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Abstract—Due to the continuous development of few-shot learn-
ing, there have been notable advancements in methods for few-shot
object detection in recent years. However, most existing methods
in this domain primarily focus on natural images, neglecting the
challenges posed by variations in object scales, which are usually
encountered in remote sensing images. This article proposes a new
few-shot object detection model designed to handle the issue of ob-
ject scale variation in remote sensing images. Our developed model
has two essential parts: a feature aggregation module (FAM) and
a scale-aware attention module (SAM). Considering the few-shot
features of remote sensing images, we designed the FAM to improve
the support and query features through channel multiplication
operations utilizing a feature pyramid network and a transformer
encoder. The created FAM better extracts the global features of
remote sensing images and enhances the significant feature repre-
sentation of few-shot remote sensing objects. In addition, we design
the SAM to address the scale variation problems that frequently
occur in remote sensing images. By employing multiscale convolu-
tions, the SAM enables the acquisition of contextual features while
adapting to objects of varying scales. Extensive experiments were
conducted on benchmark datasets, including NWPU VHR-10 and
DIOR datasets, and the results show that our model indeed ad-
dresses the challenges posed by object scale variation and improves
the applicability of few-shot object detection in the remote sensing
domain.

Index Terms—Attention mechanism, feature aggregation, few-
shot learning, object detection, remote sensing images.

I. INTRODUCTION

THE rapid development of remote sensing technology in
recent decades has led to widespread application in var-

ious domains, such as environmental monitoring [1], traffic
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management [2], and urban planning [3]. Within this context,
object detection has emerged as a crucial image-processing
technique and remains a prominent research focus in remote
sensing. Object detection in remote sensing images involves
the automated identification and localization of specific targets
of interest within the imagery. This technology has proven
invaluable in diverse applications, such as natural disaster de-
tection [4] and ship detection [5], [6]. Initially, object detection
in remote sensing heavily relied on traditional methods [7], such
as template matching [8], [9], expert knowledge [10], [11], and
object-based image analysis [12]. These methods predominantly
rely on manually crafted features. However, with the limitations
of performance produced by manual feature-based approaches,
there has been a shift toward the development of deep learning-
based methods [13], [14]. Nonetheless, deep learning-based ap-
proaches are limited in two aspects. First, deep learning models
often require substantial amounts of labeled data for effective
training, resulting in the high cost associated with data acquisi-
tion. Second, the scale of remote sensing images is considerably
smaller than that of natural images, which may lead to overfitting
and performance degradation when employing traditional deep
learning models. Therefore, exploring innovative methodologies
that address these challenges and enhancing the applicability
of deep learning-based techniques for remote sensing object
detection is necessary.

Few-shot learning [15] has emerged as a crucial approach
to improve the performance of object detection when training
data are limited. Its fundamental technique involves training
a detection model on a base dataset, which produces consid-
erable labeled data, thus enabling the identification of novel
image classes with minimal or no labeled data. The existing
few-shot object detection (FSOD) methodologies primarily en-
compass metalearning-based methods [16], transfer learning-
based methods [17], and metric learning-based methods [18].
Although these methods have demonstrated promising results
in natural image scenarios, they fail to learn the distinctive
features of remote sensing images. Consequently, the following
factors prevent the use of these methods for remote sensing
images.

1) Object Scale: Due to the wide variety of altitudes recorded
in remote sensing images, the same target may appear at
different size scales.
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2) Object Pixels: Many objects are difficult to detect ac-
curately due to the small number of pixels, resulting in
severe missed detections. Images captured through remote
sensing may show dense clusters of several classes of
objects, and typical examples include cars, planes, and
fuel tanks.

3) Object Range: Because remote sensing photographs typ-
ically have a wider field of view, object detection is more
difficult than natural image detection.

Considering these challenges, this study proposes a new
few-shot learning-based approach for object detection in remote
sensing images. The proposed method comprises two stages:
the first stage is the base class training stage, and the second
stage is the novel class finetuning stage. Our model is trained
on substantial annotated base class data during the base class
training stage, enabling it to acquire substantial prior knowledge.
Consequently, during the subsequent finetuning stage, our model
requires training solely on the new class of data, which contains
few annotations, allowing the model to swiftly converge. The
contributions of this work can be summed up, as shown in the
following.

1) First, we designed the feature aggregation module (FAM)
to enhance the representation of salient features of few-
shot objects in remote sensing images. In this module,
query features and support features are encoded and
channel-multiplied using the transformer encoder. On this
basis, support features are embedded into query features
to better learn salient features.

2) Second, we designed a scale-aware attention module
(SAM) to enable the model to perceive the issue of scale
variation in remote sensing images. The network is guided
to concentrate on regions with more information at proper
image feature scales by convolving with different scales
to obtain and aggregate contextual features.

3) Third, the Soft-NMS (nonmaximum suppression) algo-
rithm is introduced in the postprocessing stage of object
detection to help detect dense features in remote sensing
images. This algorithm can avoid deleting occluded ob-
jects in dense images and effectively address the issue of
missed detections caused by other ordinary NMS algo-
rithms. Our method achieved significant improvements in
performance on the DIOR dataset and the NWPU VHR-10
dataset, especially in the few-shot scenario.

The rest of this article is organized as follows. Section II
introduces related works. Section III introduces the proposed
few-shot remote sensing image object detection model. Sec-
tion IV describes the experiments and gives the analysis of
experimental results. Section V discusses the performance of
the proposed method on both base and new classes. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Object Detection for Remote Sensing Images Based on
Deep Learning

Object detection is a research hotspot in the remote sensing
domain and has broad application prospects. The effectiveness

of object detection for remote sensing images has recently
improved due to the development of deep learning, particularly
the potent feature extraction capabilities of convolutional neural
networks (CNNs). A number of deep learning-based methods
have also been developed. Most of early researches were based
on the region-based convolutional neural network (RCNN) ar-
chitecture for detecting remote sensing images, and after achiev-
ing success, researchers also developed many regression-based
methods.
� RCNN-based approaches: Zhang et al. [19] proposed two

models, i.e., the pyramid local context network and the
global context network (Get), to help the neural network
extract relevant contextual features on the object of in-
terest information. Wu et al. [20] attempted to address
the problem of the high cost of manual annotations for
remote sensing images. The authors attempted to increase
the response strength of low response regions in the shallow
feature maps and to improve the feature distribution of the
shallow feature maps. The authors added a divergent acti-
vation module and a similarity module to a neural network
model. Pang et al. [21] developed a neural network model
with autonomous enhancement consisting of a lightweight
residual backbone as well as classifiers and detectors to
enhance the network’s capacity for small target detection
and computational efficiency.

� Regression-based approaches: Cai et al. [22] designed an
unanchored target detection framework for remote sensing
images, including a cross-channel feature pyramid network
(CFPN) and foreground attention detection heads (FDHs).
CFPN can deal with a wide range of target sizes in re-
mote sensing images, and FDHs can enhance foreground
features in remote sensing images and reduce interfer-
ence from complicated background information. Zhang et
al. [23] proposed the contextual bidirectional enhancement
approach to remove irrelevant background information
from remote sensing images.

However, existing deep learning-based approaches for object
detection in remote sensing images always depend on a large
volume of training annotation samples; moreover, the acquisi-
tion of remote sensing images is usually difficult, and manual
annotation typically requires professional expertise. Therefore,
in the case of insufficient training data, the performance of
standard deep learning-based object detection techniques can
easily be hampered by overfitting.

B. Object Detection for Remote Sensing Images Based on
Few-Shot Learning

FSOD has not been widely studied in remote sensing, in
contrast to previous works on the subject of natural photographs.
The existing FSOD methods for remote sensing images can be
classified into one-stage approaches and two-stage approaches.
� One-stage approaches: Li et al. [24] proposed the first

FSOD method in remote sensing images. Their approach
focused on addressing the inherent scale diversity of remote
sensing images by incorporating a multiscale mechanism.
Zhou et al. [25] designed a lightweight feature extractor and
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Fig. 1. Architecture of the developed FSOD model for images from remote sensing. The FAM represents the proposed transformer-based FAM, which aggregates
query features and support features. The SAM represents the proposed scale-aware attention mechanism, which directs the neural network to concentrate on more
information areas at the right feature scales.

a aggregation module and applied the model to synthetic
aperture radar images.

� Two-stage approaches: Xiao et al. [26] proposed an FSOD
approach based on adaptive attention networks and pro-
posed a relational gate loop unit to obtain object-level
relationships. Zhao et al. [27] constructed a path aggre-
gation module and a feature pyramid based on a two-
level finetuned object detection approach to solve the
scale variation issue for remote sensing images. Cheng
et al. [28] extended the meta-RCNN model [29] using
the designed prototype-guided predictor-head remodeling
network (P-G RPN) in place of the generic RPN, where
the P-G RPN employed a class prototype with many fully
connected layers. The output was used to determine the
weight of the convolution layer to attach complementary
classifiers. Zhou et al. [30] developed two modules: the
context-aware pixel aggregation module, which employs
convolutions at various scales to adjust to objects at various
scales, and the context-aware feature aggregation, which
employs the graph convolutional network to obtain more
semantic information by enhancing context awareness.
Zhang et al. [31] proposed the application of the self-
adaptive global similarity (SAGS) and two-way foreground
stimulator (TFS) modules in the FSOD model. SAGS com-
putes the similarity between queries and supporting images
while preserving the spatial information of the supporting
images. TFS utilizes a bidirectional attention mechanism
to mine the hidden information in the supporting image.

The majority of existing FSOD techniques ignore the signif-
icance of spatial and contextual information for remote sens-
ing images. Furthermore, those methods that use a two-stage
procedure may offer better accuracy than their single-stage
counterparts; however, they also suffer from reduced detection
speed, hampering their practicality in real-time applications.

III. DEVELOPED APPROACH

The objective of this study is to augment the salient feature
representation of few-shot objects to utilize support features
more effectively. In addition, we address the inherent multi-
scale characteristics of remote sensing images by designing a

scale-aware attention mechanism. Fig. 1 presents the framework
with two key components: the FAM and SAM. In this section,
we first illustrate an overview of our methodology and then
elaborate upon the designed components.

A. Overall Architecture

The model’s overall architecture is composed of three parts, as
shown in Fig. 1: Module 1 is the FAM, Module 2 is the SAM, and
Module 3 is the target detection postprocessing part. The FAM
is an integration module that combines a transformer [32] and
a feature pyramid network (FPN) [33] to aggregate multiscale
support features and query features. By employing the trans-
former encoder, the FAM jointly encodes support features and
query features, leveraging channel multiplication to enhance the
aggregation of these features. Extracting salient features, which
are essential for object detection, is facilitated by this method.
In the SAM, diverse context information is acquired through
distinct convolution operations. This enables the aggregation
of the obtained contextual details, which guides the network
to adapt to objects of varying scales and emphasizes regions
containing richer information. By adapting to different scale
contexts, the SAM enhances the discriminative ability of the
model. The object detection postprocessing step incorporates
the Soft-NMS algorithm [34], which is tailored to address
the characteristics of dense targets commonly encountered in
remote sensing scenes. This algorithm mitigates the issue of
missing target detection, thus improving both the detection and
recognition rates of objects in remote sensing images. Overall,
the developed method effectively combines the FAM, SAM, and
postprocessing parts, enabling robust object detection for remote
sensing images.

Given a query image Qi as the input to feature extractor D to
generate the query feature qi and given a set of support images
(with annotations) Si = (Ij ,Mj), Ij represents the support
image, and Mj represents the bounding box annotation. By
highlighting the target area in white on the mask, the target
can be precisely located, and its position and shape can be
extracted. Simultaneously, masks can mask the areas of interest
in an image. Si is input to the reweight net M to obtain the
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TABLE I
REWEIGHT NET STRUCTURE

support features vi. The computation is shown in (1) and (2)

qi = D(Qi) (1)

vi = M(Si). (2)

Table I gives the network architecture of the reweight net M .
“Convolutional” refers to a 2-D convolutional layer. “Filters” is
the number of convolutional filters. “Size” represents a convo-
lutional kernel’s spatial dimensions as “kernel height × kernel
width.” “Stride” represents the step size of the convolutional
kernel moving on the image; “Max-pooling” represents the
max-pooling layer.

Then, the query features and support features are input to the
FAM for feature aggregation to obtain the aggregated features
FA, where FAM(·) represents the FAM module

FA = FAM(qi, vi). (3)

The obtained aggregated features are subsequently subjected
to the SAM for scale perception to obtain F ′

A, where SAM(·)
represents the SAM module

F ′
A = SAM (FA) . (4)

Finally, the prediction layer is the input for detection according
to (5), where Det(·) represents the target classification and
bounding box regression

O = Det (F ′
A) . (5)

B. Feature Aggregation Module

In the context of FSOD for remote sensing images, the ability
of models to identify novel classes is often compromised due to
the lack of available labeled training data. Therefore, effectively
harnessing the information contained within existing data be-
comes a crucial challenge. Traditional object detection methods
typically rely on the feature map of the final convolutional layer
for prediction, limiting their ability to detect smaller targets,
which widely exist in remote sensing images.

To address the aforementioned challenges, we created a FAM
based on an FPN and leveraged the Transformer encoder to
aggregate support features and query features. Specifically, the
query features correspond to the metafeatures extracted from the
query image by the feature extractor. Support features consist of
support image information extracted by the reweight net from the
support images that contain labels and masks. Fig. 2 illustrates

Fig. 2. Structure of the FAM.

the workflow of the feature aggregation process. Initially, the
query features and support features acquired from the feature
extractor undergo FPN processing. This step yields the support
FPN features and query FPN features on three different scales.
Subsequently, to enhance those features, the support features,
query features, and post-FPN are sent to the transformer encoder
for encoding. The structure of the transformer encoder consists
of two sublayers: a multihead attention layer and a fully con-
nected layer (i.e., a multilayer perceptron or MLP). Residual
connections are used between each sublayer. The transformer
encoder boosts the capacity to gather global information in
addition to utilizing the self-attention method to tap the feature
representation potential. Ultimately, the enhanced query features
and support features are subject to a channel multiplication
operation at each scale, facilitating the integration of information
across the feature maps. This operation enables the effective fu-
sion of query features and support features, leading to enhanced
representations for subsequent tasks.

Algorithm 1 shows the outline of the FAM. Upon receiving
the input support set and query set, the feature extraction
procedure yields query features qiεRC×Hq×Wq from the feature
extractor, while the reweight net produces support features
viεR

N×C×Hs×Ws . Here, N represents the number of supported
image object classes, where the supported image classes are
determined by the selected base class. C signifies the number
of channels; Hq and Wq represent the height and width of
the query feature map, respectively; and Hs and Ws denote
the height and width of the support feature map, respectively.
In lines 2–8, the FPN [33] operation is demonstrated, where
query features qi and support features vi from the FAM are
the inputs. Multiscale feature fusion is performed through a
feature pyramid to obtain q′i and v′i. In lines 9–10, the encoding
operation is illustrated, utilizing the transformer encoder to
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Algorithm 1: Feature Aggregation Module Algorithm.

derive encoded query features qEi and encoded support features
vEi . These encoded features are denoted as qEi = En(q

′
i)

and vEi = En(v
′
i), respectively. The function En represents

the transformer encoder, which applies a series of encoding
transformations to the input features q′i and v′i obtained through
multiscale feature fusion. The resulting encoded features qEi
and vEi embody the enriched representations of query features
and support features, respectively. In lines 11–13, the channel
multiplication procedure is delineated. This step involves
leveraging the encoded query features and support features to
execute reweighting operations, resulting in the attainment of the
aggregated feature FA. The channel multiplication operation
combines the enriched representations of query features
and support features, facilitating the integration of feature
information from the query and support images. By fusing these
features through the reweighting process, the aggregated feature
FA is formed, which encapsulates the consolidated knowledge
derived from the query and support sets.

FA = qEi
⊗

vEij , i = 1, 2, 3 and j = 1, 2, . . ., N. (6)

The symbol
⊗

denotes the channelwise multiplication
operation, wherein the aggregated feature FA is obtained
through this operation. It should be noted that the encoded
query features qEi and support features vEij possess an equal
number of channels. The feature extractor and the reweighting
module (i.e., reweight net) can be jointly optimized as a result
of the incorporation of the FAM into the training process.
This simultaneous training scheme facilitates the acquisition
of meaningful reweighted features. Moreover, the transformer
encoder plays a pivotal role by leveraging the self-attention
mechanism to explore potential feature representations and
addressing the inherent limitation of CNNs in capturing
global information. Thus, the transformer encoder enhances

Fig. 3. SAM structure. The input features are concatenated after convolutions
1 × 1, 3 × 3, 5 × 5, and 7 × 7. The concatenated features are scaled for attention
and connection to the initial features by the activation function.

the overall feature extraction performance by incorporating
global contextual information, augmenting the capacity to learn
comprehensive and contextually rich representations.

C. Scale-Aware Attention Module

Visual attention has emerged as a valuable tool across various
computer vision applications, including scene text recognition
and image captioning. This concept draws inspiration from
the remarkable capabilities of the human visual system, which
adeptly scans an entire image, swiftly identifying areas that
demand attention. By leveraging attention mechanisms, detailed
information about the target can be obtained, effectively sup-
pressing irrelevant information from surrounding regions. Pixel
attention can assist in extracting additional semantic informa-
tion, which helps to mitigate the issue of inadequate learnable
knowledge resulting from insufficient data volume. However,
because target objects in remote sensing images differ greatly
in scale, standard pixel attention cannot accurately extract target
information at all scales.

Inspired by the visual cortex of primates, Serre et al. [35] uti-
lized convolutional kernels of different sizes to handle multiscale
problems. In GoogLeNet [36], the authors also used the same
strategy to design the network structure. Moreover, the author
believes that this design concept also aligns with real-world
visual perception, which involves processing visual information
on different scales and then combining these processed results.

Therefore, we construct a SAM that allows the network to
learn semantic information at multiple scales. By employing
independent convolution kernels operating at different scales,
the module extracts features from the input image. Fig. 3 pro-
vides an overview of the complete process implemented by the
SAM. The input to the SAM consists of aggregated features
FAεR

H×W×C that are obtained from the aggregation module
FAM across three distinct scales. To enhance context awareness
and accommodate varying levels of generalized semantic infor-
mation, the features FAi

(iε[1, 3]) from each scale are processed
through convolutional kernels of sizes 1 × 1, 3 × 3, 5 × 5,
and 7 × 7. Subsequently, a concatenation operation merges the
resulting feature maps, which are computed as follows:

Xi = Conv1×1(FAi
) + Conv3×3(FAi

)

+ Conv5×5(FAi
) + Conv7×7(FAi

) (7)



GAO et al.: FSOD4RSI: FEW-SHOT OBJECT DETECTION FOR REMOTE SENSING IMAGES VIA FEATURES AGGREGATION AND SCALE ATTENTION 4789

where the input features are indicated by FAi
, and the output

features are indicated by Xi. The features AiεR
1×1×C are

obtained by Xi after the attention map calculation and sigmoid
operation. The original features are multiplied by the processed
features Ai to acquire the features after scale-aware attention

Ai = σ[ϕ(Xi)] (8)

Si = Ai

⊙
FAi

. (9)

In this context, the sigmoid function σ(·) is employed for the
transformation, while the elementwise multiplication is denoted
by

⊙
. Computing the attention map ϕ(·) is performed by com-

bining 2-D convolutional layers and ReLU activation functions
to reduce the dimensionality of feature maps. Specifically, we
choose the sigmoid function as the activation function for the
output to enhance the information of interest while ignoring
secondary information. Therefore, we expect to affect only the
intensity of the output without changing its direction. Notably,
a dedicated ϕ(·) is employed for each specific scale to compute
the attention map corresponding to that scale. This approach can
help the network prioritize pertinent regions of interest at ap-
propriate scales, effectively suppressing irrelevant information.
Moreover, utilizing multiscale convolution operations expands
the network’s receptive field. significantly Consequently, it can
capture both local details and global background information,
further enhancing the overall performance.

D. Postprocessing

In the context of remote sensing images, there are specific con-
siderations related to the imaging angle of view. These images
are typically taken from a top-down perspective, while the de-
tection targets usually exhibit varying orientations. In addition,
certain targets, such as airplanes, are often densely distributed
within scenes. Consequently, the prediction frames generated
by the detection algorithm tend to overlap. When employing
the traditional NMS algorithm, the predicted frames with lower
confidence scores are directly discarded. This approach, how-
ever, may lead to missed detections and a subsequent decrease
in overall detection accuracy. To address this challenge and en-
hance the algorithm’s ability to detect densely arranged targets,
we propose substituting the conventional NMS algorithm with
the Soft-NMS algorithm [34]. By employing Soft-NMS, we can
mitigate the issues associated with overlapping predicted frames,
allowing more refined and accurate detection.

The Soft-NMS algorithm [34] was developed to address the
challenge of achieving accurate detection in scenarios where
targets are occluded by one another. This algorithm incorporates
an attenuation function that modifies the confidence scores of
adjacent predicted frames based on their intersection over union
(IoU) values. Instead of setting the confidence of bounding
boxes with lower confidence to zero, the algorithm reduces
confidence using a gradual attenuation approach. This approach
preserves the detection frames, thus improving the algorithm’s
recall rate and mitigating instances of missing detection. The
proposed computation to reduce confidence in Soft-NMS [34]

is as follows:{
ci, IoU(bi, bj) < T

ci(1− IoU(bi, bj)), IoU(bi, bj) ≥ T.
(10)

Among them, ci reflects the model’s confidence in the box
containing objects and reflects its belief in the accuracy of
box prediction. Formally, we define confidence as Pr(Object) ·
IoUtruth

pred . If no object exists in that cell, the confidence score
should be zero. Otherwise, we want the confidence score to be
equal to the IoU between the predicted box and the ground truth.

At test time, we multiply the conditional class probabilities
and the individual box confidence predictions

ci = Pr(Class|Object) · Pr(Object) · IoUtruth
pred . (11)

Pr(Object) represents the probability of the presence of a target
in the detection box, and Pr(Class|Object) represents the prob-
ability confidence formula of the target belonging to a certain
category in a given detection box, which is used to calculate the
probability of the presence of a target in the detection box and
gives us class-specific confidence scores for each box.

For each bounding box bi, if the IoU value between bi
and another bounding box bj is greater than a predetermined
threshold T , Soft-NMS maintains the correct result by lowering
the confidence level of bi. With this approach, bounding box
redundancy can be avoided to some extent while increasing the
object detection precision.

E. Training Scheme

To train the proposed model in few-shot scenarios effectively,
a training data partitioning approach was employed. Specifically,
the training data were divided into two distinct groups: the query
set (Q) and the support set (S). A query set comprises query
images along with the corresponding annotations (A)

Q = {(I, A)}. (12)

The category of the support set is determined by the selected
base class category. A support set consists of N support images,
each from a different base class. Each support image Ij corre-
sponds to a bounding box mask MIj , where j = 1, 2, . . ., N and
the support set is defined as

S = {(I1,MI1), (I2,MI2), . . ., (IN ,MIN )}. (13)

Each training set is defined as follows: The training set is
separated into numerous sets; each training set consists of a
query image and its annotations, and a set of supporting images
and their masks

Tk = Qk

⋃
Sk (14)

where the query set images are input to the feature extractor (see
Fig. 1), and the query set images are input to the recurrent net,
which is also shown in Fig. 1.

To address the challenge of detecting objects with limited
training samples, we use a two-stage training scheme that cat-
egorizes the whole dataset into base classes and novel classes.
This training process offers improved performance in few-shot
scenarios. The initial stage, known as basic training, focuses
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Algorithm 2: Training Scheme.

on training the network’s learning parameters using a compre-
hensive base class dataset. This stage typically requires a large
amount of time to ensure effective learning. In the subsequent
stage, referred to as finetuning, we leverage a novel class dataset
to train the model built upon the knowledge gained during the
first stage further. This finetuning process enables the model
to attain superior performance with a relatively shorter training
duration. Algorithm 2 describes the two-stage training proce-
dure. First, we input the base class dataset Dbase, the novel class
dataset Dnovel, and the model M . Lines 1–7 represent the base
training procedure of the first training stage. Specifically, within
each base training epoch, line 2 constructs a training dataset
T base based on the base class dataset Dbase; line 3 represents
to traverse each batch T of the training dataset T base; line 4
calculates the training loss for model M and performs back-
propagation, and line 5 refreshes the parameters θbase based on
backpropagation. Lines 8–14 explain the few-shot fine-tuning
in the second training stage. Specifically, in each fine-tuning
epoch, line 9 constructs the fine-tuning dataset T finetune based on
the base class dataset Dbase and the novel class dataset Dnovel;
line 10 represents traversing each batch T of the fine-tuning
dataset T finetune; line 11 calculates the loss for model M and
performs backpropagation; line 12 represents refreshing training
parameters θfinetune based on backpropagation.

IV. EXPERIMENTS

This section presents a comprehensive overview of the per-
formed experiments, encompassing two widely used public

remote sensing object detection datasets, experimental configu-
rations, evaluation metrics, experimental findings, and ablation
analyses assessing the impact of individual components. The
details are discussed in the following sections.

A. Dataset, Experimental Configuration, and Parameter
Setting

Two publicly available datasets were employed to test the
developed method as follows.
� NWPU VHR-101: The high-resolution public dataset

NWPU VHR-10 is used to identify objects in remote
sensing images. The dataset contains 800 remote sensing
images that were gathered from the ISPRS Vaihingen and
Google Earth datasets. Within this dataset, 650 samples
are classified as positive instances, each containing at least
one discernible target object, while the remaining 150
samples are designated negative instances devoid of any
target objects. This dataset encompasses annotations for
ten distinct object categories, including baseball diamonds,
tanks, basketball courts, tennis courts, ships, ground track
fields, bridges, and harbors.

� DIOR2: DIOR is a sizable benchmark dataset for object
detection in remote sensing images. This dataset includes
192 472 instances of 20 classes and 23 463 images taken
from Google Earth. There are 20 object classes in this
dataset: baseball field, airport, airplane, chimney, bridge,
basketball court, expressway toll station, express service
area, dam, ground track field, golf course, harbor, sta-
dium, ship, overpass, train station, tennis court, storage
tank, windmill, and vehicle. Each image within the dataset
adheres to a consistent size of 800 × 800 pixels while
providing a spatial resolution ranging from 0.5 to 30 m.

Each dataset was divided into two distinct subsets to assess
the efficacy of the model in few-shot scenarios: the base class
dataset and the novel class dataset. In the NWPU-VHR10
dataset, the novel class was defined by three specific classes,
tennis court, airplane, and baseball diamond, while the
remaining seven classes were designated the base class. For the
DIOR dataset, a subset of five classes, comprising windmill,
airplane, train station, tennis court, baseball field, and train
station, was identified as the novel class, while the remaining
classes were categorized as the base class.

All the experiments were implemented in PyTorch and trained
on an Nvidia RTX 3090 GPU. For parameter settings, we used
the Adam optimizer with momentum set to 0.9 during training.
For the first base training stage, the initial learning rate was
0.001, while for the second finetuning stage, a continuous learn-
ing rate of 0.0001 was used. Meanwhile, the IoU threshold of the
Soft NMS algorithm is set to 0.5. The reason is that we expect the
algorithm could detect targets effectively and produces a high
accuracy and stability when facing scenes with high overlapping
between small targets in remote sensing images.

1[Online]. Available: https://1drv.ms/u/s!AmgKYzARBl5cczaUNysmi
FRH4eE

2[Online]. Available: https://drive.google.com/drive/folders/1UdlgHk49iu6
WpcJ5467iT-UqNPpx__CC

https://1drv.ms/u/s!AmgKYzARBl5cczaUNysmiFRH4eE
https://1drv.ms/u/s!AmgKYzARBl5cczaUNysmiFRH4eE
https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ5467iT-UqNPpx__CC
https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ5467iT-UqNPpx__CC
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B. Evaluation Metrics

To validate the object detection results, we adopt visual object
class metrics [37], including precision, recall, AP, and mAP

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

where TP, FP, and FN represent true positives, false positives,
and false negatives, respectively. The prediction box is positive
when the IoU between it and the target box is linked to surpass
0.5. Otherwise, it is negative

AP =

∫ 1

0

p(r)dr. (17)

The coordinate system AP represents the region under the
precision–recall curve with precision as the vertical coordinate
and recall as the horizontal coordinate

mAP =

∑n
c=1 APc

n
(18)

where c denotes the category, n represents the number of cate-
gories, and mAP represents the average value of APs in multiple
categories. The overall effectiveness of multicategory target
detection can be well represented by mAP.

C. Baseline Methods

We compared the proposed few-shot detection method with
the current one-stage FSOD approaches.

1) FSRW [16] is an FSOD approach that uses metalearning
for initialization. Notably, FSRW introduces a reweighting
module, which generates a collection of reweighting vec-
tors from the support samples. These reweighting vectors
recalibrate the metafeatures extracted from the feature
extractor, thereby enabling effective detection in few-shot
scenarios. By intelligently reweighting the metafeatures
based on the support samples, the FSRW achieves good
performance for FSOD.

2) The FSODM [24] was improved upon the FSRW to
achieve multiscale object detection in few-shot scenarios.
FSODM is designed to contain multiscale detection heads,
achieving the first application of FSOD for remote sensing
images.

3) YOLOv5 [38] stands out as one of the most prevalent
single-stage object detection algorithms, garnering ex-
tensive utilization. Its distinguishing feature lies in its
ability to detect all objects in an image with only a
single forward propagation through the neural network.
This unique characteristic endows YOLOv5 with advan-
tages in terms of both detection speed and performance.
By obviating multiple passes or complex mechanisms,
YOLOv5 achieves a streamlined and efficient object de-
tection process, making it an appealing choice for various
applications.

D. Comparison With Baseline Methods

To showcase the efficacy of the approach in detecting objects
via remote sensing in a few shots, we conducted a comprehensive
comparison with the aforementioned baseline methods. Thus,
we evaluated the developed approach in combination with base-
line approaches using the DIOR dataset and the NWPU VHR-10
dataset in 3-shot, 5-shot, and 10-shot cases, as illustrated in
Tables II and III. Notably, the results denoted with an asterisk
(*) were originally reported in Wang’s [39] paper; the results
without an asterisk were obtained through rigorous testing in our
experimental environment. This comparative analysis enables
a robust assessment of the efficiency and performance of our
suggested approach.

The performance comparison results obtained using the
NWPU VHR-10 dataset are shown in Table II. Specifically, our
model achieves 0.36 mAP in the 3-shot case, 0.52 mAP in the
5-shot case, and an impressive 0.65 mAP in the 10-shot case,
outclassing YOLOv5 to a great extent by approximately 35%
in all cases. Our model outperforms the FSRW in all the other
cases by 15%. FSRW achieves 0.12 mAP in the 3-shot case,
0.24 mAP in the 5-shot case, and 0.40 mAP in the 10-shot case.
Furthermore, compared to the FSODM, the proposed model
outperforms the other models by 4% in the 3-shot case, by 2% in
the 5-shot case, and by another 2% in the 10-shot case. FSODM
achieves 0.32 mAP in the 3-shot case, 0.50 mAP in the 5-shot
case, and 0.63 mAP in the 10-shot case. In stark contrast, the
conventional YOLOv5 algorithm lags significantly, displaying
inferior performance compared to the two few-shot-based meth-
ods. Note that the mAP of YOLOv5 reaches a mere 0.20 in
the 10-shot case, which is a result of the impressive 0.36 mAP
achieved in the 3-shot case.

These findings underscore the considerable effectiveness of
our approach in FSOD scenarios for remote sensing images.
As depicted in Table III, our approach exhibits commendable
performance in the DIOR dataset, achieving mAPs of 0.25,
0.32, and 0.35 in the 5-shot, 10-shot, and 20-shot scenarios,
respectively. Notably, the approach outperforms the FSODM by
1% in the 5-shot case and by 2% in both the 10-shot and 20-shot
cases. These outcomes show the efficacy of our methodology in
addressing potential challenges related to multiscale detection
and the optimal utilization of support samples, which have been
observed in previous models. Comparatively, the FAM enhances
the representation of support features and query features, thereby
maximizing the utilization of support samples. Similarly, the
SAM module equips the network with adaptability to the diverse
multiscale characteristics of remote sensing images, thus ex-
panding the perceptual field. These improvements contributed to
the overall performance enhancement produced by our approach
in FSOD for remote sensing images.

E. Ablation Study

The effectiveness of each module employed in our research
was carefully assessed through ablation experiments. Specif-
ically, we evaluated the performance of each module in the
NWPU VHR-10 dataset, which serves as a reliable bench-
mark. In an ablation study, we built upon the foundation of the
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TABLE II
FEW-SHOT DETECTION RESULTS (MAP) COMPARISON IN THE NWPU VHR-10 DATASET (IOU OF 0.5)

TABLE III
FEW-SHOT DETECTION RESULTS (MAP) COMPARISON IN THE DIOR DATASET (IOU OF 0.5)

Fig. 4. Ablation study.

FSODM and systematically introduced three key parts: the FAM
module, the SAM module, and the Soft-NMS algorithm. By
incorporating these modules individually into the baseline, we
carried out several experiments in few-shot scenarios, encom-
passing 3-shot, 5-shot, and 10-shot cases. This comprehensive
evaluation allows us to thoroughly investigate and validate the
efficacy of each component within the network, further con-
tributing to a comprehensive understanding of the proposed
approach.

The ablation results, as depicted in Fig. 4, showcase the effect
of individual module additions. By incorporating the FAM alone,
a notable improvement in performance of approximately 2%
is observed. Specifically, the mAP increases from 0.3233 to
0.3432 in the 3-shot case, from 0.50 to 0.5086 in the 5-shot
case, and from 0.6266 to 0.6459 in the 10-shot case. The
integration of the FAM module, employing the transformer
encoder, contributes to enhanced accuracy, albeit at the expense
of computational speed. In addition, the inclusion of the SAM
module alone yields a performance boost of approximately
2.5%. The mAP increases from 0.3233 to 0.3457 in the 3-shot
case, from 0.50 to 0.5131 in the 5-shot case, and from 0.6266

to 0.6402 in the 10-shot case, underscoring the efficacy of the
SAM module in addressing the multiscale challenges encoun-
tered in remote sensing images. Furthermore, employing the
Soft-NMS algorithm as a standalone postprocessing technique
on the baseline results in an improvement of approximately
1%. This improvement is evident in the 3-shot case, in which
the mAP increases from 0.3233 to 0.3392; in the 5-shot case,
from 0.50 to 0.5060; and in the 10-shot case, from 0.6266
to 0.6356.

Fig. 5 shows examples of the novel class detection outcomes
of the proposed method in the NWPU VHR-10 dataset and
the DIOR dataset. The majority of the novel class objects
are correctly detected, as shown in Fig. 5, demonstrating the
efficiency of our model. It is evident that the airplane class
and the baseball diamond class are well-identified in both the
NWPU dataset and the DIOR dataset. In Fig. 5, we can see
that despite the tennis court’s resemblance to the basketball
court, the model correctly identifies the tennis court and does
not misidentify the basketball court. Similarly, in the left of
Fig. 5, despite the tennis court’s small size and densely packed
targets, the model still correctly identifies the majority of targets.
Our model can effectively handle size variations and correctly
recognize both large-scale train stations and small-scale wind
turbines. However, it is important to acknowledge that cer-
tain challenges persist. For instance, the presence of cluttered
backgrounds hampers the recognition of certain targets, such
as airplanes. Moreover, complex backgrounds may result in the
misclassification of background objects as novel class targets. In
dense scenarios such as the tennis court, there may be instances
where detection is missing. These observations provide valuable
insights into the strengths and limitations of our proposed ap-
proach in object detection for remote sensing images, facilitating
a comprehensive understanding of its performance.

V. DISCUSSION

The proposed method was evaluated by comparison with
advanced FSOD methods in the experiment. The experimental
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Fig. 5. Few examples of few-shot detection outcomes. (Left) Results of detection using a 10-shot setting on the novel classes in the NWPU VHR dataset. (Right)
20-shot detection results for the novel classes in the DIOR dataset.

results indicate the effectiveness of this method on the NWPU
VHR-10 and DIOR datasets.

A. Performance on Novel Classes

According to Tables II and III, our proposed approach outper-
forms all the competing methods. The results of comparative ex-
periments demonstrate the advantages of our proposed method,
which will be discussed as follows. By analyzing the detection
accuracy of each class, we can conclude that our method per-
forms well on both datasets and outperforms FSODM [24] for
targets with clear contours, such as airplanes, which are easy
to distinguish between foreground and background. In addition,
our approach performs well in detecting objects in tennis court
categories where there is significant overlap. This is because
our Soft-NMS algorithm effectively alleviates the problem of
missed detections caused by overlapping targets.

Simultaneously, we discovered that our approach underper-
formed on the DIOR and NWPU VHR-10 datasets for the
baseball field and diamond. We speculate that this might be due
to the limited number of similar base class samples in the dataset,
which is insufficient to enable the model to obtain a feature
extractor with sufficient knowledge during base training.

Moreover, in object detection for remote sensing images,
windmill detection is usually a difficult task, particularly for
FSOD. Because windmills are often small, they can be readily
mistaken for the background. Due to the problems of background
interference and target scale, the accuracy of the FSODM in
identifying different windmill groups is inadequate. However,
our experimental findings suggest that the designed SAM can
lessen the impact of irrelevant background data while assisting
the model in better adapting to changes in object scale. Further-
more, the suggested FAMs can effectively enhance the ability to
detect small targets.

B. Performance on Base Classes

A reliable FSOD model should excel in detecting novel
classes and should also perform satisfactorily on base classes.

TABLE IV
PERFORMANCE COMPARISON FOR BASE CLASS DETECTION IN THE NWPU

VHR-10 DATASET (IOU OF 0.5)

TABLE V
PERFORMANCE COMPARISON FOR BASE CLASS DETECTION IN THE DIOR

DATASET (IOU OF 0.5)

As Tables IV and V show, we carried out a detailed com-
parison of our approach’s detection results on the base class
to fully assess its capabilities. Remarkably, the model achieves
an impressive base class mAP of 0.83 in the NWPU VHR-
10 dataset, surpassing the base class mAPs of 0.75 and 0.77
obtained by FSRW and FSODM by 7% and 6%, respectively.
In addition, the model outperforms YOLOv5 by a remarkable
14%. Similarly, in the DIOR dataset, the model achieves a
commendable base class mAP of 0.55, surpassing the base class
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mAPs of 0.50 and 0.51 obtained by FSRW and FSODM by
5% and 4%, respectively. Moreover, the model exhibited an
impressive improvement of 10% over YOLOv5. These results
highlight the outstanding performance and effectiveness of the
suggested approach, particularly in maintaining high detection
precision for both novel and base classes.

Most existing work adopts a two-stage detection scheme, such
as the Fatser-RCNN, in the traditional object detection field.
The inference speed after model deployment is usually slow
and cannot meet real-time requirements. Our method adopts a
one-stage detection architecture that can be easily applied to
mobile devices such as drones and respond in a timely manner.

VI. CONCLUSION

This article develops a few-shot finetuning approach based
on feature aggregation and scale attention for FSOD in remote
sensing images. Our approach introduces the FAM, which lever-
ages the transformer encoder and FPN architectures to effec-
tively capture spatial position information and improve small
object detection. In addition, we propose a SAM that effectively
handles scale changes while adaptively directing attention to
more unique regions of interest, reducing interference from
background information. Conversely, to mitigate the issue of
overlooked detection stemming from the overlapping of spe-
cific categories, we employed the Soft-NMS algorithm during
the postprocessing phase to increase the detection precision.
Experiments on real-world datasets show that our approach
outperforms the FSODM and the well-known object detection
algorithms YOLOv5 and FSRW, especially in few-shot sce-
narios. Our approach effectively utilizes support samples and
small target information and adapts well to changes in remote
sensing image scales and target overlap. Existing studies for
FSOD usually focus on natural image scenes, and in contrast,
our proposed approach contributes to the detection of few-shot
objects for remote sensing images. Meanwhile, existing studies
on FSOD for remote sensing images usually employ RCNN,
which often consumes a large amount of running time and thus
produces poor performance. Our proposed approach is equipped
with a single-stage object detection, which could simultaneously
achieve real-time performance and high accuracy. Moreover, the
proposed approach is specially superior in the scenario where
small targets overlap with each other.

Further analysis of the experimental results indicates that
our approach also has enormous potential value in real-world
applications. Our approach has brought new possibilities to the
field of remote sensing image processing by addressing scale
changes and few-shot problems. In particular, our approach can
produce good results when dealing with small targets and over-
lapping scenes, such as in traffic management. The traffic scenes
in remote sensing images usually involve a dense distribution
of multiple targets, such as vehicles and pedestrians, and our
approach can still accurately identify targets.

The discussion of experimental results indicates that our
approach has some limitations in detecting novel classes when
being faced with limited information from similar base class
samples. To address this issue, we intend to investigate new

strategies, such as expanding training samples, to produce a
variety of samples to enhance detection performance. Possible
methods include sophisticated generative methodologies, such
as recognition flow [40], generative adversarial network [41], or
autoencoder [42]. We also plan to study the object detection task
for unmanned aerial vehicles. Through these future explorations,
we attempt to explore the current performance of FSOD in re-
mote sensing and expand its applications to real-world scenarios.
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