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Monitoring of Urban Changes With Multimodal
Sentinel 1 and 2 Data in Mariupol,

Ukraine, in 2022/23
Georg Zitzlsberger and Michal Podhoranyi

Abstract—The ability to constantly monitor urban changes is
of significant socio-economic interest, such as detecting trends in
urban expansion or tracking the vitality of urban areas. Especially
in present conflict zones or disaster areas, such insights provide
valuable information to keep track of the current situation. How-
ever, they are often subject to limited data availability in space
and time. We built on our previous work, which used a transferred
deep neural network operating on multimodal Sentinel 1 and 2
data. In the current study, we have demonstrated and discussed its
applicability in monitoring the present conflict zone of Mariupol,
Ukraine, with high-temporal resolution Sentinel time series for the
years 2022/23. A transfer to that conflict zone was challenging due
to the limited availability of recent very high resolution (VHR) data.
The current work had two objectives. First, transfer learning with
older and publicly available VHR data was shown to be sufficient.
That guaranteed the availability of more and less expensive data
as time constraints were relaxed. Second, in an ablation study,
we analyzed the effects of loss of observations to demonstrate the
resiliency of our method. That was of particular interest due to the
malfunctioning of Sentinel 1B shortly before the selected conflict.
Our study demonstrated that urban change monitoring is possible
for present conflict zones after transferring with older VHR data. It
also indicated that, despite the multimodal input, our method was
more dependent on optical multispectral than synthetic aperture
radar observations but resilient to loss of observations.

Index Terms—Deep neural network (DNN), multimodal, remote
sensing, transfer learning, urban change monitoring.

I. INTRODUCTION

THE detection of changes with the use of satellite based re-
mote sensing data has a history of almost six decades, with

the first mentioning of a change detector device by [1]. Since
then, many methods have been developed to detect changes [2],
[3]. While many methods have been proposed to detect changes,
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in the last decade the focus moved more toward using neural
networks [4], [5], [6], [7], [8], [9], [10] with the advent of
DNNs in that time frame. The types of changes across those
works vary drastically. Some works detect changes in general,
including vegetation and water bodies, others consider only
buildings but ignore other infrastructure. Only a subset considers
urban structure types (UST) as defined by [11]. In addition, the
majority of works operate on observation pairs that are required
to be of sufficient quality. The result was a large occurrence
of so-called siamese network architectures, which replicate the
network on the input side for each image as a pair. Overall, they
are limited for broad use due to requiring high-quality very high
resolution (VHR) data, and they reduce the temporal resolution
to detect and monitor urban changes.

In our previous works, summarized in Fig. 1, we have ad-
dressed these problems by introducing a new approach. First,
we have introduced a method that leveraged an ensemble of
neural networks for Level 1 Sentinel 1 and 2 multimodal remote
sensing data [i.e., synthetic aperture radar (SAR) and optical
multispectral]. Its design was tailored for the objective to con-
tinuously monitor urban changes [12]. This method operated on
time series observations, partitioned into half-year windows, to
provide enough context for allowing low quality Level 1 data
and to localize changes over time. It pretrained a model, called
ensemble of recurrent convolutional neural networks for deep
remote sensing (ERCNN-DRS), with synthetic but noisy labels
to avoid manual labor. In a follow-up study [13], a further op-
timization with transfer learning was demonstrated to fine-tune
the pretrained network toward a specific area of interest (AoI) to
increase the detection quality and allow more control of the UST
changes to detect. For practical feasibility, the transfer learning
used a set of windows simultaneously in order to simplify the
manual ground truth generation guided by public VHR data, i.e.,
Google Earth historic imagery, and spanned a larger time frame
of multiple years. Both works were trained and verified only
for a fixed time frame, i.e., 2017–2020. It, therefore, raised the
question whether a model, transferred to one time frame, would
also be applicable for a different time frame.

In this work, we reused the pretrained ERCNN-DRS model
and applied the same transfer learning method but to the AoI
of Mariupol for the time frame 2017–2020. We subsequently
evaluated the performance of the transferred model for the years
2022/23. This was done starting three months before the Russian
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Fig. 1. Flowchart of the transfer learning and monitoring process for the AoI of Mariupol. In blue are data and processing steps of our current work; gray denotes
previous work.

invasion on 24 February 2022, and until mid-2023. Due to being
an active war zone, VHR remote sensing data was limited, even
if commercially accessible.1 However, medium resolution data,
such as Sentinel 1 and 2 were still available for that region
without limitations and allowed the monitoring of ongoing urban
changes. We analyzed the applicability of transferring to the
AoI of Mariupol for the time frame 2017–2020 and its use
for 2022/23. Because of the lack of public VHR data for that
time frame, commercial Airbus Pléiades observations were used
for validation purposes. These would be expensive for transfer
learning due to the required amount but we used them only for
evaluation, which does not require a larger area and kept costs
low.2 As we demonstrate, the transfer with an earlier time frame
using public data can be sufficient, which helps to keep costs
low.

Furthermore, due to the outage of Sentinel 1B on December
23, 2021, we also addressed the question of the impact of loss
of observations to the overall solution. As we will show in
an ablation study, the chosen method is resilient and does not
instantly break down if final observation patterns diverge from
the ones seen during training.

This work was subject to two objectives. First, we analyzed
whether a transferred model for a new AoI for a specific time
frame can be used for a later time frame, even though observation
patterns change. Second, the resiliency of our method to a decay-
ing number of observations for the different observation modes,
SAR and optical multispectral, were studied. We addressed both
objectives with the case study to monitor urban changes of the,
at the time of writing, besieged and occupied city of Mariupol
in Ukraine where limited data is available despite the increased
need to monitor changes.

1Higher resolution Maxar WorldView data (0.15–0.3 m/pixel) for Ukraine
was under embargo at the time of writing.

2ESA NoR sponsorship worth 600 € for the Airbus Pléiades data enabled the
verification of our work.

The rest of this article is organized as follows. Section II
describes our approach from the transfer of an existing pretrained
ERCNN-DRS to verification. Section III provides details on
the selected study area, observation data, and data processing.
The training procedure is explained in Section IV. Training
and verification results are discussed in Section V with both
quantitative and qualitative analysis. This section also contains
the ablation study to understand the resiliency of our method.
In Section VI, we summarize the shortcomings of our approach
that require further work. Section VII contains a discussion on
the peculiarities and tradeoffs of our methods to give guidance
to adapting it to other scenarios. Finally, Section VIII concludes
this article and summarizes key results and areas of improve-
ment.

II. METHODOLOGY

We built on top of three existing works to enable urban
change monitoring and combined these in the current work for
the different AoI of Mariupol. Fig. 1 summarizes our two-step
approach from transfer to validation. Reused data from other
works is in gray, and items covered in this work are in blue. Most
of the steps were automatized with only the labeling procedures
carried out manually. Our applied methodology is described in
the following, separated by reuse of existing methods and their
extensions needed by this work.

A. Existing Methods

The pretrained baseline ERCNN-DRS model stems from [12].
The model architecture is shown in Fig. 18 in Appendix A
for completeness. That work laid the foundation of utilizing
large observation counts, so-called deep-temporal windowswt

i,j

of a fixed duration, with multimodal remote sensing data for
identifying urban changes. These windows start at time t and
are tiled with i and j being tile coordinates. Furthermore, these
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TABLE I
IMPORTANT REMOTE SENSING DATA, TILE, AND WINDOW PARAMETERS

windows were applied in a sliding window approach, allowing
for a longer observation period than the fixed window duration.

To create the windowed time series the rsdtlib library [14]
was utilized. It retrieves Sentinel 1 and 2 remote sensing Level
1 observations from Sentinel Hub and preprocesses them. The
preprocessing involves temporal stacking, assembling, tiling,
and windowing to retrieve the final multimodal windows wt

i,j .
Important parameters of the data pipeline stages are shown
in Table I, characterizing the data, tiles, and windows. In the
following we briefly describe these steps.

The multimodal data was defined by the number of bands,
which were the two polarizations vertical–vertical (VV) and
vertical–horizontal (VH) for SAR, and spectral channels for
optical observations (13 bands in the range of ca. 440–2200 nm).
For SAR, we considered ascending and descending orbit di-
rections as individual observation modes. These have different
observation directions and, hence, cannot be directly compared
where larger elevation differences are present. Each observation
mode was temporally stacked to only update pixels in the obser-
vations that were not masked due to clouds or out-of-swath. If
masked, the value of the pixel in the previous observation was
carried forward.

Due to memory constraints, the entire AoI was not considered
at once. Instead, it was tiled into nonoverlapping 32 × 32 pixels
patches. This was a configuration used for the pretraining, and
so was used in this work as well.3

As shown in Fig. 2, windows were constructed from these
multimode observations by assembling them into observations
with a sampling step of δ. Using two days showed a good
compromise of avoiding redundant observations (e.g., due to
swath overlaps) and retaining high temporal resolution for the
purpose of urban change monitoring. In the following, we use
δ = 2 days, unless otherwise noted. Windows were of a fixed
period Δ of half a year and windows with fewer than ω = 35
observations were discarded to ensure enough data points were
available. Due to the window period and step size, there is a nat-
ural upper bound of observations per window Ω = 92 ≈ Δ/δ.
A unit-stride (ρ = 1) was used for the sliding windows, which
derived windows starting at every next sampled observation.
Hence, every δ-sampled observation defined the start of a new

3Since ERCNN-DRS is fully convolutional, changes of tile sizes are possible
for transfer or inference.

Fig. 2. Two steps of generating the set of windows Wi,j for each tile with
coordinates i and j. The window predictions were used in combination with
maximum pooling over time to retrieve a combined prediction ymax

i,j during the
transfer phase.

window, i.e., every two days or longer, depending on the amount
of observations over time. As a result, a set of windows wt

i,j ∈
Wi,j with the same parameters was retrieved that can be used
for transfer learning or inference.

In the previous work [13], the transfer and optimization of
the pretrained ERCNN-DRS model was already demonstrated.
It used a different AoI (Liège in Belgium) compared with the
pretraining AoIs for the time frame 2017–2020. The transfer was
realized with a small amount of manually labeled tiles. It was
demonstrated that, even with an already low effort ground truth
guided by Google Earth historic imagery, the transfer showed
an improved performance. Instead of labeling each window, a
set of windows spanning a larger time frame of four years, was
considered for labeling. To be able to train with a set of windows
at each step, a maximum pooling method was applied. The max-
imum pooling followed the principle of maximum pooling over
time [15]. Fig. 2 shows the maximum pooling of the individual
window predictions yt

i,j to retrieve ymax
i,j .

To leverage the limited dataset size, bagging (bootstrap aggre-
gating) [16] was utilized, using a nonexhaustive cross validation.
Three model variants were trained with this cross-validation ap-
proach that used disjunct validation data from the overall dataset
for every transfer variant. The bagging resulted in an ensemble
of weak learners from the variants, which provided a better
performance and precision/recall balance than each individual
variant. However, this was only executed and validated for the
same time frame as the pretraining.

B. Extension and Modification of Methods

In this work, we applied transfer learning to the pretrained
ERCNN-DRS and fine-tuned it for the AoI of Mariupol.
ERCNN-DRS is transferred four times, receiving the trained
model variants V1-4. Similar as to the previous work [13], the
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transfer is done with a nonexhaustive cross-validation approach
where disjunct validation data are used. All four model variants
were used for monitoring the urban changes in 2022/23 for the
AoI of Mariupol. In this work, the performance of each variant,
as well as the bagging ensemble of all four variants, is analyzed.

Since no public VHR data were available during the time
frame 2022/23,4 we applied the transfer learning to the period
of the beginning of 2017 until the end of 2020. The practical
feasibility due to easy labeling with Google Earth historic VHR
imagery has already been demonstrated in the aforementioned
work. However, in this work, we analyzed the quality of predic-
tions when the transferred model was applied to years outside the
transfer period, in order to be able to monitor the urban changes
during the recent years when public data was not yet available.

For the verification of changes in that time frame, we used
commercial Airbus Pléiades VHR observations from the begin-
ning of 2022 to early 2023. Opposed to Maxar WorldView, which
was under embargo for Ukraine at the time of writing, Airbus
Pléiades data were still commercially available. However, this
restricted the best resolution for verification to 0.5 m/pixel
(panchromatic). These observations were used identically to the
earlier ground truth generation (ỹi,j) for the transfer but with
labeling the changes in the monitoring time frame (y̌i,j). A
final verification step compared the model predictions against
the manually identified changes. This comparison is covered in
Section V, which gives a quantitative and qualitative analysis.

The monitoring past the transfer time frame imposed addi-
tional challenges due to changing observation patterns over time.
This was especially impacted by the failure of Sentinel 1B on
December 23, 2021.5 The unavailability of Sentinel 1B led to
a significant reduction of SAR observations with only Sentinel
1A left in operation. Both Sentinel 1 satellites were placed on
the same orbit plane with a difference of 180◦ in orbit phase. As
a result, the cycle time for Europe increased from six days to
twelve days after the malfunction. Since the transferred models
were trained with both Sentinel 1A and 1B satellite observations,
this change could have had a significant impact on the operation
of the transferred models. As we will show, our method did
not break down by the change of observation patterns due to
the reduction of SAR observations as a result of the loss of
Sentinel 1B. We studied the resiliency and scalability of changes
in observation frequency for each mode and the combination of
modes with a simulated SAR and optical data loss in an ablation
study (see Section V).

Overall, following three different observation data sources
were used:

1) Sentinel Hub for Sentinel 1 and 2 data;
2) Google Earth historic VHR imagery; and
3) Sentinel Hub for Airbus Pléiades VHR observations.
The Sentinel 1 and 2 data were the primary data used for the

transfer of the four model variants and their inference (moni-
toring). Their processing is described in detail in Section III-A.

4Google Earth historic imagery ended early 2021 at the time of writing.
5Accessed: 16 Oct. 2023. [Online]. Available: https://www.esa.int/

Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_
for_Copernicus_Sentinel-1B_satellite

Fig. 3. Tiles for the AoI of Mariupol. The blue tiles covering 2017–2020
were used for training and validation, referred to as trainval dataset (164 in
total). The 18 tiles in orange for 2022/23 were used for verification purposes,
referred to as testing dataset. Geographic coordinates are in EPSG:4326 and
tile coordinates are in (y, x) dimensions. Background image ©2019/20 Google
Earth, for reference only.

The other two data sources were used for generating ground
truth maps for transfer and verification, and are covered in
Sections III-B and III-C, respectively.

III. STUDY AREA AND REMOTE SENSING DATA

We applied our methods to the area of Mariupol (Ukraine) to
monitor urban-related changes and activities with the Russian
invasion that began on 24 February 2022. During the first months
of the siege, approximately up to 95% of the city and its infras-
tructure were damaged or destroyed.6 Up to the writing of this
work, Mariupol was still under Russian occupation, and heavy
reconstruction of buildings and infrastructure was observed. We
monitored not only the city of Mariupol but also the surrounding
area with over 536 km2, covering suburbs, rural areas, the sea,
mines, and farming regions. The area is also subject to frequent
overcast due to its location by the Black Sea and winters with
snow and ice.

Fig. 3 shows the tiled AoI, with training tiles for the transfer
and verification tiles for the monitoring phase. To avoid spatial
bias we used only disjunct sets of transfer and verification tiles,
even though both covered different time frames. The processing
of the three different data sources and types used in this work is
described in the following.

A. Primary Data

The core data of our method comprised multimodal SAR
and optical multispectral observations from Sentinel 1 and 2,

6Accessed: 16 Oct. 2023. [Online]. Available: https://web.archive.org/web/
20221031202808/https://www.abc.net.au/news/2022-05-26/damage-data-
reveals-extent-of-vicious-russian-tactics/101070918

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite
https://web.archive.org/web/20221031202808/https://www.abc.net.au/news/2022-05-26/damage-data-reveals-extent-of-vicious-russian-tactics/101070918
https://web.archive.org/web/20221031202808/https://www.abc.net.au/news/2022-05-26/damage-data-reveals-extent-of-vicious-russian-tactics/101070918
https://web.archive.org/web/20221031202808/https://www.abc.net.au/news/2022-05-26/damage-data-reveals-extent-of-vicious-russian-tactics/101070918
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TABLE II
USED AOIS, THE COVERED AREAS, AND THE NUMBER OF THEIR AVAILABLE OBSERVATIONS, WITH REMOVED ONES IN PARENTHESES

Fig. 4. Number of observations for each pixel within the AoI of Mariupol, separate for Sentinel 1 in ascending and descending orbit direction (left), and Sentinel
2 (right). Sentinel 1 has a range of [220, 546] and [324, 324] (no variation) for ascending and descending orbit directions, respectively. Sentinel 2 observations are
within [166, 383]. Contours are shown for selected observation numbers.

respectively. They were used as input to the selected DNN and
span the time frames of 2017–2020 for transfer, as well as the
time frame November 24, 2021, up to mid-2023 for the actual
monitoring phase. All data were retrieved from Sentinel Hub as
Level 1 products. Table II summarizes the primary data products
used.

The Level 1 products provided by Sentinel Hub were already
orthorectified and coregistered. In our method, all available
bands and polarizations were used, i.e., no dimensionality re-
duction was applied; that is both polarizations (VV+VH) for
Sentinel 1 observations and 13 spectral bands for Sentinel 2
observations were available. The preprocessing followed the
same way as used for the pretraining of ERCNN-DRS and is
executed with the rsdtlib library as described earlier.

The available Sentinel observations for the period from 2017
until mid-2023 vary over time and by location within the selected
AoI. Fig. 4 shows the available observations for each pixel within
the AoI for δ = 1 s. For Sentinel 1 in ascending orbit direction,
different and overlapping swaths were visible. These result in
more observations where swaths overlapped, and less where the
surface was scanned less frequently or irregularly. Sentinel 1 in
descending orbit direction did not show any variance due to full
coverage of the AoI by the swaths. For Sentinel 2, in addition to
swath patterns, cloud masking (as provided by Sentinel Hub)
added to the irregularity of the observations. Also the coast
of the Black Sea became visible, which was a result of the
applied cloud detection method to overestimate clouds over land
surfaces.

In Fig. 5, the available observations per each six-month win-
dow (Δ) are plotted, using δ = 2 days. The loss of Sentinel 1B
and the decrease of available SAR observations is clearly visible.
It should be noted that due to the windowed time series used,
the sudden drop of Sentinel 1B observations led to a gradual
reduction of the observations over a half-year period prior to the
day of malfunction.

B. Ground Truth for Transfer Period

To generate the labels ỹi,j , as used for the transfer learning
process, we utilized VHR historic satellite and aerial imagery
from Google Earth. These were used for a selection of 164
random tiles (referred to as trainval dataset) in the AoI of Mar-
iupol to approximately identify past urban changes in the time
frame 2017–2020. Using a longer time frame, such as four years,
simplifies the labeling process due to increased chances of more
historic VHR observations being available. A higher number
aids in identifying and localizing changes over time. Depending
on the exact location within the selected AoI, between 10–20
historic observations were available.

Tiles that contained changes that were too large and ho-
mogeneous (e.g., open pit mines, destruction of large storage
buildings, and steel factories), were removed during the ran-
dom selection process. This avoided an undesired bias toward
specific change patterns and instead balanced the transferred
network toward a more diverse set of changes. In addition, this
simplified the labeling process since areas that have constantly
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Fig. 5. Windows and their observations. In our work, we combined Sentinel 1 (blue) and 2 (green) observations in a two-day (δ = 2 days) interval (gray).
Highlighted in orange and discarded were windows with less than 35 (ω) observations. A malfunction of Sentinel 1B occurred on 23 December 2021 and the
Russian invasion on 24 February 2022, as indicated on the timeline.

Fig. 6. At least two historic Google Earth VHR images near the beginning of
2017 (left) and the end of 2020 (middle) were used to approximate the ground
truth (32 × 32 pixel) for urban changes ỹi,j (right).

been a subject of change were hard to label. Rapid and spatially
constraint changes were easier to notice and mark.

The created ground truth ỹi,j is binary with an assigned value
of 1.0 if a change was related to man-made UST objects,
indicated by visual inspection of at least two VHR images.
The value of 0.0 was assigned otherwise. Also, side effects
of constructions were treated as changes, such as modified soil
around construction sites or paved roads. Any change below the
sensor resolution (< 10 m/pixel) was ignored. Fig. 6 shows three
tiles as examples with the closest observations at the beginning
of 2017 and end of 2020. The manually created binary ground
truth is shown next to the visual samples. Due to the low amount

of available VHR observations, it is not possible to label the
full extent of the changes. Hence, we refer to the labels as
approximate. The three examples show the construction of a
road (tile 37:3), destruction of factory buildings (tile 3:31), and
(re)construction of buildings in a suburban area (tile 31:31).

C. Ground Truth for Monitoring Period

To verify the urban changes during the years 2022/23, recent
Airbus Pléiades data were leveraged. Since these data were
involved with significant costs, we selected 18 tiles (referred to
as testing dataset) in two locations: 1) The city center (14 tiles)
and 2) a suburb to the north (4 tiles). Pléiades data were used
in panchromatic mode, resulting in 0.5 m/pixel resolution. This
was sufficient to identify changes and evaluate the predictions.
Depending on the location, six to seven observations at different
times from March 2022 until January 2023 were screened.

The generation of the verification reference for the monitoring
period y̌i,j followed the same rule as with the ground truth ỹi,j .
Both were binary, with values decided upon visual inspection
of the available observations. However, y̌i,j only spans the
monitoring period of 2022/23.

IV. TRAINING

The transfer phase was executed on the Karolina GPU cluster7

at IT4Innovations. One compute node with eight NVIDIA A100
GPUs, each with 40 GB of memory, was used for training.
The training environment comprised Tensorflow 2.7, including
Keras, and Horovod [17] 0.23.0 for leveraging multiple GPUs.
We used synchronous SGD [18], [19] with a momentum of
0.8 and set the learning rate α to 0.008. The loss function L
was identical to the pretraining, that is the Tanimoto loss with
complement [20]. It compared the maximum pooled prediction
ymax
i,j against the ground truth ỹi,j , expressed as L(ỹi,j ,y

max
i,j ).

For every tile, pixels at the border (dead area) were ignored,

7Accessed 16 Oct. 2023. [Online]. Available: https://docs.it4i.cz/karolina/
hardware-overview/

https://docs.it4i.cz/karolina/hardware-overview/
https://docs.it4i.cz/karolina/hardware-overview/
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Fig. 7. Loss values over epochs for all four transferred variants. The transfer training losses are represented by the blue curve, and the validation losses by the
orange curve. The orange dashed lines show the best epochs based on validation data.

and only the center 30 × 30 pixels of each tile were considered.
This is due to the general problem of tiled data and convolutional
networks, which increase errors toward the borders [21], [22],
[23], [24]. We did not mitigate this in our current work, but
an overlapping of tiles can easily be applied to remove these
errors. Empirically, we found that removing only the direct
border pixels is sufficient. Removing a larger border would result
in reduction of label data. Hence, the use of only the center
30 × 30 pixels was a compromise between the avoidance of a
higher loss of label data and increased computational and storage
needs with the use of overlapping tiles. We, however, applied
inference with 8 pixel overlapping tiles of size 93 × 93 for the
final monitoring to ensure a complete coverage of the entire
AoI and more efficient inference due to larger tiles (the result is
shown in Fig. 23 in Appendix D).

For the transfer phase, the pretrained model was used, with no
applied layer freezing. The shallow structure of the pretrained
model architecture did not develop patterns found in deeper net-
works. In deeper networks, more general features are extracted
in layers closer to the input and more specialized features toward
the output [25]. Freezing layers closer to the input is a common
practice for transfer learning so that only more specialized
layers are transferred and the general ones are only reused. This
results in lower resource needs and faster training. However,
for our shallow network architecture such generalization and
specialization patterns are less likely to develop. Instead, in our
case we benefited from transfer learning by using a more specific
definition of urban changes with coarse temporal information.
Since the pretrained model was trained with more temporal
information, i.e., one label per window, transfer learning can
build on top of this.

Furthermore, a batch size of eight for each GPU was used,
totalling an effective batch size of 64 (8 × 8 GPUs). Due
to limited memory, for every tile (training sample) only ten
partially overlapping windows were randomly selected to span
the (almost) entire four years of 2017–2020. This follows the
previously proposed approach to avoid bias of the network under
training to specific windows and their observation patterns. In
this work, the first window started at t = 21 and the following
nine windows were selected based on uniform random relative
offsets within the range of [40, 49]. The initial offset was needed;
as with the temporal stacking not every pixel had a value at
t ∈ [1, 20]. This originated from the cloud masks and out-of-
swath where no previous value was available that leaves a zeroed

gap. Since we started the training time frame at the beginning of
2017, during winter, the window with t = 21 started in March
2017 (see Fig. 5). This was acceptable as urban changes are
less likely during winter. Conversely, the last window does not
always end with 2020. With the selected range, the time frame
covered reaches into the second half of 2020. Again, the likeli-
ness of changes is lower toward the end of the year in autumn or
winter, which we considered a compromise between providing a
variability of windows and full coverage. Since the ground truth
was approximate and we focused mostly on changes within the
four years, rather than changes toward the beginning or end,
this was an acceptable tradeoff. The overlapping of windows
ensured that all observations were visible by the network under
training, except for observations at the beginning of 2017 and
toward the end of 2020. Ultimately, the variance of selected
windows adds augmentation to the training samples, which
reduces variance and improves generalization of the trained
model.

Further augmentation was carried out on each sample with
random horizontal flipping (factor two), rotation in 90◦ in-
crements (factor four), and binary application of a temporal
comb filter [13] (factor two). Altogether, these augmentations
increased the dataset size trainval by a factor of 16.

We would like to clarify that the chosen method for trans-
ferring was practically simple but had challenging memory
requirements. The preparation of the ground truth was simplified
by aggregating a set of windows and labeling changes visible
over a longer time frame, such as multiple years. However, each
prediction of a window needed to be maximum pooled for every
training step. In turn, more windows over a longer transfer time
frame needed to be concurrently trained with shared weights. In
our case of using four years and ten randomly chosen windows,
ca. 250 GB of memory was needed. We, hence, used multiple
GPUs in a distributed data parallel training setting to increase
the available memory.

Four different transfers were carried out on the same pre-
trained model but with different training/validation splits. We
used a nonexhaustive cross-validation approach with all valida-
tion sets being disjunct. The loss curves of the transfers of the
variants V1-4 are shown in Fig. 7. The best validation loss is
highlighted with an orange dashed vertical line. For V1, epoch
116 showed the best validation loss. For V2, V3, and V4, the best
epochs were 113, 146, and 109, respectively. We, hence, define
the per-tile predictions of the four individual transfer models
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TABLE III
COMPUTING SYSTEMS USED TO VERIFY THE TRANSFER PHASE

used in the monitoring phase as

yV 1
i,j := max

{
fV 1(w

t
i,j) : w

t
i,j ∈ Wi,j

}

with the elementwise maximum operation over the 2-D predic-
tions of each window. The trained parameters of V1 are used by
the forward propagation fV 1(·). Similarly, the predictions yV 2

i,j ,
yV 3
i,j , and yV 4

i,j are defined for V2–4.
The predictions of a combination of V1–4 are defined as

yC
i,j :=

4

√
yV 1
i,j · yV 2

i,j · yV 3
i,j · yV 4

i,j

with an elementwise maximum, the Hadamard multiplication
and fourth root. This follows the bagging methodology to create
an ensemble of weak learners. The combined predictions yC

i,j

were constructed with all windows starting in the monitoring
period (unit stride ρ = 1). This is different to the transfer phase
where only ten partially overlapping random windows were
considered.

While the main development system was one node of the
IT4Innovations’ Karolina GPU cluster, other deep learning sys-
tems have also been used to confirm the transfer phase. Table III
shows the verified systems with their hardware and software
environment used. Transfer times were similar, except for the
LUMI-G node. The reason was the I/O bound workload of our
method. While the network only contained ca. 69 k parameters,
the data samples we worked with were comparatively more
complex. Since LUMI-G contained only a single CPU socket,
I/O was limited compared with the other systems.

V. RESULTS

The transferred model variants V1–4, as well as their bagged
ensemble, were analyzed quantitatively with commonly used
metrics in the machine learning and remote sensing domains.
In addition, qualitative analysis was carried out with selected
examples that also demonstrated the temporal localization of
changes. Finally, an ablation study, which varies the number of
observations, gave further insights into the transferred model’s
performance and resiliency.

A. Quantitative Analysis

For quantitative analysis, we used three different metrics as
follows:

1) Receiver operating characteristic (ROC) curve;

2) precision recall (PR) curve; and
3) Cohen’s Kappa κ with varying thresholds.
ROC curves are a very common metric for binary classi-

fiers [26]. Since we received predictions that are of continuous
values and not binary, ROC is a useful choice. They do not
require a certain threshold value to be defined, but apply different
thresholds at once. The area under the curve (AUC) forms a
metric that allows for comparison of different models.

ROC curves do not work well for unbalanced classes, which
was also true for our case. The amount of no-changes were
dominant to the amount of changes since most of the pixels
did not change. The choice of PR curves [27] are more suitable
for such skewed datasets as they can provide more insight [28].
Similarly to ROC curves, PR curves consider varying thresholds
and the AUC is a well-suited metric for model comparison.

Cohen’s Kappa [29] κ, provides the agreement of two raters.
In this work it was used for the two classes of change and no-
change. Since it does not apply varying thresholds itself and
expects binary raters, it required the selection of a threshold
value upfront. We studied κ with thresholds in the range of 0.0
to 1.0. Thresholds with the highest κ values would finally be
used since they represent the best agreement of the prediction
output and the compared ground truth.

Fig. 8 shows the ROC and PR curves, as well as κ for the
trainval dataset used for the transfer variants. Whilst all variants
show a similar performance, variant V3 scores lower for all
three metrics. This likely stems from a worse representation of
training samples that were randomly drawn for the nonexhaus-
tive cross validation. Nevertheless, all variants are performing
significantly better than the pretrained ERCNN-DRS (baseline).
The combination of all methods showed the highest scores in all
three metrics. Noticeable is also the higherκ for larger thresholds
for the variants and their combination.

In comparison, Fig. 9 shows the metrics for the testing−

dataset. This dataset is the testing dataset with tile 43:18 re-
moved. Since the testing dataset was characterized by only 18
different tiles (samples), outliers caused by tiles with larger
changes skewed the results. In particular, tile 43:18 (see Fig. 11)
significantly increased the AUCs due to large and intense con-
struction activities. We, therefore, decided to remove it for our
analysis and analyze smaller and heterogeneous changes. The
curves for the full testing dataset can be found in Fig. 19 in
Appendix B. For the testing− dataset, all variants produce similar
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Fig. 8. For the trainval set: ROC (left) and PR (middle) curves; Cohen’s Kappa is shown for different thresholds (right). Area under the ROC/PR curves are in
parenthesis.

Fig. 9. For the testing− dataset set: ROC (left) and PR (middle) curves; Cohen’s Kappa is shown for different thresholds (right). Area under the ROC/PR curves
are in parenthesis.

results, with V4 showing a slightly different behavior for the PR
curves and κ. The ERCNN-DRS baseline scores better here but
still lacks behind its transferred variants. Their combinations do
not score highest in the ROC and PR curves, but are close to the
best variant (V2). The combined variants, however, score highest
for theκ. What is noticeable here are the different thresholds that
result in the highest κ between the trainval and testing− datasets.
The former suggests thresholds of over 0.7, whereas the latter
produces higher κ scores around 0.3. Nevertheless, the κ values
are around 0.3 for thresholds of 0.7 in both cases, suggesting
that outliers caused higher κ values for lower thresholds in the
much smaller testing− dataset. After all, the time frame 2022/23
was subject to large and highly frequent urban changes with a
deviation from the regular urban development in 2017–2020.

B. Qualitative Analysis

We selected four different tiles from the monitoring period
that showed representative and diverse change patterns. The
quality of the predictions were analyzed. Figs. 10 and 11 show
two tiles that detected different urban changes and activities.
For all four examples, we also depict six VHR Airbus Pléiades
and Sentinel 2 (true color) observations over 2022/23. The

VHR observations were used for creating the ground truth for
verification and only the latter were used for the predictions.
The differences in spatial resolution are clearly noticeable. As
a result, the only changes that were detectable by our method
are larger than the sensor resolution of 10 m/pixel. The time
stamp on the top corresponds to the Airbus Pléiades observation
with the closest Sentinel 2 counterparts ±3 days apart. For each
tile, one pixel of four different change regimes was selected
to show how their prediction values changed over time. We
selected the regions to provide a diverse and balanced set of
change patterns with clear indications given by the VHR data.
Tracing the predictions over time enabled the localization of
when changes happened. This also shows how the transferred
model variants identified changes differently, based on different
learned patterns (i.e., trainval splits). Nevertheless, the detected
changes were coherent and directly attributable to change events.

Tile 26:43 in Fig. 10 i) shows smaller changes and a large
one (bottom center). Whereas the smaller changes were harder
to analyze—see charts a) and b)—the larger one shows the
destruction of a large building. Depending on the selected pixels,
changes took place at different times. This building was severely
damaged between March and June 2022 according to the VHR
Airbus Pléiades observations. The effects of this damage were
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Fig. 10. Two examples for the verification of changes 2022/23 with a limited number of Airbus Pléiades observations (top rows). Second rows show Sentinel 2
true color data at similar observation times of the Pléiades counterparts (±3days). Bottom rows show the prediction yC

i,j with prediction value time series of four
selected pixels.

also detected by the transferred models with a pixel selected in
front of the building as shown in d). The building itself was torn
down between the middle of October 2022 and early January
2023. Again, this was detected by the model variants, with V3
being overly sensitive to these changes in charts c).

The tile 42:19 in Fig. 10 ii) shows many large changes.
Construction of building in b) and c) took place in the second half

of 2022. The selected pixel d) shows a reconstruction of a large
building in the middle of 2022. In a), the nearby building was
torn down in the middle of 2022. The selected pixel belonged to
an area that was temporarily used for the destruction process.

The example i) in Fig. 11 addressing the tile 42:30 shows
other urban-related changes with different patterns. In a) and b)
the same building is monitored where the roof was damaged and
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Fig. 11. Two examples for the verification of changes 2022/23 with a limited number of Airbus Pléiades observations (top rows). Second rows show Sentinel 2
true color data at similar observation times of the Pléiades counterparts (±3days). Bottom rows show the prediction yC

i,j with prediction value time series of four
selected pixels.

reconstructed throughout 2022. A larger building was erected of
which a quarter is visible in the lower left that led to changes in
the second half of 2022, as shown in c). This scene also contains
the destruction of two larger buildings. The one shown in d) only
results in low prediction values; the other one is not detected at
all (see the red arrow at rightmost Airbus Pléiades observation).

The last example ii) in Fig. 11 shows the excluded tile 43:18
from the testing− dataset. This contains an exceptionally large
set of changes with the construction of a building complex. These
constructions happened swiftly after the Russian occupation of
Mariupol at the end of May 2022. The charts a), b), and d) show
concurrent constructions of different buildings of the complex.



5256 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 12. ROC curves of the different models applied on trainval with different sampling steps.

The chart c) shows a supply corridor, which was later converted
into a road.

C. Ablation Study

The unavailability of Sentinel 1B gave rise to the question as
to how resilient our methods were to a change in the number of
observations in relation to the overall prediction performance. In
an ablation study, we selectively reduced the number of obser-
vations by increasing the step size δ. This effectively samples
fewer observations and simulates scenarios where fewer real
observations are available due to atmospheric disturbance or
mission outages. We applied this approach separately for each
mode to also analyze the impact of the modes to the predictions.
The ablation study was carried out with both the trainval and
the testing− dataset and, hence, to two different time frames. To
avoid an influence by a shrunken number of observations per
window (i.e., to fall below ω), we retained the same number of
observations but only updated them at a step size interval. For
example, moving from the default δ = 2 days to δ = 120 days
resulted in windows with the same number of observations as for
δ = 2 days, but until 120 days had been reached, the observation
values remained unchanged.

For the trainval dataset, which spans the years starting from
early 2017 until the end of 2020, δ was changed from the default
of 2 days to 120, 600, and ∞ days. The latter only contained
one invariant observational state as no update has been done
(infinite sampling step). Figs. 12, 13, and 14 show the resulting
ROC, PR curves, as well as the κ for different thresholds,
respectively.

A similar ablation study was done for the testing− dataset,
covering the 2022/23 monitoring period. Due to the shorter time
frame, only 2, 120, and ∞ days were evaluated as sampling step
sizes. The ROC, PR, and κ curves are shown in Figs. 15, 16, and
17 accordingly.

The analyses showed three different effects. First, optical
observations had a larger impact on the prediction performance.
On the other hand, SAR observations tended to increase the
threshold for which the highest κ value was received. This was
due to a larger spread of values between changes and no-changes.
Hence, SAR observations added more confidence on changes,
but they added less in terms of identifying the right changes.

Second, with less or no optical changes, the predictions broke
down quicker, which suggested that SAR observations could
not compensate. This might have been caused by the lack of
differentiation of change of materials.
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Fig. 13. PR curves of the different models applied on trainval with different sampling steps.

Third, the reduction of observations and the drop in perfor-
mance was not linear. Even with few observations, predictions
were possible. This was a result of the binary ground truth, which
did not have or require information on the frequency or intensity
of changes. It was possible for the model to still classify changes
with a significantly reduced set of observations. However, fewer
observations reduced the temporal resolution and had an impact
on localizing a change over time.

The ablation results with the testing− set showed differences
to the ones from trainval. With reaching δ = ∞ for optical
observations, the scores of the ROC and PR curves were not
as close to a no-skill model as they were for trainval. Simi-
larly, the best threshold for the κ values moved toward zero
yet were not as low. Also, the baseline performed noticeably
better for the testing− dataset. These effects were related to the
smaller dataset size and the comparably larger changes that took
multiple months. The pretrained ERCNN-DRS worked well for
cases with spatio-temporal large scale changes but underesti-
mated shorter and smaller changes (cf. [13]). Nevertheless, the
transferred variants and their combination still provide the best
performance for the 2022/23 monitoring period. The ablation
study results for the full testing dataset can be found in Figs. 20,
21, and 22 in Appendix C.

VI. LIMITATIONS

In this study, we observed the following three limitations.
First, building damages were only recognized if multiple pixels
were involved and there was a significant change in the surround-
ing area (e.g., piles of debris and cleanup efforts). With the used
resolution of, at best, 10 m/pixel, this translates to approximately
an area of 30 m × 30 m and upward.

Furthermore, changes were only detected if learned during
the transfer phase. Since the changes in 2022/23 were of a
different origin, we might not have been able to detect all
changes, such as the ones shown in the Example i) in Fig. 11
(tile 42:30). Similarly, the selection of samples for the transfer
had a direct impact on the detected change patterns. Changes
of similar types and patterns biased the trained models and
reduced sensitivity to other change types and patterns. This is
why large and homogeneous changes were removed from the
random tile selection process when creating the trainval dataset.
Ideally, a better balance of changes and no-changes would help.
This, however, is constrained by the available real changes in
the transfer period. Therefore, our method works best for cases
where urban changes constantly happen.

Lastly, changes were temporally localizable but not down
to one month. The reason is the use of six-month windows
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Fig. 14. Cohen’s Kappa of the different models applied on trainval with different sampling steps and a changing threshold.

and the unclear response to changes over time. In our previous
study [12], we addressed this partially. However, more work is
needed to help narrow down changes to the granularity of one
month or even less.

VII. DISCUSSION

To give more insight into the selected methods and obtained
results we elaborate on five different aspects. These are the right
choice of a threshold value, how changes are detectable, the
effects of lowering the sampling rate, the amount of transfer
samples in relation to overfitting, and the size of our network,
which requires a large dropout rate. With the discussion topics
we also aim to help with adopting our methods for other areas
and scenarios.

A. Choosing a Threshold

The quantitative analysis in Section V-A was carried out
with ROC and PR curves. These do not require to select a
specific threshold when comparing the binary ground truth with
the network’s continuous and probabilistic output. They rather
describe the network’s performance irrespective of a threshold
value, which gives a more detailed insight. For practical use,

however, a threshold needs to be chosen at which an urban
change is considered as such. The earlier description of κ with a
sweeping threshold aids in selecting the best value. The κ values
in Fig. 8 for the trainval set indicate that a threshold value in the
range of [0.6, 0.9] delivers the best performance, depending on
the model variant. For the testing− dataset, the best κ values are
suggested in the range of [0.3, 0.6] in Fig. 9. Due to the small
number of samples in that set, these values are subject to bias. A
conservative joint threshold, hence, would be closer to the value
of 0.6 for the combined models.

B. Detectable Changes

The use of a window in our method provides context to
the neural network to identify changes resiliently, while work-
ing with error prone Level 1 observations [30]. As a result,
changes are only detected as they appear within that window.
Theoretically, changes can occur that barely are detectable
within this limited context. If that happens continuously, i.e.,
a very slow change over decades, even with a sliding window
approach, such a change will likely not be clearly detectable.
The window duration of six months was chosen to be a good
compromise of being short for localizing changes within a year,
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Fig. 15. ROC curves of the different models applied on testing− with different sampling steps.

Fig. 16. PR curves of the different models applied on testing− with different sampling steps.

and long enough to detect man-made construction/destruction
activities without a large influence of Level 1 data outliers. If
very slow long term changes, such as decaying buildings over
decades, shall be detectable, we suggest to consider a larger
window duration, if observational data allows. This would,
however, require a new pretraining of ERCNN-DRS to cater
for a different window duration (Δ) and also a coarser sampling
rate (δ) to reduce memory requirements.

In addition, the pretraining of ERCNN-DRS [12] relied on the
enhanced normalized difference impervious surface index [31],
[32] by aliasing impervious surfaces as urban. The transfer
learning step, then, enables to specify more precise patterns
that are intended as urban changes and are not (only) driven
by impervious surface characteristics. Due to the limitations
in time and space, from when and where samples are drawn,
which is approximately 536 km2 from Mariupol in the period
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Fig. 17. Cohen’s Kappa of the different models applied on testing− with different sampling steps and a changing threshold.

2017–2020 for the case at hand, the selected samples impact the
overall performance. If little to no urban changes are present in
that time and space, the transfer will be limited in tailoring the
change patterns of interest. Similarly, the diversity of changes in
the transfer period impacts the type of detectable change patterns
as well. Hence, our method requires sufficient urban changes to
be present before the time frame of interest for the same area8

for a useful transfer.

C. Changing the Sampling Rate

The original two day sampling rate served as a measure to
reduce memory requirements. As overlapping swaths of nearby
rows can, dependent on the selected region, result in more
frequent updates than the expected repeat cycle, redundancies
occur. In the scope of urban change monitoring, redundant and
partially overlapping observations within a day are less likely
to unveil urban changes. Hence, we decided to use a two day
sampling step and merged overlapping observations within that
step duration. This reduces significantly the memory footprint
for each window (from over 150 observations down to less
than 80; cf. Fig. 5). As demonstrated in the ablation studies, a
sublinear decline in performance was observed as the sampling
step has been increased. In turn, a coarser sampling can help
to reduce the memory needs and still deliver acceptable perfor-
mance. However, further analyses have to be done to understand
if different change patterns are affected differently by a change
in the sampling step.

8We did not yet explore the feasibility of using nearby regions as proxies.

D. Size of Transfer Set and Overfitting

The herein selected transfer data set size has been chosen
to demonstrate the low labeling efforts while providing a con-
verging transfer. We restricted the selected samples to contain a
maximum of 15% of all pixels in a tile as a subject of change.
This avoided an overrepresentation of similar change patterns
that would bias the transfer. Our mitigation of bias was to select
smaller and, thus, diverse change patterns instead. As discussed
above, the selection of samples influences the transfer and so
do their immanent change patterns. For example, a large area
construction of similar buildings with the same materials would
be overrepresented in the transfer samples and, thus, learned
predominantly [33] with the tendency of memorization [34] that
lowers the network’s generalization.

E. Size of ERCNN-DRS and Large Dropout Rates

The ERCNN-DRS is an intentionally small network with less
than 100 k parameters. It aims at identifying urban changes
less by shapes but more by the spectral (optical) or polarized
backscatter energy (SAR) responses with a limited receptive
field. This was needed due to missing details in the medium
resolution observation data and to cater for the limited memory
available on GPUs. Since the ratio of the amount of training data
to model size under a limited receptive field is large, overfitting
happens very early, resulting in a large variance. A large dropout
rate was used as a countermeasure. In earlier experiments, we
considered more layers (i.e., a deeper architecture) and more
convolutional filters. This, however, increased the memory needs
so that the resulting network did not converge due to a too small
batch size and increased gradient noise [35] or consumed too
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much memory to be trainable on state-of-the-art GPUs (even if
data parallelism was employed).

VIII. CONCLUSION

In this study, we demonstrated the applicability of detecting
and monitoring urban changes for the AoI of Mariupol, Ukraine,
by using transfer learning. It was shown that transferring for
the years 2017–2020 with publicly available historic VHR data
enabled monitoring during the times of war in 2022/23. Dur-
ing that time frame availability of VHR data was limited and
a transfer for that time frame would only have been possi-
ble with significant costs. We applied four different transfer
variants and their bagged ensemble to both the transfer and
monitoring periods, for which the ensemble provided robust
results.

We further analyzed the impact of the frequency of available
observations in an ablation study. It showed that our method was
resilient to even a large loss of observations. However, it also
indicated that our method, despite the multimode input, is more
dependent on optical observations than SAR observations. With
this understanding, we can conclude that the loss of Sentinel 1B
at the end of December 2021 did not significantly impact the
monitoring capabilities of our method.
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APPENDIX A
ERCNN-DRS ARCHITECTURE

Fig. 18. Architecture as inherited from the pretraining stage. In the transfer learning stage, all layers were trained. A windowed multimodal input was expected
(green background: multispectral optical; blue background: SAR in ascending and descending orbit directions). Hyperparameters of the respective layers are
detailed in the table on the right.

https://github.com/It4innovations/urban_change_monitoring_mariupol_ua
https://github.com/It4innovations/urban_change_monitoring_mariupol_ua
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APPENDIX B
METRICS FOR THE TESTING DATASET

Fig. 19. For the testing dataset set: ROC (left) and PR (middle) curves; Cohen’s Kappa is shown for different thresholds (right). Area under the ROC/PR curves
are in parenthesis.

APPENDIX C
ABLATION METRICS FOR THE TESTING DATASET

Fig. 20. ROC curves of the different models applied on testing with different sampling steps.
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Fig. 21. PR curves of the different models applied on testing with different sampling steps.

Fig. 22. Cohen’s Kappa of the different models applied on testing with different sampling steps and a changing threshold.
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APPENDIX D
URBAN CHANGES IN MARIUPOL 2022/23

Fig. 23. Urban changes in Mariupol during the Russian invasion 2022/23 with combined models. Highlights in red show identified urban changes using yC
i,j for

every tile. Background image ©2019/20 Google Earth, for reference only.

ACKNOWLEDGMENT

The authors would like to thank CESNET MetaCentrum for
providing them access to a DGX H100 node.

REFERENCES

[1] J. R. Shepard, “A concept of change detection,” in Proc. 30th Annu.
Meeting Amer. Soc. Photogrammetry, 1964, vol. 30, pp. 648–651.

[2] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
1989, doi: 10.1080/01431168908903939.

[3] M. Hemati, M. Hasanlou, M. Mahdianpari, and F. Mohammadimanesh,
“A systematic review of landsat data for change detection applications:
50 years of monitoring the earth,” Remote Sens., vol. 13, no. 15, 2021,
Art. no. 2869. [Online]. Available: https://www.mdpi.com/2072-4292/13/
15/2869

[4] W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection
based on artificial intelligence: State-of-the-art and challenges,” Remote
Sens., vol. 12, no. 10, 2020, Art. no. 1688. [Online]. Available: https:
//www.mdpi.com/2072-4292/12/10/1688

[5] Y. You, J. Cao, and W. Zhou, “A survey of change detection methods based
on remote sensing images for multi-source and multi-objective scenarios,”
Remote Sens., vol. 12, no. 15, 2020, Art. no. 2460. [Online]. Available:
https://www.mdpi.com/2072-4292/12/15/2460

[6] L. Khelifi and M. Mignotte, “Deep learning for change detection in remote
sensing images: Comprehensive review and meta-analysis,” IEEE Access,
vol. 8, pp. 126 385–126 400, 2020.

[7] T. Bai et al., “Deep learning for change detection in remote sensing:
A review,” Geo-Spatial Inf. Sci., vol. 26, no. 3, pp. 262–288, 2022,
doi: 10.1080/10095020.2022.2085633.

[8] A. Shafique, G. Cao, Z. Khan, M. Asad, and M. Aslam, “Deep learning-
based change detection in remote sensing images: A review,” Remote Sens.,
vol. 14, no. 4, 2022, Art. no. 871. [Online]. Available: https://www.mdpi.
com/2072-4292/14/4/871

[9] H. Jiang et al., “A survey on deep learning-based change detection from
high-resolution remote sensing images,” Remote Sens., vol. 14, no. 7, 2022,
Art. no. 1552. [Online]. Available: https://www.mdpi.com/2072-4292/14/
7/1552

[10] E. J. Parelius, “A review of deep-learning methods for change detection
in multispectral remote sensing images,” Remote Sens., vol. 15, no. 8,
2023, Art. no. 2092. [Online]. Available: https://www.mdpi.com/2072-
4292/15/8/2092

[11] A. Lehner and T. Blaschke, “A generic classification scheme for urban
structure types,” Remote Sens., vol. 11, no. 2, 2019, Art. no. 173. [Online].
Available: https://www.mdpi.com/2072-4292/11/2/173

[12] G. Zitzlsberger, M. Podhorányi, V. Svatoň, M. Lazecý, and J. Martinovič,
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