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Abstract—High-resolution stereo satellite images (HRSSIs) have
the potential to provide the accurate height and volume informa-
tion, playing a crucial role in assessing building collapses during
various natural disasters. However, the time-consuming process of
three-dimensional (3-D) reconstruction, inadequate vertical accu-
racy of digital surface model (DSM), and concentrated clustering
of buildings pose challenges for collapse assessment focused on
buildings. Therefore, we present an improved approach for rapid
fine-grained assessment of building collapses. First, the accurate
and consistent positioning parameters for HRSSIs are obtained
through the combined block adjustment using laser altimetry
points, ensuring the generation of DSMs with vertical accuracy
exceeding 2 m. Next, a set of rapid 3-D reconstruction techniques
is introduced, achieving a significant eightfold improvement in
generating DSMs. Subsequently, we deploy an automated workflow
for batch processing and registration of open-source building foot-
prints, enabling the accurate extraction of building height changes
from dual-time DSMs. Finally, based on the building change image,
a large-scale GIS image of building floor-level collapses is generated
using connected component detection and threshold classification
strategies. These findings have far-reaching implications for post-
disaster emergency response, damage assessment, and expeditious
reconstruction efforts. In our study, we processed an 800 km2 area
in Kahramanmaras Province, Turkey, generating dual-time DSMs
within 1 h. This enabled the assessment of floor-level collapses
for a total of 48 092 buildings within the area. Validation was
conducted on 361 houses in the city center, utilizing Google Street
view images as ground truth. Remarkably, our approach achieved
a high accuracy rate of 93.27% in floor-level assessment.

Index Terms—Building damage assessment, change detection,
Gaofen-7 (GF-7) high-resolution satellite stereo images, three-
dimensional (3-D) reconstruction.

Manuscript received 17 October 2023; revised 4 January 2024; accepted 1
February 2024. Date of publication 6 February 2024; date of current version
28 February 2024. This work was supported in part by the National Key
R&D Program of China under Grant 2018YFB0505400, and in part by the
National Natural Science Foundation of China under Grant 42241164 and Grant
41871325. (Corresponding author: Xiaohua Tong.)

Zhonghua Hong, Hongyang Zhang, Ruyan Zhou, Haiyan Pan, Yun Zhang,
Yanling Han, Jing Wang, and Shuhu Yang are with the College of Infor-
mation Technology, Shanghai Ocean University, Shanghai 201306, China
(e-mail: zhhong@shou.edu.cn; m210901467@st.shou.edu.cn; ryzhou@shou.
edu.cn; hy-pan@shou.edu.cn; y-zhang@shou.edu.cn; ylhan@shou.edu.cn;
wangjing@shou.edu.cn; shyang@shou.edu.cn).

Xiaohua Tong and Shijie Liu are with the College of Surveying and
Geo-Informatics, Tongji University, Shanghai 200092, China (e-mail: xh-
tong@tongji.edu.cn; liusjtj@tongji.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2024.3362809

I. INTRODUCTION

THE seismic event that transpired on February 6, 2023
resulted in extensive devastation spanning across Turkey,

Syria, and adjoining nations [1]. The toll inflicted upon archi-
tectural structures is profound, as over a million constructions
suffered varying degrees of impairment, with an excess of 50 000
succumbing to complete collapse [2]. In light of the calami-
tous aftermath, these dilapidated edifices constitute the primary
catalyst for both human casualties and substantial financial
burden [3]. Consequently, the expeditious and precise evaluation
of inflicted damage assumes a paramount role in the subse-
quent endeavors of postdisaster search and rescue operations,
comprehensive documentation, and seamless reconstruction
efforts [4].

High-resolution satellites offer significant benefits, such as
expansive coverage and brief revisit cycles [5], [6]. The increas-
ing availability of very high resolution (VHR) satellite images
coupled with reduced acquisition complexity facilitates rapid
detection and evaluation of building damage resulting from
earthquakes [7], [8], [9]. One of the most important methods for
building damage detection involves the use of spectral images
acquired pre- and postearthquake to extract relevant information
[10], [11]. Earthquakes can cause significant alterations in both
buildings and their immediate environs, leading to noticeable
variations in morphology, spectrum, and contour features as
observed in VHR remote sensing images [12]. In recent times,
deep learning techniques, particularly the superior performance
of U-net and full convolutional network in image recognition
and segmentation tasks, have contributed to the detection and
classification of building damage with commendable results
[13], [14], [15]. Nonetheless, precise three-dimensional (3-D)
information, such as the height and volume of building collapse,
is challenging to obtain from spectral data alone [16], [17]. By
analyzing alterations in building elevation and volume in 3-D
products pre- and postearthquake, a more accurate assessment
of building damage can be achieved [18], [19], [20], [21].
Moreover, this approach can enable swift and effective post-
disaster rescue operations based on casualty assessments and
corresponding rescue operations difficulty [22], [23].

Progress has been made in the methods of obtaining damage
assessment results by detecting the height variation of buildings
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before and after an earthquake. Turker utilized aerial imagery
to generate dual-phase DSMs with a resolution of 0.4 m for
change detection of buildings, enabling damage assessment
[24]. Tong et al. [19] employed dual-phase IKONOS stereo
images to implement two different methods for 3-D damage
detection of buildings: one based on building corner points for
detecting changes in building height at the floor level, and the
other based on dual-phase DSMs for detecting the affected area
and conducting pixel-based assessment of building collapse.
Tian et al. [18] proposed a method that combines multispectral
imagery and dual-phase DSMs generated from GeoEye-1 data,
enabling simultaneous detection of collapsed buildings, newly
constructed buildings, and temporary shelters. Wang and Li [21]
utilized pre-earthquake stereo imagery to extract height variation
features by combining DSM generated from postearthquake
LiDAR data and performed damage assessment on buildings
by first masking nonbuilding areas.

Various methods mentioned above have achieved several
main classifications of building damage: complete collapse,
partial collapse, intact, and newly constructed. However, such
rough categorization does not fully exploit the potential of
high-resolution stereo satellite images (HRSSIs) at the submeter
level. Tong et al. [19] demonstrated the feasibility of accurate
height change detection based on building corner points using
1 m resolution IKONOS imagery, proving its suitability for
floor-level damage assessment. Nevertheless, the experiment
conducted for the Dujiangyan earthquake in Sichuan involved
the use of highly accurate DSMs generated from pre-earthquake
total station measurement systems and ground control points
(GCPs) measured with postearthquake RTK GPS, which are
challenging to obtain in postearthquake areas. Consequently,
the integration of LAPs, namely the geoscience laser altimeter
system (GLAS) and the advanced topographical laser altimeter
system (ATLAS), as reference data to enhance the geometric
precision of the generated DSMs derived from stereo imagery,
has garnered considerable attention. Notably, Tang et al. [25],
[26] undertook a combined block adjustment of GLAS LAPs
and Ziyuan-3 (ZY3) stereo images, successfully augmenting
the vertical accuracy of ZY3 stereo images to align with the
specifications stipulated for China’s 1:50 000 scale mapping
requirements. Furthermore, China’s deployment of the GF-7
satellite on November 3, 2019 introduced a novel configuration
incorporating a stereo optical camera, a laser altimeter, and
a laser footprint camera. By combining the forward-viewing
imagery with a resolution of 0.8 m, backward-viewing imagery
with a resolution of 0.65 m, and the acquired sparse LAPs with
their footprint imagery, it is feasible to enhance the vertical
accuracy of DSMs to reach an approximate threshold of 1 m
[27].

The efficacy and efficiency of DSM generation exert a sub-
stantial influence on the framework employed for building col-
lapse assessments relying on HRSSIs. Numerous open-source
algorithms, such as S2P, RSP, ASP, and CARS, have been suc-
cessfully employed for high-resolution DSM generation [28],
[29], [30], [31]. These algorithms utilize epipolar rectification
based on feature matching and semiglobal matching (SGM)
to achieve dense matching. Through a consistent processing

workflow, they facilitate high-quality 3-D reconstruction for a
majority of terrains. However, the efficiency and memory usage
for 3-D reconstruction present significant challenges due to the
billions of pixels in a single GF-7 imagery. For instance, CARS
completed line correction and DSM reconstruction on a Pleiades
stereo pair covering London, with a size of 38 881 × 21 197
pixels, in 9 min and 16 min, respectively. Nonetheless, this
performance was achieved with a hardware configuration of
24 CPUs, 120 GB RAM, and advanced distributed systems,
leveraging cluster cooperation and distributed computing to
improve computational efficiency. In the case of SPOT7 imagery
in the mountainous regions of the French Alps with notable
terrain variations, DSM generation in such a large-scale hard-
ware cluster required as long as 2.5 h [30]. This highlights the
need for further efficiency improvements in disaster response.
Noteworthy advancements have been achieved in recent years
with regard to expediting feature matching and dense match-
ing through the utilization of diverse methodologies. First, in
the realm of expediting real-time processes, feature matching
has emerged as a vital technique, finding wide application in
demanding domains, such as autonomous driving and SLAM
engineering. Prominent methods, such as ORB and its refined
variants, have played a central role in driving these advance-
ments. [32]. Second, extensive research has been conducted on
SGM algorithms accelerated by SIMD and GPU techniques,
enabling real-time performance in generating disparity maps
with consistent quality [33], [34]. These advancements serve
as a foundation for the rapid 3-D reconstruction of HRSSIs.

In addition, the proficient utilization of building masks can
significantly bolster the efficiency and automation prowess of
evaluation. Given the substantial volume of collapsed buildings
to locate and classify, relying solely on manual labor is not a
viable option. To overcome this challenge, the authors in [21] and
[35] utilized image segmentation methodologies to accomplish
automated extraction and batch processing of building foot-
prints. Initially, nonbuilding regions, such as vegetation, bare
land, and shadows, were extracted, followed by the masking
of these regions to retain only the building areas and achieve
more accurate assessment of building damages. This approach
is motivated by the fact that roads, vegetation, open land, and
even lakes, which are nonbuilding areas, are not the main focus
during building damage assessment. By effectively masking
these irrelevant areas through the use of building masks, false
detections can be avoided. In addition, the extraction of buildings
and generation of polygonal building masks using semantic
segmentation not only achieves the same effect but also provides
independent building footprints [36]. By employing building
footprint masks to obtain DSM difference images that contain
solely the elevation change information related to the buildings,
further techniques, such as threshold segmentation, clustering,
and graph cuts, can be directly applied to extract pertinent
information from each building footprint for collapse assessment
[37]. This enables the possibility of simultaneously locating
and classifying damaged buildings through the processing of
large-scale satellite images containing a multitude of buildings.

In summary, the assessment of floor-level collapse in large-
scale buildings located in seismic areas using dual-temporal
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HRSSIs before and after earthquakes presents two major chal-
lenges. First, the acquisition of GCPs in a timely manner dur-
ing emergencies, such as earthquakes, poses difficulty, thereby
limiting the accuracy of HRSSIs’ rational polynomial coeffi-
cients (RPCs) positioning for precise building positioning and
collapse assessment. By integrating open-source ICEsat-2 LAPs
for combined adjustment, enhancements can be made to the
accuracy of the horizontal and vertical dimensions of dual-phase
DSMs. However, limited research exists on the capabilities
of HRSSIs in detecting building collapses. Second, existing
methods for building detection and height change assessment,
employing multitemporal HRSSIs, entail intricate execution
steps, extensive manual editing, and generate high-resolution
DSMs. Consequently, their practicality and responsiveness in
the context of sudden earthquakes are significantly undermined.
Hence, it is imperative to devise a streamlined process based on
input data, aiming to achieve automated and expedited detection
and evaluation of collapsed buildings.

Therefore, an improved method for building damage assess-
ment based on HRSSIs before and after a seismic event is
proposed in this article. The innovative aspects of this method
are as follows.

1) Employing open-source LAPs in conjunction with GF-
7 HRSSIs, our integrated approach effortlessly accom-
plishes the accurate geolocation and classification of ex-
tensive architectural structures. This comprehensive inves-
tigation convincingly corroborates its exemplary capacity
for ascertaining the vertical levels of building floors.

2) Our swiftly advanced 3-D reconstruction methodology
affords a remarkable improvement of more than eightfold
in the efficiency of DSMs generation. Through the use
of building masks to streamline the process, we achieve
complete automation and marked improvement in the
efficiency of building damage evaluation.

The rest of this article is organized as follows. Section II pro-
vides an introduction to the research domain and the associated
dataset, while Section III elucidates the proposed methodol-
ogy in intricate detail. Section IV showcases the experimental
outcomes, while Section V critically analyzes the method’s
performance. Finally, Section VI concludes this article.

II. STUDY AREA AND DATA

A. Study Area

In the early hours of February 6, 2023, a devastating earth-
quake struck Kahramanmaraş in southeastern Turkey, measuring
7.8 on the Richter scale. Remarkably, within 9 h of this event,
another earthquake measuring 7.6 occurred in the same region
at a depth of approximately 10 km. These two earthquakes
caused unimaginable destruction in Turkey and its neighboring
countries, and the resulting building collapses and loss of life
surpassed all expectations. As of March 20, 2023, the combined
death toll has already exceeded 57 000 people and continues
to rise, making it the deadliest earthquake in modern Turkish
history. Particularly alarming is the fact that over one million
buildings in Turkey alone have been damaged, with over 56 000
collapsing or suffering severe damage. More than six million

people have been displaced as a result, and the number of lives
lost due to collapsed buildings is truly distressing [2], [38].

The capital of Kahramanmaraş province, severely impacted
by both earthquakes, as illustrated in Fig. 1, was selected as the
study area for investigation. This region is one of the hardest hit
areas in Turkey, with a significant number of collapsed buildings
visibly identifiable from high-resolution satellite imagery. The
city of Kahramanmaraş is densely populated with over 70 000
houses in the urban area alone, featuring a highly complex
distribution of buildings that intertwines numerous high-rise
structures exceeding ten floors with a multitude of low-rise
buildings. Moreover, the city’s terrain exhibits variations of
over 300 m, resulting in a considerable number of structures
built on slopes. These challenges pose significant difficulties for
automated extraction and damage assessment of buildings.

B. Data and Preprocessing

The GF-7 imagery used in this experiment consists of a
pre-earthquake stereo pair captured on July 2, 2021 and a
postearthquake stereo pair captured on the ninth day after the
earthquake (February 15, 2023). The cloud coverage on the
images was less than 5% and they exhibited excellent quality.
The pre-earthquake imagery exhibited an overlap percentage of
94.16%, surpassing the 86.71% overlap of the postearthquake
stereo imagery. The combined coverage of these four satellite
images exceeded 600 km2, almost encompassing the entire urban
area of Kahramanmaraş. Additionally, the RPC file correspond-
ing to each satellite image, as well as the coacquired LAPs, was
provided.

For the external source of laser point data used in the stereo
adjustment, the open-source ATLAS LAPs were employed. A
total of 62 laser tracks within the image coverage area were
selected from the website. The corresponding data attributes
were extracted from the HDF5-formatted LAPs files based on the
official documentation of ICESat-2 [39]. Initial filtering of the
LAPs was performed with reference to the latitude and longitude
shapefile of the study area.

The urban building footprints for Kahrmanmaraş city were
obtained from the Microsoft GlobalMLBuildingFootprints
datasets [https://github.com/microsoft/GlobalMLBuilding-
Footprints (accessed on 19 May 2022)]. The extraction of
buildings involves two main steps. The first step is semantic
segmentation, where deep neural networks are used to recognize
building pixels in aerial images. Once the building pixels are
identified, the second step, known as polygonization, is carried
out. Polygonization involves converting the detected building
pixels into polygons, which represent the shape and boundaries
of the buildings accurately. The accuracy and recall rate in
the European region were 94.13% and 85.9%, respectively,
with the footprints all being in the WGS-84 coordinate system.
Upon the acquisition of Turkish JSON format footprints, the
buildings were then clipped to retain only those within the
study area, resulting in a total of 48 092 building footprints.
The distribution of these building footprints, along with the
pre-earthquake and postearthquake stereo satellite imagery, can

https://github.com/microsoft/GlobalMLBuilding-Footprints
https://github.com/microsoft/GlobalMLBuilding-Footprints
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Fig. 1. Location map and dual-temporal HRSSIs of the study area.

Fig. 2. Distribution of 48 092 building footprints on HRSSIs.

be seen in Fig. 2. The experimental data implemented in this
study have been delineated in Table I.

III. PROPOSED METHOD

The entire process of rapid 3-D floor-level damage assessment
for a large number of buildings utilizing high-resolution dual-
temporal DSMs and building footprint masks is demonstrated
in Fig. 3.

A. Rapid and Registered DSMs Generation

1) Combined Bundle Adjustment: The synchronized stereo
imagery and LAPs obtained from the GF-7 satellite possess
unique advantages, including minimal relative planimetric error,
simultaneous data acquisition, and overlapping geographical
coverage. However, the number of GF-7 LAPs is limited and
unevenly distributed within the study area. In contrast, the
ATLAS LAPs collected over the years exhibit higher ground
resolution but contain a substantial amount of erroneous points.
The overall bias of ATLAS LAPs is much larger than that of
GF-7 LAPs, requiring strict selection. Therefore, this article
adopted a combined bundle adjustment strategy, primarily using
GF-7 LAPs as the main data source supplemented by ATLAS
LAPs, to achieve the reorientation of pre- and postearthquake
dual-temporal stereo pairs [27].

The rational function model is employed as the adjusted model
for LAPs, which is based on the third-order rational polynomial
transformations to accomplish the conversion between image
space (row and column) and object space (X, Y, and Z). In order
to address the errors arising from imprecise satellite scanning,
attitude, and orbit positioning, the field of photogrammetry often
relies upon the adoption of an affine transformation model.
This widely employed model aims to mitigate these errors by
effectively compensating for any misalignment present in the
rows and columns of the satellite images, thereby facilitating
their rectification. The construction of the adjustment model can
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TABLE I
DETAILS AND SPECIFICATIONS OF TURKEY DATASETS

Fig. 3. General framework of the method proposed in this article. 1, 2, and 3 denote three successive steps mentioned in the proposed method.

be described as follows [40]:

V = AX1 +BX2 −L (1)

In the equation, V represents the residual term, A denotes the
partial derivative of the undetermined solution coefficients in the

affine transformation compensation model, and X1 corresponds
to the compensating quantity for the undetermined coefficients.
B represents the partial derivative of the object coordinates at
that point, while X2 represents the square of the corresponding
material compensation quantity. L refers to the residual of image
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Fig. 4. Rapid 3-D reconstruction process proposed in this article.

coordinate differences between the model and observed values.
The aforementioned equation represents the general form of the
adjustment model. In practical research, adjustments are often
required for different points, such as plane control separation and
elevation. Within this article, the adjustment model primarily
encompasses the following three types [25]:

⎧⎨
⎩

V tp = Atp Xaff +BtpXtp −Ltp,P tp

V vcp = Avcp Xaff +BvcpXvcp −Lvcp,P vcp

V las = Alas Xaff +BlasXlas −Llas,P las.
(2)

The first category is the junction point error equation, the
second category is the virtual control point error equation, and
the third category is the LAPs error equation. Xaff represents
the undetermined compensation coefficients, Xtp is the object
coordinate of the junction points, Xvcp represents the object
coordinate of the virtual control points, and Xlas denotes the
object coordinate of the LAPs. P represents the weight of the
points. Different types of points have different unknowns to
solve in X.

2) Rapid 3-D Reconstruction: Currently, mainstream open-
source software for satellite-based 3-D reconstruction follows
a similar processing workflow: feature matching, epipolar line
constraint, dense matching, forward intersection, and grid-based
DSM generation [30]. Due to the large format of satellite im-
agery and the approximate hyperbolic form of epipolar lines,
block-based multithreaded processing is commonly employed
[41]. In the realm of blockwise processing of stereo image
pairs, feature matching and dense matching emerge as the most
time-intensive steps. Within the scope of this study, we put forth
a rapid 3-D reconstruction approach that seeks to evaluate the
algorithmic viability of these two aforementioned steps while
also presenting potential alternative solutions. Furthermore, cer-
tain improvements are made to ensure the accuracy of DSM
generation. Fig. 4 illustrates the processing workflow of the
proposed fast 3-D reconstruction method for each block.

Before executing the 3-D reconstruction process, the accurate
overlap areas need to be obtained for the stereo image pairs. In
this method, the aft-looking image block serves as the refer-
ence image. By utilizing the shuttle radar topography mission
(SRTM) with a resolution of 30 m as the elevation control and
employing the refined RPCs with deviations within 10 pixels to
establish the mapping relationship [42], then forward-looking
image blocks with an intersection over union (IoU) exceeding
90% of reference image blocks are obtained. A sufficiently
large IoU significantly enhances the efficiency and accuracy of
subsequent feature matching and dense matching stages [43].

Next, feature matching is performed on the acquired stereo
image block pairs. Currently, open-source libraries typically em-
ploy the scale-invariant feature transform (SIFT) or even slower
Affine-SIFT (ASIFT) methods to extract the corresponding
points. While these methods yield accurate and robust matches
in various scenarios, they tend to be time-consuming. A com-
prehensive comparison of different feature matching algorithms
revealed their relative efficiency, with the ranking from highest to
lowest as follows: ORB > BRISK > SURF > AKAZE > SIFT
> KAZE [44]. ORB generally exhibits a speed improvement
of two magnitudes compared with SIFT, but its robustness and
accuracy are significantly inferior. Moreover, ORBs distribution
of feature points is uneven, with a strong concentration in regions
with distinct features or edges. However, considering the study
area characterized by heavily damaged urban zones, which
encompass abundant building corners, edges, and textures, ORB
can still extract numerous feature points. By subsequently ap-
plying strict selection criteria, high-quality feature points can be
obtained.

Therefore, after obtaining the initial set of corresponding fea-
ture points using ORB, the following operations are conducted:
based on the refined RPCs and the elevation range provided by
the SRTM, a uniform distribution of virtual control point pairs
is sampled on the stereo image block. The density of virtual
control points is positively correlated with the elevation range.
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The fundamental matrix estimated with virtual control points
is then utilized to eliminate a considerable number of erroneous
matches. To ensure a sufficient number of remaining matches, an
adaptive distance threshold is employed. Furthermore, an Octree
is employed to homogenize the distribution of the selected point
pairs. Finally, RANSAC is used to estimate the epipolar line
constraint and generate stereo image pairs of the same size
with corrected epipolar lines. For cases where the number of
ORB correspondences exceeds 50, and after the aforementioned
steps, no less than 20 matches remain, accurate epipolar line
constraints can be obtained. In challenging landscapes, such as
mountains, lakes, or low-texture flat regions, where acquiring
an adequate number of corresponding point pairs is arduous, a
two-step approach is utilized. First, globally valid correspon-
dences are identified, followed by the estimation of a global
fundamental matrix to rectify the image blocks [45].

Regarding the most time-consuming process, dense match-
ing, the mainstream SGM algorithm has achieved tremendous
improvements in efficiency through hardware acceleration, such
as FPGA and GPU. In this study, improvements are made on
the GPU-accelerated SGM method proposed by Turker and
Cetinkaya [24]. To meet the input requirements of the method,
the first step involves optimal stretching to convert the 16-bit
integer remote sensing images into 8-bit integer images. Then,
to eliminate the illumination differences among high-resolution
stereo image pairs captured from different viewing angles, color
consistency adjustment using the Walis method is employed.
Finally, an image pyramid is constructed to retrieve the disparity
results at each level. Based on the disparity result from the upper
level, the search range for pixel disparities in the lower level is
reduced, further improving the efficiency of dense matching and
reducing GPU memory consumption [46].

Subsequently, the refined RPCs and the dense correspondence
relationship provided by the disparity map are utilized in the
forward intersection to obtain corresponding object coordinates.
Each image block yields point clouds in LAS format, featuring
certain overlap regions between blocks. To obtain a consistent
and accurate DSM, a weighted average fusion is performed on
the overlapping regions of point clouds while eliminating the
number of erroneous points. The point cloud is then resampled
based on its density to meet the required initial DSM specifica-
tions [30]. For holes in the DSM and the problem of roughness on
building surfaces, conventional postprocessing techniques, such
as inverse distance interpolation and image-guided filtering, are
employed in this method. The final result is a high-quality DSM.

B. Buildings Mask Registration

The directly downloaded Microsoft building footprint data
cannot be directly used for extracting and calculating building
height change information due to two main issues. The first issue
is that the original format of building outlines can be used for
content extraction, but it is challenging to statistically analyze
elevation change information for a large number of buildings in
automated procedures due to differences in resolution and data
format compared with the rasterized DSM. Therefore, GDAL

library is employed to read the building footprint file in GeoJ-
SON format and resample it based on the resolution of DSM,
resulting in a corresponding binary mask image. It is worth
noting that, during the binarization process, overlapping and
intersecting building footprints are excluded or merged based
on the overlapping area proportion.

The second issue is the significant planar deviation between
the open-source building footprints and generated DSM due
to differences in positional accuracy and methods used for
adjustment. This can be addressed by estimating the affine
transformation relationship between the two. The widely used
RANSAC method for estimating the affine transformation ma-
trix requires a sufficient number of corresponding points and
an inlier percentage greater than 50%. The building mask can
directly utilize the polygon vertices (also the building corners)
as feature points, whereas extracting corners on the DSM is
challenging. In this article, the orthorectified image generated
using the high-resolution DSM as the elevation reference is used
as an intermediary. Given that the orthorectified image and DSM
are inversely mapped to each other, aligning the building mask
with the orthoimage can be considered as aligning it with the
DSM. The methodology encompasses the following steps: first,
obtain the building corners on the mask image, then utilize the
FAST method within the range centered around each corner to
acquire the building corners on the orthoimage, and apply non-
maximum suppression to retain the most effective points [47].
If the resulting number of points remains above one, the corner
is discarded, which effectively avoids misalignment in densely
populated building areas. Next, RANSAC is used to estimate
the homography matrix for all corner points. Finally, based on
the affine matrix, the alignment between the mask image and
orthoimage is achieved [48]. The homogeneous transformation
formula from the target pixel (x, y) to the reference pixel (u, v)
is shown as follows:

⎡
⎣
u
v
1

⎤
⎦ =

⎡
⎣
a1 a2 t1
a3 a4 t2
0 0 1

⎤
⎦

⎡
⎣
x
y
1

⎤
⎦ (3)

where the translation amounts are denoted as t1 and t2. Mean-
while, the parameters ai encompass various transformations,
including image rotation and scaling. By multiplying the ho-
mogeneous coordinates of each pixel on the target image by the
affine matrix, the resulting pixel coordinates after transformation
can be obtained, effectively accomplishing image registration.

C. Buildings Floor-Level Damage Assessment

Buildings can be extracted by masking nonbuilding areas
in the elevation change map, resulting in an information map
that only retains elevation changes within building regions. By
analyzing the change information within each building poly-
gon, object-based damage assessment reports can be generated.
Therefore, connected component analysis is employed in this
study to extract information for each irregular block and its
internal contents [35].

After obtaining the information within each block, evaluating
the extent of building damage based on the statistical analysis
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TABLE II
THRESHOLD USED FOR SCREENING ICESAT-2 LAPS AND THE RESULTS

of change information requires an initial rough classification
according to the European 1998 earthquake building damage
grading standards. In this study, three main categories are con-
sidered: intact, partially collapsed, and completely collapsed.
For intact buildings, classification can be achieved based on two
distinct features: maximum collapse height and average collapse
height, which are obtained after the first round of filtering.
Partially collapsed buildings require further differentiation by
utilizing the ratio of collapsed area to the total area of remaining
buildings after the first round of filtering. The damaged buildings
are then classified as either partially collapsed or completely
collapsed. Finally, due to the presence of elevation calculation
noise, we only consider the collapsed storeys to be credible if the
proportion of collapsed pixels above fixed floors exceeds 30%
of the total number of pixels in the building. The 30% threshold
comes from the comparison results of small-scale testing. This
is accomplished by iteratively summing the storeys from top to
bottom, resulting in the final classification of collapsed storey
levels. The detailed calculation and threshold values used for
classification are provided in the following steps.

1) The maximum and average collapse heights of each build-
ing were computed, and those with a maximum collapse
height of 3 m, as well as an average collapse height of 2 m
or less, were directly categorized as structurally intact.

2) The total footprint area, collapsed area, and ratio of the
collapsed area were computed. Buildings with a collapsed
area ratio of less than 50% were classified as partially
collapsed, while the rest were classified as completely
collapsed.

3) Using Google Street view imagery, the approximate height
of each floor in local buildings was estimated to be
3 m. The height change values in partially collapsed and
completely collapsed buildings were divided by 3 m and
rounded to determine the number of collapsed floors.

4) Starting from the most collapsed floor, collapsed pixel
ratio was iteratively summarized for each collapsed floor
until 30% was exceeded The final result is the number of
collapsed floors corresponding to the pixel ratio exceeding
30% for the first time.

IV. EXPERIMENTS AND ANALYSIS

A. Results of Combined Bundle Adjustment

The indicators and thresholds used for filtering ICESat-2
LAPs are presented in Table II, which includes the difference
with the SRTM 50 m reference DEM, whether it is an urban area,
slope size, cloud amount, and uncertainty. Under these threshold
settings, out of the initial 37 192 LAPs, only 867 were retained
after filtering. The filtered LAPs were then projected onto GF-7

forward and backward images using RPC projection, and precise
image coordinates were obtained by least square matching based
on the coordinates from the backward image. During this pro-
cess, matching points with a least square matching confidence
of less than 0.8 and their corresponding LAPs were eliminated,
resulting in a total of 276 reliable LAPs.

Combined bundle adjustment was performed on the dual-
temporal stereo image pair using 12 GF-7 LAPs and 16 evenly
distributed ICESat-2 LAPs selected from them. The remaining
260 LAPs were used as check points to validate the adjustment
results.

In Table III, the MID, RMSE, MEAN, and MAX represent
the median, root-mean-square error, mean, and maximum values
of elevation and plane accuracy obtained using checkpoints,
respectively. It can be observed that both the free network
adjustment and the combined adjustment were able to optimize
the planimetric accuracy from greater than two pixels to within
one pixel. The RMSE of the elevation positioning errors be-
fore and after the earthquake, obtained through the combined
adjustment, remained within 1 m. This level of accuracy is
sufficient to achieve precise damage detection of buildings based
on dual-temporal DSMs.

B. Efficiency Comparison of DSM Generation

The 0.8-m resolution DSM was generated from the GF-7
HRSSIs using rapid 3-D reconstruction workflow, as described
in Section III-A. Following the positive correlation between
block size and bundle adjustment error stated in the S2 bundle
adjustment paper, the backward image with a width of 35 864
pixels and height of 40 000 pixels was divided into 1600 small
blocks of size 1000 × 1000 pixels each. These blocks had
overlapping regions to prevent gaps in the final generated entire
DSM.

The rapid generation of the DSM primarily focuses on accel-
erating two steps: sparse matching and dense matching. Table IV
compares the processing time of different sparse matching and
dense matching methods for individual blocks and the gener-
ation of the entire DSM. All timing experiments were carried
out on a computer system comprising an Intel i5-11400X CPU
@ 2.70 GHz, 16 GB RAM, 12 cores, and an NVIDIA GeForce
RTX 3050 Laptop 2 GB GPU. All methods were implemented
using C++. In the case of processing all blocks, different
sparse matching and dense matching methods required varying
amounts of memory, resulting in different numbers of threads
used, which are indicated in the last row of Table IV.

According to Table IV, it can be observed that using ORB
had improved the processing speed by approximately 7.7 times
compared with SIFT used in S2P and CARS for single image
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TABLE III
EXPERIMENTAL RESULTS OF THE THREE METHODS ON FOUR DATASETS

TABLE IV
DIFFERENT METHODS FOR SPARSE MATCHING AND DENSE MATCHING TAKE TIME AND NUMBER OF THREADS USED

block processing. Furthermore, the speed for processing the
entire mosaic consisting of 1600 blocks had increased by more
than 4.9 times. The increase in speed for the entire mosaic was
lower than the increase for single image block processing due to
two reasons. First, the ORB single image block matching time
was less than 1 s, but the time taken for image and homologous
point file reading and saving cannot be ignored. Second, the
time-consuming process of filtering homologous points based
on the estimated fundamental matrix using virtual control points
also contributed to this difference. The time taken for these two
parts was also approximately 1 s.

The use of SGM-GPU resulted in even more significant speed
improvements. The traditional SGM occupied excessive mem-
ory, which led to fewer threads and obvious time consumption.
However, after GPU acceleration, the overall processing time for
the entire image could be reduced from 3 h to less than 10 min.
Most of the 10-min processing time was attributed to image
reading and writing as well as process switching. Additionally,
the limited GPU memory of the experimental laptop also restricts
the number of threads.

Apart from the time spent on sparse matching and dense
matching, the total time for image preprocessing, epipolar image
generation, forward intersection, and rasterization to generate
the DSM was 13 min. Therefore, the total time for generating
the complete DSM was 27 min and generating the dual-temporal
DSMs before and after an earthquake took less than an hour
using the experimental laptop. This will significantly save data

Fig. 5. Pre- and postseismic DSMs from rapid 3-D reconstruction.

processing time for postdisaster rescue operations. The results
of generating the dual-temporal DSMs before and after the
earthquake are shown in Fig. 5.

C. Results of Buildings Mask Registration

First, the binarization method, as proposed in Section III-B,
was used to rasterize the original format building footprints
into a binary mask. The resulting mask, in an unsigned 8-bit
data format, represented building and nonbuilding regions as
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Fig. 6. Offset between buildings mask and DOM before and after registration.

0 and 255, respectively. Moreover, this mask shared the same
resolution and frame as the orthorectified image generated based
on our high-resolution DSM.

Next, the FAST method was employed to detect corner points
in the binary mask image. A total of 48 092 building detections
resulted in 230 000 corner points. However, it was determined
that not all of these points were necessary for registration.
Therefore, the octree algorithm was applied to uniformly select
just over 3000 points evenly distributed across the entire image.
Within the neighborhoods of these selected points, correspond-
ing matching points were searched on the orthorectified image.
As shown in Fig. 6, it could be observed that the uncorrected
building footprints generally shifted toward the lower left direc-
tion. To account for this, the search window for matching points
was artificially adjusted to a 35 × 35 window in the upper right
direction.

Subsequently, the filtering method, as mentioned in
Section III-B, was used to retain 567 pairs of accurately matched
points and estimate the corresponding affine transformation
matrix. The offsets between the preregistered and postreg-
istered masks and their corresponding orthorectified images
were illustrated in Fig. 6. The registered building footprints
exhibited excellent alignment with the buildings depicted in
the orthorectified image, resulting in an optimal congruence
between the building mask image and the dual-temporal DSM.
This alignment guarantees the efficacy of subsequent procedures
in extracting building regions.

D. Results of Building Damage Assessment

In order to substantiate the accuracy of our proposed method-
ology, a preliminary small-scale experiment was undertaken in
selected areas, where the ground truth values of building floor
numbers were acquired through Google Street view [49]. The
3-D reconstruction process for this region was illustrated in
Fig. 4, and the dual-temporal DSMs were generated by our

method. Evaluation was performed using 30% scaling param-
eters proposed in Section III-C and the confusion matrix was
computed by comparing the predicted collapsed states with the
actual floor numbers. The results, as shown in Table V, indicated
the accuracy in predicting collapsed buildings, which included
four partially collapsed buildings.

The evaluation method, as introduced in Section III-D, al-
lowed for the assessment of collapse at the floor level, going
beyond the mere determination of whether a building has col-
lapsed. However, achieving floor-level assessment posed greater
difficulty. As illustrated in Table VI, six intact buildings actually
collapsed without being detected, while ten buildings were
wrongly classified as collapsed when they were actually intact.
These 16 buildings primarily consisted of low-rise structures,
and inaccuracies in the reconstruction results were attributed to
issues, such as occlusion and shadows. In terms of floor-level
assessment for collapsed buildings, errors in detecting low-rise
buildings were more prevalent than those in detecting high-rise
buildings. The precision and recall rates for buildings over five
stories were 85.17% and 91.30%, respectively, higher than the
rates for buildings below five stories, which stood at 84.61%
and 75.86%. This is partly because high-rise buildings exhibit
more pronounced height variations, making them easier to detect
using our method. Additionally, within this area, there were 46
collapsed high-rise buildings, outnumbering the 29 collapsed
low-rise buildings. The final accuracy of the floor-level damage
assessment for the 361 detected buildings was 93.27%.

We acquired the assessment results of floor-level collapse
for the buildings, as illustrated in Fig. 7. Through the dual-
phase images pre- and postearthquake, as displayed in Fig. 7(a)
and (b), it is evident that the selected region is highly repre-
sentative and satisfies the evaluation requirements. First, this
region encompasses over 300 buildings with their corresponding
collapse states and the accurate count of collapsed floors, unlike
previous studies, where only a few or a dozen buildings were
considered. Second, the area, as depicted in Fig. 7, consists of
diverse building types, including closely interconnected midrise
buildings highlighted in yellow, compact and low residential
structures marked in white, expansive shopping complexes in-
dicated in green, and scattered high-rise buildings enclosed in
orange, which essentially encapsulate the comprehensive range
of 48 092 building types. Finally, this particular area exhibits one
of the most severe collapse scenarios within the entire urban area
of Kahramanmaras, making it a focal point for the application
of this methodology.

While there is currently a paucity of pertinent research com-
paring the accuracy of building floor-level collapse assessment
results, our study has made substantial improvements compared
with Wang’s findings. The results, as presented in Table VII,
show an increase of 4.06% and 3.74% in our OA and Kappa
coefficients, respectively, in contrast to Wang’s methodology.
This significant progress underscores the critical role played
by precise building localization and altitude information in
the assessment of building collapses. Remarkably, for intact
buildings, the producer accuracy and user accuracy reached
levels of 95.55% and 97.90%, respectively. This achievement is
attributable to the utilization of high-resolution DSM, as well as
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TABLE V
ASSESSMENT RESULTS OF LOCAL BUILDINGS COLLAPSE

TABLE VI
ASSESSMENT RESULTS OF LOCAL BUILDINGS COLLAPSE AT FLOOR LEVEL

TABLE VII
BUILDING DAMAGE EXTRACTION RESULTS USING DIFFERENT METHODS (ALL IN PERCENT)
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Fig. 7. (a) and (b) Original images of the local area pre- and postearthquake. (c) Distribution map of floor-level assessment results for buildings collapse in local
area.

the application of building masks to filter out shadows and mini-
mize interference from ground-level data. It is imperative to note
that further research is essential to validate and extend our find-
ings to different scenarios. Moreover, the adoption of advanced
technologies, such as drones and advanced sensors, should be
considered to acquire superior quality building data, thereby
enhancing the accuracy of collapse assessment methodologies.
Ultimately, these improvements have significant implications for
bolstering public safety and facilitating more effective disaster
response measures.

Given that the collapse assessment results of buildings in the
local area are consistent with expectations, the same parameters

can be employed to carry out the same procedures for the
entire stereo imagery. The ultimate outcome is outlined as
follows. A total of 2709 collapsed buildings were detected,
consisting of 2685 fully collapsed and 24 partially collapsed
structures. Among the collapsed buildings, the distribution
of the number of floors affected is as follows: 1 story: 1611;
2 stories: 524; 3 stories: 232; 4 stories: 137; 5 stories: 66;
6 stories: 61; 7 stories: 47; 8 stories: 15; 9 stories: 11; and
above 9 stories: 5. These numbers are consistent with the
figures provided by the Turkish authorities (https://www.
sbb.gov.tr/turkiye-earthquakes-recovery-and-reconstruction-
assessment).

https://www.sbb.gov.tr/turkiye-earthquakes-recovery-and-reconstruction-assessment
https://www.sbb.gov.tr/turkiye-earthquakes-recovery-and-reconstruction-assessment
https://www.sbb.gov.tr/turkiye-earthquakes-recovery-and-reconstruction-assessment
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TABLE VIII
COMPARISON OF DIFFERENT MATCHING METHODS RESULTS

Additionally, we calculated the collapsed area and volume as
two indicators. There were 1732 buildings with a collapsed area
exceeding 200 m2 and 795 buildings with a collapsed volume
exceeding 500 m3. The total collapsed volume reached 5 million
m3. These indicators can help identify buildings with severe
damage, providing valuable guidance for postdisaster rescue
and reconstruction efforts. Furthermore, the collapsed volume,
which is directly proportional to the number of casualties, serves
as an important 3-D indicator, enabling a rough estimation of the
approximate number of casualties. This information is crucial
for subsequent international humanitarian assistance concerning
food, water, medical supplies, and other resources.

V. DISCUSSION

A. Feature Matching Quality Assessment

The quality of the correspondences obtained from feature
matching is a critical factor that affects the quality of the epipolar
line constraint and dense matching. While using ORB as a
replacement for SIFT provides nearly a tenfold improvement in
speed, the lower quality of ORB correspondences results in ap-
proximately one-fourth of the 1600 image blocks of single-pair
HRRSIs failing the epipolar line correction, with discrepancies
exceeding one pixel in the estimated corresponding epipolar
lines [32]. By applying the postprocessing approach proposed
in this article, erroneous points in ORB correspondences are
significantly removed, thereby enhancing the accuracy of indi-
vidual epipolar lines. Furthermore, by propagating information
from neighboring image blocks, even a small fraction of image
blocks where the epipolar line correction failed can achieve
robust fundamental matrix estimation, leading to a noticeable
improvement in the overall accuracy of the epipolar lines across
the entire image dataset.

The quality assessment of feature points includes the follow-
ing three indicators. First, the number of matches was quan-
tified, with the maximum number of points attainable from
various matching techniques being established at 1000. The
final number of points is divided into three categories: greater
than 500 (sufficient for epipolar line estimation), 50 to 500
(may introduce significant errors or mistakes in epipolar line
estimation after filtering), and less than 50 (can hardly achieve
accurate epipolar line estimation). Second, the distribution of
feature points, whether they are evenly distributed or not, also
affects the quality of epipolar line identification. For each image

block, a division into an n × n grid is performed, wherein the
distribution rate represents the ratio of grids containing points
to the total number of grids. In this context, the value of n is
determined as 10, taking into account the dimensions of the
image block. Regarding the most important indicator, feature
matching accuracy, we applied S2P to 1600 pairs of image
blocks for epipolar line constraints. We manually processed
the image blocks with epipolar line constraint errors exceeding
1 and ultimately obtained 1600 fundamental matrices with an
epipolar line error less than 0.6. Based on these fundamental
matrices, we calculated the reprojection errors of the corre-
spondences to evaluate their accuracy. Table VIII presents a
comparison among the original ORB, SIFT, and postprocessed
ORB with the MIN, MAX, MID, and MEAN values indicating
the minimum, maximum, median, and mean values of each
indicator. The results indicate that ORB and SIFT have sim-
ilar numbers of feature points and distribution. However, the
optimized ORB slightly underperforms in these two indicators
compared with the other two methods. The key focus lies in
the accuracy of the correspondences, where it can be observed
that the postprocessed ORB, incorporating virtual control point
filtering, RANSAC, and regularization, significantly improves
the quality of correspondences. It outperforms the original ORB
with a 45% increase in average accuracy, which is comparable
to SIFT and both within 0.7 pixels. It is worth noting that
some hard-to-detect erroneous points that severely impact the
results of epipolar line constraints have been successfully filtered
out.

B. Impact of Image Resolution on Evaluation Results

In the proposed method for assessing building collapse at the
floor level in this article, satellite image resolution is a key factor
influencing the quality of DSM reconstruction and evaluation
accuracy. However, there have been limited studies on building
reconstruction using satellite stereo imagery, particularly with
an unclear standard for the required image resolution in engi-
neering applications related to reconstruction. In this study, we
utilized multiscale data obtained from different downsampled
resolutions of GF-7 HRSSIs and applied the proposed workflow
for reconstruction. Subsequently, we conducted a comparative
evaluation of accuracy and efficiency in the same study area,
providing a robust basis for selecting usable data and practical
data processing in future research.
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TABLE IX
IMPACT OF IMAGE RESOLUTION ON EVALUATION RESULTS

Fig. 8. Floor-level assessment results for buildings collapse in all overlap areas.

Initially, we resampled the initial 0.65-m resolution
backward-looking image to 0.8-m resolution to match the
forward-looking image. Then, we individually downscaled the
forward- and backward-looking images to create reference im-
age groups with resolutions of 1, 1.2, 1.5, and 2 m. Stereo-
scopic adjustment, fast 3-D reconstruction, and building col-
lapse assessment were performed on each of these image
groups. The accuracy of DSM elevation was evaluated using the
global ICESat-2 laser point data, the true number of building
floors was evaluated for collapsed buildings, and the execution
efficiency was assessed by measuring the time required for fast
3-D reconstruction.

In Table IX, standard deviation, accuracy, precision, and
recall are represented by STD, ACC, PRE, and REC, respec-
tively. It can be observed that the evaluation of DSM elevation
accuracy using LAPs is consistent across different resolutions.
This is due to the careful selection of LAPs, which excludes those
on buildings and steep terrains. Thus, the impact of resolution on
reconstruction in flat areas is minimal. However, the assessment
of collapsed building floor levels is significantly influenced by
different image resolutions.

As a threshold, the accuracy of assessing collapsed building
floor levels remains relatively unchanged for submeter resolu-
tions of 0.8 and 1 m. This suggests that the resolutions of 1 m
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and higher can provide equally satisfactory results, ensuring
the accurate reconstruction and capturing precise information
about vertical changes for various types of buildings. However,
when the image resolution exceeds 1 m, even with identical
processing workflows, the accuracy of assessing collapsed floor
levels rapidly decreases. Through the observation of evaluation
results, it can be attributed to a significant decline in accuracy
when evaluating smaller sized buildings. Additionally, Table IX
clearly indicates a positive correlation between the efficiency of
3-D reconstruction and the square of image resolution. There-
fore, it is possible to adopt different downsampling ratios for
image data according to specific accuracy requirements, en-
hancing efficiency, especially when dealing with large-frame or
large-scale images. For example, in this case, downsampling the
original image to 1-m resolution can improve efficiency by over
20% while maintaining almost unchanged accuracy in assessing
collapsed building floor levels.

VI. CONCLUSION

To address the challenges of lengthy DSM generation, com-
plex imaging conditions, viewpoint differences, and dense build-
ing distribution in accurate building collapse assessment, we
propose an improved method for fast assessment of building
collapses at the floor level. This method achieves the first-time
simultaneous positioning and classification of large-scale col-
lapsed buildings, elevating building collapse classification to the
floor level by fully exploiting the vertical accuracy of subpixel
resolution HRSSIs.

Experimental results in the earthquake-stricken region of
Kahramanmaras, Turkey, demonstrate that we obtain HRSSIs
positioning parameters with vertical accuracy of around 1 m
by using ICESat-2 LAPs to construct a combined adjustment
model. The proposed fast 3-D reconstruction method not only
achieves high-precision submeter resolution DSMs but also
improves DSM generation efficiency by more than eight times.
To assess the accuracy of our method effectively, we selected
severely damaged areas in the city center for validation, includ-
ing 361 densely distributed buildings. Using Google Street view
images as ground truth, the floor-level assessment achieved a
high accuracy rate of 93.27%. Finally, floor-level collapse as-
sessment was conducted for 48 092 buildings in the experimental
area, resulting in a large-scale distribution map of building
collapses, as shown in Fig. 8. Additionally, through automated
detection, the quantity of collapsed buildings (2709 buildings),
collapsed floor count, collapsed area, and collapsed volume
was determined in one go. This provides significant geospatial
and data support for postdisaster emergency response, damage
assessment, and rapid reconstruction.

However, it is important to note some limitations of the
proposed automated method. For instance, it will fail if there are
missing or misidentified building footprints since the accurate
identification of buildings heavily relies on building footprints.
Although such occurrences are rare, cautious selection and ex-
amination of footprint data should be increased. Using satellites
from other sources and long time series of satellites for detailed
building detection and assessment will also be a direction for
our future research.
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