed by the formula

ISR = Conv1×1(Concat(Structurebranch,Texturebranch)) (2)

where Conv1×1 denotes 1× 1 convolutional layer,
Structurebranch and Texturebranch represent the output of the
two branches, and Concat represents the fusion operation. We
choose the classic L1 loss as our loss function to train and
optimize our model, which is as follows:

L (θ) =
1

N

N∑

i=1

∥∥FSTP(I
i
LR)− IiHR

∥∥
1

(3)

where {IiLR, I
i
HR}Ni=1 is training set containing N pairs of LR

and HR, and θ represents the parameter set.

B. Structure and Texture Branch

Structure and texture branch are the main parts of STP, and
their design determines the performance of STP. Each branch
consists of three parts. First, a 3× 3 convolution layer, which
is used to extract shallow and rough features of the image.
Then, there is the main part of the model composed of several
basic blocks, which is used to extract the deep and fine fea-
tures of the image. Finally, there is the upsampling and image
reconstruction module, which is used to reconstruct the final
HR image. The upsampling reconstruction module is composed
of an upsampling layer and two 3× 3 convolutional layers.

After this part, a preliminary SR image can be obtained. Overall
structure diagram of the model is shown in Fig. 1. Next, we will
focus on the backbone of our model. The trunk of our model is
stacked by six basic blocks. Each basic block includes an MGPB
and RDDB.

1) Multiscale Global Prior Extraction Block (MGPB): For
the image SR task, it is important to recover as much structural
and texture information as possible, i.e., the high-frequency
information of the image. The LR image has more low-
frequency information, while the HR image has more high-
frequency information. Based on this reality, we propose a new
multiscale feature extraction strategy that is completely different
from the previous multiscale strategies. We consider upsampling
the image into HR space for feature extraction in the feature
extraction stage, and mapping the feature vector from the low-
dimensional space to the high-dimensional space. The feature
vectors are first multiscale upsampled and mapped to multiscale
high-dimensional space, followed by feature extraction through
convolutional layers, and finally, the dimensionality is restored
to be consistent for fusion to obtain multiscale features that are
rich in structural texture features. In addition, remote sensing
imaging distances are different, the conditions are complex,
and the scales are different, resulting in local texture detail
information often being lost, and the picture is too smooth. To
solve this problem, we designed an MGPB, as shown in Fig. 2.

The MGPB is mainly used to map LR image from low-
dimensional space to multiscale high-dimensional space, ex-
tract and express features in multiscale high-dimensional space
of image, and finally, fuse multiscale features obtained. The
MGPB consists of three parallel upsampling and downsampling
units (UDN) of different scales, they can simultaneously obtain
satellite LR image features at the scales of 2×, 4×, and 8×,
respectively. For different scale UDNs, we use different sizes of
convolution kernels to obtain different sizes of receptive fields,
which can adapt to scale changes. Multiscale features can be
fully extracted by adjusting the size of the convolution kernel of
different scales.

Given an input feature finput, it first passes through the 3×
3 convolutional layer, and then, it is feature upscaled. Then,
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Fig. 2. Proposed MGPB structure. Multiscale features are extracted in the
high-dimensional space so that the structural consistency between the original
LR image and the edge image can be maintained to the greatest extent.

we use a convolutional layer to extract upscaled features (i.e.,
feature extraction in the high-dimensional space of the image),
and conduct downsampling at the same scale. Finally, the output
and input obtained by sampling features under the convolutional
layer are added at the element level to obtain the final output
result. It is worth noting that the upsampling and downsampling
scales can be set by themselves to extract the features of images
at different scales. This process can be expressed by publicity
as follows:

fUDN = (finput)⊕ Conv (Down (Up(finput))) (4)

where finput denotes the input feature, Down denotes the down-
sampling operation, Up denotes upsampling, Conv denotes con-
volutional layer, and ⊕ denotes element addition.

Finally, multiscale feature fusion is carried out, and the dimen-
sion is reduced through the 1× 1 convolutional layer after fusion
to obtain the output result. The proposed MGPB uses UDNs
to extract image features of different scales through residual
learning, which can be expressed as

fMGPB = Conv1×1 (Concat (UDN2,UDN4,UDN8)) (5)

where Concat represents feature fusion, and UDN2, UDN4, and
UDN8 represents upsampling and downsampling of 2, 4, and 8,
respectively.

2) Residual Dense-in-Dense Block (RDDB): For SISR, the
use of the hierarchical features of LR images can effectively
improve the performance of SR. The hierarchical features of the
CNN will provide more clues for reconstruction. Most of the ex-
isting SISR methods (for example, EDSR [37], SRResNet [38],
and SRDenseNet [39]) ignore the use of hierarchical features
for reconstruction. RDN [40] and RRDBNet [41] used residual

Fig. 3. Proposed RDDB structure. An inner dense block consists of four
convolutional layers and the LReLU function, and feature fusion is used between
all layers instead of feature addition. The external RDDB is composed of three
dense blocks.

dense blocks (RDB) to extract rich local features. However, for
the previously obtained multiscale fusion features, it can only
extract the local features within the blocks, and the local and
global features between the blocks have not been fully utilized.

In order to make full use of the obtained multiscale global
fusion features, we optimize the network structure by integrating
dense block and RDB, and designed a new RDDB. As can be
seen from Fig. 3, an internal dense block consists of four 3× 3
convolutional layers and four LRelU functions. Here, all jump
connections are not simple feature addition, but feature fusion so
that the original multiscale fusion features obtained before can
be retained to the greatest extent, and finally, a 1× 1 convolution
is used for dimensionality reduction. The external RDDB is
composed of three dense blocks, all of which are feature fusion.
In order to stabilize the training, we add a convolutional layer
and LRelu function after each dense block to calculate the fused
features. It can be represented as

fConcat = Concat (Dense (dense1, dense2, dense3)) (6)

where dense1, dense2, and dense3 represent three dense blocks,
Dense represents a dense connection of three dense blocks, and
fConcat represents an output feature after three dense blocks.

Finally, the dimensionality of the fusion features is reduced by
a 1× 1 convolution, and the input features and output features
are added element level. We use the following formula as the
output feature of RDDB:

fRDDB = fMGPB ⊕ Conv1×1(fConcat) (7)

where fRDDB represents output characteristics of the RDDB,
fMGPB represents the output characteristics, and ⊕ represents
element-level addition.
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Fig. 4. Proposed ISAM structure. The high-frequency information is corrected
through the interaction between the reconstructed SR edge and the LR edge, so
as to supervise the final SR reconstruction.

C. Interactive Supervision Attention Module (ISAM)

The SR edge map obtained by directly extracting the edge
map from the LR image after the texture branch may still
be inaccurate. Therefore, we hope to obtain a fine edge map
to provide supervision information, so as to obtain the final
high-quality SR image. Inspired by [42], we designed an ISAM.
The schematic diagram of the ISAM is shown in Fig. 4. Its
contribution is mainly to provide high-frequency information
correction for the edge provided by the texture branch.

As illustrated in Fig. 4, the ISAM takes the reconstructed
SR edge map Fin ∈ Rh×w×3 in the previous stage, and first
uses a simple 3× 3 convolution to generate the residual image
Rs ∈ Rh×w×3. The residual image is added to the SR edge
image I obtained by directly upsampling the LR edge to obtain
the restored image Xs ∈ Rh×w×3. For this predicted image
Xs, we provide clear supervision of the real image. Next, use
3× 3 convolution and sigmoid activation to generate a per-pixel
attention mask M ∈ Rh×w×3 from image Xs. After talking
about the attention mask feature through a 3× 3 convolutional
layer, add it to the previous residual image Rs ∈ Rh×w×3,
and then, recalibrate the converted local feature to guide the
attention. The feature of is added to the original path. Finally,
the attention enhancement reconstructed edge generated by the
ISAM indicates that fout is passed to the next stage for further
processing.

For [42], the main application of SAM is in d multistage
image restoration tasks, such as image defogging, deblurring,
and denoising. It is inserted between each two stages to compute
attention maps using the predictions of the previous stage, and
these attention maps are used to refine the features of the previous
stage before passing to the next stage for progressive learning.
In other words, SAM is to provide supervised information for
each stage of progressive image restoration while generating
attention maps to suppress the less informative features of the
current stage and allow only the useful features to propagate to
the next stage.

Unlike [42], the main role of our proposed ISAM is to
correct the LR edge maps in the edge branches to obtain finer

texture information to guide SR reconstruction. We analyze the
shortcomings of existing edge enhancement and propose a novel
edge enhancement strategy, which is to establish a mapping
between LR edges and HR edges by CNNs, which is equivalent
to converting the spatial distribution from LR edge sharpness
to HR edge sharpness. Since most regions of the edge map are
close to zero, CNNs can focus more on the spatial relationship
of contours. As a result, the network can more easily capture
the structural correlations, and thus, generate an approximate
edge map of the SR image. Specifically, we edge correct the
edge maps generated by the proposed ISAM for the intermediate
process and add them to the results of the LR edge upsampling to
obtain the final reconstructed edges. This reconstructed edge is
ultimately used to help generate SR results with high confidence
and clear content.

D. Discussion

In deep-learning-based remote sensing image SR, the in-
troduction of the edge prior of the image by a fixed Laplace
edge detection operator is a common measure, which has been
applied in several articles such as [20], [22], and [23]. But in
fact, different edges introduce their strategies differently. For
example, in [22] and [23], the authors first introduced the same
LR edge map as a complement to texture information, and
then, directly calculated the L1 loss of SRedge and HRedge as
a constraint on the total loss function to generate SR. However,
the SR images generated by this approach are often blurred or
too smooth, resulting in missing details and obvious blurring.
In [20] and [21], the authors used an EESN approach for edge
enhancement. Specifically, the authors perform edge extraction
of the intermediate acquired HR images by the EESN, and then,
extract and enhance the image contours by mask processing. Fi-
nally, the recovered intermediate images are combined with the
enhanced edges to obtain the final SR results. However, due to
its use of adversarial learning approach of the GAN architecture
for training, on the one hand, the training is unstable, and on
the other hand, the results of this approach often suffer from
geometric distortion, and the generated textures are unnatural or
even distorted.

Instead, we know that deep learning has an excellent ability to
handle probabilistic transformations of pixel distributions, so we
build up a mapping of LRedge to HRedge by CNNs. This edge map-
ping can be seen as another image, and thus, the image-to-image
conversion technique can be used to learn the mapping between
the two modalities. The conversion process is equivalent to
transforming the spatial distribution from LRedge sharpness to
HRedge sharpness. Since most of the region of the edge image is
close to zero, CNNs can focus more on the spatial relationship
of contours. As a result, the network may more easily capture
the structure dependencies, and thus, generate approximate edge
images for SR images. Therefore, based on the aforementioned
considerations, we propose a novel edge enhancement strategy
that differs from previous work in that we establish a mapping
relationship between LRedge and HRedge. Specifically, LR edges
are first introduced as a complement to texture details, and
subsequently, an intermediate process edge image is obtained
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after edge enhancement branch pairs. This intermediate pro-
cess edge image is edge corrected by our proposed ISAM and
summed with the results of LRedge upsampling to obtain the
final reconstructed edge. This reconstructed edge is finally used
to assist in generating SR results with high confidence and clear
content. We can extract the edge information of an image by
introducing a learning-based approach, and we can achieve good
performance. But introducing a learnable implicit edge detection
module will add extra computation, and the model improvement
performance is not significant compared to using the laplace
operator directly. Therefore, in order to achieve a better tradeoff
between computational effort and model, we directly use the
laplace operator to extract the edges of images.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, we first introduce the dataset, evaluation
indicators, and implementation details. Then, the effectiveness
of this method is verified by ablation experiments. Finally, the
method is compared with the existing method, and experimental
analysis is carried out.

A. Datasets

We conduct experiments on two common satellite image
datasets Draper and NWPU-RESISC45 [43], and ensure that all
algorithms use the same amount of training data. The Draper
dataset contains more than 1000 HR aerial photos taken in
Southern California. The original image size and resolution is
3099× 2329, we crop it to 192× 192 pixels as HR, of which
1000 are used for training and verification, and 200 are used for
testing. We conduct ×4 down sampling of HR through bicubic
down sampling, so the corresponding LR resolution is 48× 48.

The NWPU-RESISC45 dataset is a publicly available bench-
mark for remote sensing image scene classification created by
Northwestern Polytechnic University. The dataset covers 45
categories, each with 700 images. We randomly selected 52
pictures from each category, a total of 2340. The size of the
HR image is 256× 256 pixels, of which 2250 is for training and
90 is for testing. We conduct ×4 down sampling of HR through
bicubic down sampling, so the corresponding LR resolution is
64× 64.

Real scenes have different sensors, degradation environments,
resolutions, and times of image capture, so it may lead to a model
trained on synthetic data that can generate artifacts on real data.
However, we take this problem into account when considering
the data for the model, and both of the data we use in this article
take into account the aforementioned problem. As a result, our
model has the ability to generalize in real application scenarios
where HR images are not available.

B. Parameter Settings and Implementation Details of the
Model

For the base line of our proposed model, the number of the
proposed basic block is set to 6. We use the Adam [44] algorithm
to train our model. The initial learning rate is 2× 10−4 and
decays continuously. Finally, we choose structural similarity
(SSIM) [45], visual information fidelity (VIF) [46], feature

TABLE I
VERIFY THE EFFECT OF EDGE ENHANCEMENT

similarity (FSIM) [47], and PSNR as our objective evaluation
indexes. We compare our model with popular deep-learning-
based methods such as MSRN [31], RCAN [24], EEGAN [20],
SeaNet [22], MHAN [30], CTNet [48], and HSENet [49]. We
adjust the hyperparameters of these methods and use the same
data distribution to maximizetheir good performance.

C. Ablation Study

In this section, we perform ablation experiments to verify the
effectiveness of the proposed method on the Draper dataset. It is
mainly divided into two parts. The first is to verify the influence
of edge enhancement on the reconstruction result, and last is
to verify the influence of the number of the basic block on the
reconstruction result. We will analyze this in detail as follows.

1) Effect of Edge Enhancement and ISAM: In order to ver-
ify the effectiveness of introducing LR edge enhancement and
ISAM, we sequentially removed ISAM and texture branch, then
retrained and tested the model. The results are shown in Table I.
It can be seen that when the ISAM is removed alone, the PSNR
is reduced from 34.21 to 34.12 dB, and when the entire texture
branch is removed, the PSNR is reduced to 34.05 dB, which is
a decrease of 0.16 dB.

We visualized the results of SR with the edges removed
as well as the edge branches, as shown in Fig. 5. Fig. 5(a)
shows the reconstructed results with ISAM removed, Fig. 5(b)
shows the reconstructed results with edge branches removed,
Fig. 5(c) shows the reconstructed results of our final model, and
Fig. 5(d) shows the HR. As can be seen from the figure, when
the ISAM and edge branching are removed, the visual effect of
the reconstruction appears to degrade, losing texture and detail
information in the sector, this confirms the effectiveness of our
proposed ISAM and edge branching. This is because the edge of
the image is the most essential feature of the image. Edges widely
exist in the image between objects and background, between
objects and objects. In many applications, the main focus of
imaging is the feature details of the object field, such as the edge
contour, etc. This requires edge enhancement processing on the
object field to highlight the required detail information such as
the edge contour. In the spatial domain, the edge part of the object
field generally refers to the boundary of the object field or the
place where the complex amplitude changes drastically. Looking
at the edge part of the object field in the spectral domain, it refers
to the high-frequency information of the spatial spectrum of the
object field. Satellite images have a high degree of structure, so
their SR reconstruction tasks must make good use of the existing
structural prior information and pay attention to the reconstruc-
tion of their detailed parts. Therefore, the introduction of edge
prior information can bring more accurate detail information
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Fig. 5. Visualized the SR results with or without the texture branch. From left
to right: (a) reconstructed results with ISAM removed, (b) reconstructed results
with edge branches removed, and (c) reconstructed results of our final model.
(d) HR.

TABLE II
VERIFY THE EFFECT OF MGPB AND RDDB

to the reconstructed image, which has more natural and true
external characteristics.

2) Effect of MGPB and RDDB: In order to verify the effect of
MGPB and RDDB, we executed a set of ablation experiments
by removing the MGPB and RDDB modules and testing the
experimental results on the Draper test set, respectively, the
results of which are shown in the Table II. As seen in the table,
when we remove the MGPB and RDDB modules, respectively,
the performance of the model shows a significant decline in
PSNR values by 0.29 and 0.46 dB, which demonstrates the role
of our proposed MGPB and RDDB in our model.

TABLE III
EXPLORE THE IMPACT OF THE NUMBER OF BASIC BLOCKS ON THE

RECONSTRUCTION RESULTS ON THE DRAPER TEST DATASET

TABLE IV
VERIFY THE EFFECT OF THE KERNEL SIZE

3) Effect of m: In this part, we will explore the impact of
the network depth on the final reconstructed image effect by
controlling the number of basic blocks. We use M to represent
the number of basic blocks and test the performance of image
reconstruction when the number of basic blocks increases from
3 to 9 with stride 1. The experimental results are shown in
Table III. From the data in the table, the model achieves the
best performance when m is set to 6.

4) Effect of Kernels Size in MGPB: We conducted ablation
experiments on the effect of different convolution kernel sizes
on the reconstruction effect in MGPB, and the experimental
results are shown in the following table. From the Table IV,
we can see that the reconstruction performance of the network
is the best when the convolutional kernel size is 3× 3. And
when the convolutional kernel size is too large, not only the
performance decreases, but also leads to an increase in the
computational cost of the model.

In general, we believe that the performance of the model
improves as the width of the depth increases. However, as the
width of the depth increases, the information flow is transmitted
more, the feature loss increases, and the computational effort
of the model increases. Therefore, we explore the actual impact
of network depth and width on network performance through
ablation experiments, while reaching a compromise with the
amount of computation.

D. Compared on Draper Dataset and NWPU-RESISC45
Dataset

We compare our methods with popular deep learning based
methods (MSRN [30], RCAN [24], EEGAN [20], SeaNet [22],
MHAN [30], CTNet [48], and HSENet [49]). We adjust the
superparameters of these methods and use the same data distri-
bution to optimize their performance.

Tables V and VI show the average performance of the pro-
posed method and other competitive algorithms based on deep
learning on the two open datasets, where red font represents the
optimal result and blue font represents the suboptimal result. It
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TABLE V
COMPARISON RESULTS OF AVERAGE OBJECTIVE EVALUATION INDEX RESULTS

FOR ×4 SATELLITE IMAGE SR ON DRAPER DATASET AND PERFORM

EXPERIMENTS ON SIMILAR SIZE

TABLE VI
COMPARISON RESULTS OF AVERAGE OBJECTIVE EVALUATION INDEX RESULTS

FOR ×4 SATELLITE IMAGE SR ON NWPU-RESISC45 DATASET AND PERFORM

EXPERIMENTS ON SIMILAR SIZE

can be seen from the table that the proposed method is obviously
superior to other algorithms in all objective evaluation indica-
tors. Specifically, on the Draper dataset, the PSNR value of the
proposed method is 0.59 dB higher than that of the suboptimal
method; on the NWPU-RESISC45 dataset, the PSNR value of
this method is 0.18 dB higher than that of the suboptimal method.

In order to show the performance of our methods more intu-
itively, we show the subjective visual effects of different methods
in Figs. 6 and 7. As can be seen from the figure, the bicubic
interpolation method cannot produce additional details. For
CNN-based technologies, such as CTNet, HSENet, EEGAN,
and MSRN, they can infer some texture details, but their global
optimization schemes and low feature utilization lead to blurred
image contours. Some methods based on attention mechanism,
such as RCAN and MHAN, produce too smooth results, artifacts
will be generated at the edges of the generated image, and texture
details are also very fuzzy. In the figure, we use red boxes to mark
the reconstruction results of some details. It can be seen that
our method can reconstruct images with more realistic texture
details, and generate few artifacts.

In addition, we also visualized the number of parameters and
PSNR of several algorithmic models against our own algorith-
mic model, as shown in Fig. 8. As can be seen from the figure,
the number of parameters of our model is larger than CTNet,
HSENet, SeaNet, EEGAN, and MSRN, and smaller than RCAN
and MHAN. However, compared to them, our performance is
the best. In summary, our model achieves a tradeoff between the
number of parameters and model performance.

Fig. 6. Result of the subjective visual effect comparison between our method
and other methods on the Draper remote sensing dataset, we use the red wire
frame to mark out where the details of our reconstruction are better than other
methods.

Fig. 7. Result of the subjective visual effect comparison between our method
and other methods on the NWPU-RESISC45 remote sensing dataset, we use the
red wire frame to mark out where the details of our reconstruction are better
than other methods.

We also show the MSE between SR and HR. we observe that
the proposed approach outperforms other competing algorithms,
as demonstrated by its ability to better recover textures and
structures, e.g., the contours of curb lines. Specifically, satel-
lite images with complex textures and dense objects complex
textures and dense objects are easily contaminated by artifacts.
The proposed model leads to accurate contours, as shown in
Fig. 9.

E. Validation Multiscale Robustness

In order to verify the effectiveness and robustness of our
method to different input scales reconstruction results, we per-
form some multiscale experiments in this part. We choose the
OpenBayes dataset for this set of experiments. The OpenBayes
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Fig. 8. Comparison with other models in terms of parameters and performance.

Fig. 9. Result of MSE visual effect comparison between our method and
other methods, we use the red wire frame to mark out where the details of
our reconstruction are better than other methods.

dataset is a small-scale land classification dataset that con-
tains seven common categories captured from Google Earth.
The seven categories include buildings, roads, bare soil, water,
grasslands, playgrounds, and cultivated land. The OpenBayes
database contains 303 images with a spatial resolution of 1.2 m
(250 images for training and verification, and 53 images for
testing). We cropped the HR image into a patch of560 × 560× 3
pixels. We downsample the HR by 2×, 4×, and 8× to get
LR images with resolutions of 280× 280× 3, 140× 140× 3,
70× 70× 3, and 35× 35× 3. We choose HSENet [49], CT-
Net [48], and MHAN [30] as the comparison objects. The
objective evaluation results are shown in Table VII.

As we can see that our method has achieved very good
reconstruction results on different scales, and achieved the best
results in objective evaluation indicators. At the same time, we
show the competent visual effects of some reconstruction results

TABLE VII
COMPARISON RESULTS OF AVERAGE OBJECTIVE EVALUATION INDEX RESULTS

FOR MULTISCALE SATELLITE IMAGE SR WITH OTHER APPROACHES ON

OPENBAYES DATASET

at different scales, as shown in Fig. 10. In Fig. 10, we show three
different scale reconstruction subjective visual effects. From top
to bottom, there are 2×, 4×, and 8× SR reconstructions results.
In the figure, we can see that our method has shown advantages
on three different scales, and it is better than other methods in
the restoration of texture details. But when the reconstruction
scale is too large (8×), we can see that almost all methods have
failed, and the recovery results on texture details are far from
HR, far lower than the desired results. Therefore, designing
a large-scale satellite image SR method is still a challenging
problem.

F. Effectiveness of Postprocessing

We use iterative self-organizing data analysis technology al-
gorithm (ISODATA), which is a classic unsupervised semantic
segmentation of satellite images, to evaluate the results from
different SR methods. We set the number of classification cate-
gories to 5 and the maximum number of iterations to 5, as in [50].
Fig. 11 shows the SR and classification results. The white box
highlight areas where the proposed method is superior to other
methods.

Specifically, bicubic’s results contain significant blur pat-
terns and spectral distortions; therefore, it is difficult to obtain
fine classification results through ISODATA. In particular, we
noticed that in the classification results in CTNet [48] and
HSENet [49], we find that the car classification in the upper
left corner has obvious errors. We also observed the lack of
texture information in the results of MSRN [31], RCAN [24],
and SeaNet [22], while EEGAN [20] had a classification error
in the rightmost truck in the white box, and MHAN [30] failed
to recover the trucks and cars that were close to the left in
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Fig. 10. Qualitative comparison of the proposed method with four counterparts on a typical satellite image from the OpenBayne dataset. From top to bottom, the
reconstruction results are 2×, 4×, and 8×, respectively.

Fig. 11. Classification result through the ISODATA classification method. The white boxes highlight areas in the proposed model that are superior to other
methods. Zoom in to see more details.

the white box. On the contrary, our method achieves a finer
texture, which is demonstrated at the junction of car and truck
in the white box, and the ISODATA classification result of the
proposed method includes more accurate and finer details. But
at the same time we should also note that due to the limitations
of unsupervised semantic segmentation methods, all methods,
including HR, have some misclassifications, but in general our
method is the closest to ground truth visually. This shows that
the proposed method can achieve high fidelity.

G. Compared on SuperView-1 Satellite Imagery

In order to further verify the efficiency of the proposed method
in SuperView-1 satellite images, we compared the proposed

method with EEGAN [20], MHAN [30], CTNet [48], and
HSENet [49] (four methods dedicated to satellite image SR)
on SuperView-1 satellite images (1080× 1080 pixels) collected
from the SuperView-1 satellite. The spatial resolution of images
captured by the SuperView-1 satellite is 0.5 m, which is lower
than that of many HR remote sensing images. We use the center
area (256× 256× 3 pixels) of the cropped image of typical
urban land cover categories (including roads, buildings, vegeta-
tion, and bare soil) as the test image. We use the classic nonref-
erence image evaluation metric, NIQE [51], where a smaller
value indicates a better model performance. The assessment
and the results are shown in Table VIII. It can be seen that
our model achieves the best performance. Fig. 12 shows the
SR image reconstructed from the proposed method and other
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Fig. 12. Visual effects of SuperView-1 satellite images are compared.

TABLE VIII
COMPARISON RESULTS OF NIQE OF ×4 SR RECONSTRUCTED IMAGES ON

SUPERVIEW-1

competing methods on the SuperView-1 satellite image, with
an upsampling factor of 4. There are significant artifacts in the
reconstruction results of EEGAN, MHAN, CTNet, and HSENet,
even in low-frequency regions (see the lawn and bare soil in the
image. These artifacts pose a huge challenge to the subsequent
remote sensing image processing steps. On the contrary, the
proposed method achieves fine-grained texture details at the
edges with clearer image content. The aforementioned results
from video satellite images further reveal the effectiveness
of this method and highlight its powerful artifacts removal
ability.

H. Limitations and Future Work

Our algorithm also has limitations, that is, our method can
only perform high-quality reconstruction of single-frame im-
ages, but cannot reconstruct LR satellite videos well. This is
because, compared with static satellite images, imaging jitter and
inconsistency in irradiation intensity caused by high-speed satel-
lite motion reduce the availability of imaging. Second, compared
with still satellite images, video satellites have the characteristics
of continuous observation in time. Finally, the compression
ratio of video satellite data is large, which further reduces
the quality of video images. Therefore, in future research, we
will focus on SR reconstruction algorithms for video satellite
application scenarios.

V. CONCLUSION

In this article, we proposed an STP method for remote sensing
image SR. Specifically, we propose a novel edge prior enhance-
ment strategy that uses the edges of LR images and the proposed
ISAM to guide SR reconstruction. First, we introduce the LR
edge map as a priori structural expression for SR reconstruction,
which further enhances the SR process with edge preservation
capability. In addition, to obtain finer texture edge information,
we propose a novel ISAM in order to correct the initial LR
edge map with high-frequency information. By introducing and
LR edges and ISAM-corrected HR edges, we build LR–HR
edge mapping to preserve the consistency of LR and HR edge
structure and texture, which provides supervised information for
SR reconstruction. We designed two novel feature extraction
modules called MGPB and RDDB. With these two modules,
we explore the salient features of the image and its edges in
the ascending space, and restored the difference between LR
and HR images by residual and dense learning. We conducted
a large number of experiments including SR and classification
on three RGB remote sensing image datasets. Comprehensive
experimental results show that, compared with the most ad-
vanced methods, our method can reconstruct sharp edges and
clean image content, which is more realistic and faithful to the
ground truth. It is expected that the method we proposed can be
effectively transferred to other remote sensing image restoration
fields, such as remote sensing image denoising and deblurring.
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