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Dual-Attention-Guided Multiscale Feature
Aggregation Network for Remote Sensing

Image Change Detection
Hongjin Ren , Min Xia , Member, IEEE, Liguo Weng , Kai Hu , and Haifeng Lin

Abstract—Remote sensing image change detection plays an im-
portant role in urban planning and environmental monitoring.
However, the existing change detection algorithms have limited
ability in feature extraction, feature relationship understanding,
and capture of small target features and edge detail features,
which leads to the loss of some edge detail information and small
target features. To this end, a new dual-attention-guided multiscale
feature aggregation network is proposed. In the encoding stage, the
fully convolutional dual-branch structure is used to extract the se-
mantic features of different scales, and then, the multiscale adjacent
semantic information aggregation module is used to aggregate the
adjacent semantic features at different scales, which can better cap-
ture and fuse the features of different scales, thereby improving the
accuracy and robustness of change detection. In the decoding stage,
the dual-attention fusion module is proposed to guide and fuse
the features extracted from different scales along the spatial and
channel directions and reduce the background noise interference.
In addition, this article also proposes a three-branch feature fusion
module and a global semantic information enhancement module to
make the network better integrate global semantics and differential
semantics and further integrate high-level semantic features. We
also introduce an auxiliary classifier in the decoding stage to pro-
vide additional supervision signals and fuse the output of the three
auxiliary classifiers with the output of the main decoder to further
achieve multiscale feature fusion. The comparative experiments on
three remote sensing datasets show that the proposed method is
superior to the existing change detection methods.

Index Terms—Change detection, deep learning, multiscale
fusion, remote sensing image.

I. INTRODUCTION

R EMOTE sensing image change detection refers to compar-
ing the differences between two remote sensing images at

different times in the same area to detect the changes of the
surface in time. In this process, each picture is assigned a binary
label, namely, label 0 (unchanged) and label 1 (changed). It
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is an important application of remote sensing technology in
the monitoring and analysis of surface changes. It can help
people understand the dynamic changes of the surface and has
many applications in our lives, such as urban expansion [1],
[2], land management [3], [4], environmental monitoring [5],
[6], disaster assessment [7], [8], and other fields [9], [10], [11].
Of course, remote sensing image change detection technology
usually faces many interference factors and challenges, such as
the speed of ground object change, the occlusion and occlusion
of ground objects, the change of illumination conditions, and
the change of land cover types [12]. Therefore, how to identify
the actual changes of remote sensing images with interference
factors becomes extremely challenging.

With the continuous improvement of satellite resolution and
the development of unmanned aerial vehicle remote sensing
technology, the resolution and spatial–temporal resolution of
remote sensing images have also been greatly improved. The
acquisition and use of high-resolution remote sensing images
and time-series remote sensing images provide more data sup-
port and technical support for remote sensing image change
detection and also greatly promote the development of change
detection technology. Nowadays, many change detection meth-
ods have been proposed, but they can be roughly divided into
two categories: traditional change detection methods and change
detection methods based on deep learning. Before the rise
of deep learning methods, traditional remote sensing image
change detection methods dominated the mainstream, including
methods based on pixel comparison, methods based on feature
extraction, and methods based on spatiotemporal models. Pixel
comparison method is a common detection method, including
simple pixel comparison method [13] and ratio pixel comparison
method [14], [15]. This kind of method is easy to operate. It only
needs to compare the images of the two phases pixel by pixel
and judge whether there is a change according to the difference
between the pixels. Among them, the simple pixel comparison
method is the most basic method. It is simple to calculate by
directly comparing the pixel gray value difference between the
two phases, but it is prone to errors in the case of inaccurate
image registration and large noise interference. The ratio pixel
comparison method can better reflect the real change degree
of the change target by calculating the ratio of the pixel gray
values of the two time phases. However, these methods cannot
deal with complex remote sensing images, such as different

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-4235-3598
https://orcid.org/0000-0003-4681-9129
https://orcid.org/0000-0003-3734-3114
https://orcid.org/0000-0001-7181-9935
https://orcid.org/0000-0002-3835-6075
mailto:xiamin@nuist.edu.cn


4900 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

lighting conditions and different shooting time, so there will
be false detection and missed detection. The method based on
feature extraction is based on the direct comparison method, and
the detection accuracy can be significantly improved by using
the related algorithms of machine learning. In 2009, Celik [16]
used principal component analysis and K-means clustering to
distinguish between changed pixels and unchanged pixels in
remote sensing images. In 2016, Jia et al. [17] used near-infrared
channels and red channels to calculate the normalized vegeta-
tion index and monitor small changes in vegetation. This kind
of method can overcome the limitations of direct comparison
method, but it needs professional knowledge and large com-
puting resources. The method based on spatiotemporal model
can overcome the limitations of the method based on feature
extraction. This method mainly uses the temporal properties of
remote sensing images to establish a change detection model.
For example, Botsch and Nossek [18] used a feature selection
method for change detection in multivariate time series to ana-
lyze remote sensing image data at different time points to im-
prove the accuracy and robustness of change detection. However,
these methods require high temporal and spatial resolution and
require a lot of computing resources and professional knowledge
support. With the continuous development of remote sensing
technology and the rise of deep learning methods, the limitations
of traditional change detection methods have gradually emerged.
Traditional methods mainly rely on manual feature extraction
and threshold setting, which are sensitive to data quality and en-
vironmental changes. At the same time, there are also problems
such as large computational complexity and false detection rate.

Therefore, in recent years, deep learning methods have grad-
ually become a research hot spot in remote sensing image
change detection [19]. The deep learning method can automat-
ically learn the features in the image without manual feature
extraction [20], [21], [22] and has strong nonlinear modeling
ability, which can better adapt to the change detection task.
From the early proposed fully convolutional neural network
(FCN) [23], [24], [25], to the typical convolutional neural net-
work (CNN) [26], [27], [28], and then to the recently emerging
Transformer network [29], [30], these methods have been widely
used in remote sensing image change detection and achieved
good results. Ronneberger et al. [31] proposed a UNet network
for medical image segmentation tasks. UNet gradually restores
image space and edge detail information through skip connec-
tion and layer-by-layer upsampling and has achieved excellent
results in medical image segmentation tasks. Because medical
images and remote sensing images have similar characteristics,
UNet is also used in remote sensing image change detection tasks
and has achieved good results. For example, Lv et al. [32] embed-
ded multiscale information attention in the backbone network of
UNet to realize the multiscale information fusion task of bit-time
images. Zhang et al. [33] combined the features of different
stages of the conjoined feature extractor to improve the ability
of the encoder and the feature extractor to extract the character-
ization features. Fu et al. [34] proposed a dual-attention scene
parsing network DANet, which uses a self-attention mechanism
to model global semantic information. Wang et al. [35] proposed

the HRNet network, which improves the network’s ability to cap-
ture details through high-resolution feature fusion and obtains
the best performance in multiple image segmentation tasks. Ma
et al. [36] used multiscale banded convolution to extract multi-
scale features of images, realized the fusion of multiple features,
and obtained a finer-grained feature representation. Xu et al. [37]
used the feature pyramid to make the model extract features at
different levels and strengthen fusion to understand the semantic
features of images more comprehensively. The above methods
all use multiscale information for semantic fusion to a certain ex-
tent. However, when fusing features of different scales, if there is
no appropriate attention mechanism or weight adjustment, some
irrelevant information may be introduced into the model, thus
reducing the performance of the model. In addition, the CNN
method is limited in processing long-range context information,
so, in some cases, the global context may be ignored and the
change area cannot be dynamically focused. In this case, the
introduction of attention mechanism to improve the ability of
global context modeling and local feature attention ability, for
example, is a feasible way, such as spatial attention [38] and
channel attention [39]. For example, Song et al. [40] used the
spatial attention module (SAM) in the encoding and decoding
stages, so that the network assigns more weight to the region of
interest, but ignores the global context information to a certain
extent. Choi and Kim [41] consider the channel correlation
between dual-time images and weight the features of different
channels, so that the model can better understand the global
context information. However, channel attention usually ignores
the importance difference of different positions in the image and
cannot deal with the change detection task that needs to focus on
specific position information. Therefore, Woo et al. [42] unified
channel attention and spatial attention, not only paying attention
to important information between channels but also dynamically
adjusting attention allocation at different locations. Because the
convolutional block attention module (CBAM) is too simple for
the combination of channel attention and spatial attention, the
simple CBAM has been unable to adapt to some complex image
tasks, such as remote sensing image change detection tasks.
Previous deep learning methods have been exploring multiscale
fusion of low-level to high-level features for many years. For
example, Zhu et al. [43] insert channel attention into spatial
attention, which combines spatial advantages and multichannel
advantages and extracts deeper features from the fused features
for classification. Ma et al. [44] used channel attention and
densely connected atrous spatial pyramid pooling to enhance
the feature extraction ability of the network in the encoding
stage. Yan et al. [45] reconstructed the original data into a
multiscale layout from the data end and then combined the chan-
nel information and angle information to construct an attention
mechanism for multiscale fusion. These methods do not take into
account the interaction between the adjacent semantics of low-
level features to high-level features, and these methods do not
perform well in attention fusion strategies. Our network not only
makes full use of the multiscale time features extracted by the
backbone network in the encoding stage but also enhances the
representation ability of the bitemporal features. In the
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decoding stage, we also model the spatial information and
channel information and perform weighted fusion of these two
attention-guided features, so that the network can better pay
attention to and guide the location information and channel
information of the bitemporal features and better perform mul-
tilevel feature fusion. And we also perform multiscale fusion
on the high-level semantic features extracted from the backbone
network to make the model better understand the global context
semantic information. In summary, our model is more reason-
able for the fusion strategy from low-level features to high-level
features, and we take into account the multiscale fusion strategy
in the encoding–decoding stage to better perform multilevel
feature fusion.

In general, the above described change detection methods
have some problems. First, previous change detection methods
based on deep learning either focus on multiscale feature fusion
strategies or focus on attention allocation strategies. We know
that relying only on multiscale feature fusion will make the
model enter some irrelevant information, and these irrelevant
noises will affect the recognition of the final change region.
If only attention allocation is used, the feature extraction will
not be rich enough, and sufficient attention guidance cannot be
performed. Of course, change detection methods that simultane-
ously consider multiscale feature extraction and attention alloca-
tion also follow. For example, Song et al. [40] and Ma et al. [36]
used spatial attention allocation while using multiscale features,
so that the location information of the two-time image was fully
allocated to a certain extent, but the channel information was
ignored, thus ignoring the context modeling. Wang et al. [46]
introduced the CBAM on the basis of multiscale features, so
that the network can simultaneously model spatial information
and channel information. As mentioned above, the CBAM is
too simple to allocate spatial attention and channel attention and
cannot adapt to remote sensing image change detection tasks,
especially in the case of unbalanced samples.

Therefore, this article proposes a dual-attention-guided mul-
tiscale feature aggregation network (DAMFANet) to solve the
above problems. We designed four modules to improve the
accuracy and robustness of the algorithm and also introduced
an auxiliary classifier to help network training. First, we select
a pretrained ReaNet34 to extract bitemporal features. Then, in
order to make full use of the dual-time features extracted by the
backbone network, we propose a multiscale adjacent semantic
information aggregation module (MASAM), which is used to
integrate semantic information at different scales to achieve
multiscale feature fusion and sharing, so as to obtain more
discriminative feature representation. At the same time, in order
to make better use of the multiscale information extracted in
the encoding stage and allocate more reasonable attention to the
bitemporal features, we propose a dual-attention fusion module
(DAFM). While modeling the spatial information and channel
information, the two attention-guided features are weighted and
fused, so that the network can better pay attention to and guide
the location information and channel information of the bitem-
poral features and reduce the interference of irrelevant noise.
In addition, a three-branch feature fusion module (TBFFM) is
designed to fuse the global semantic information and differential

semantic information of the dual-time remote sensing image,
while retaining the original information to avoid information
loss. At the same time, considering the importance of global
semantic information, we propose a global semantic informa-
tion enhancement module (GSEM), which performs multiscale
fusion of high-level semantic features to make the model better
understand the global context semantic information. The main
contributions of this article can be summarized as follows.

1) A DAMFANet framework is proposed. Previous deep
learning methods have some problems in multiscale fea-
ture fusion and attention allocation strategies, especially
the loss of feature boundary information and small target
information. This method makes full use of the rich feature
information in the remote sensing image through the cross-
fusion of different scales, uses the unique dual attention to
guide the fusion in space and channel information at the
same time, restores the target area, edge details, and small
target features in the process of dual-time remote sensing
image change as much as possible, and also effectively
avoids the occurrence of missed detection and false de-
tection. The network is end-to-end trainable, making our
network training simpler.

2) The MASAM, DAFM, TBFFM, and GSEM are proposed.
The MASAM can integrate the adjacent semantic informa-
tion of different scales in the feature extractor to achieve
multiscale feature fusion and sharing. The DAFM can
adaptively capture the changing information on the spatial
and channel dimensions and can better extract the corre-
lation information of the input feature map and suppress
the information of the unchanged area. The TBFFM can
fuse the global information and difference information of
the input, which can improve the representation ability
of the model to the input features and refine the edge
texture features better. The GSEM can aggregate and
refine features at different scales and can improve the
expression ability and discrimination of global semantic
features, thereby enhancing the network’s ability to extract
and recognize global semantic information.

3) We test our proposed DAMFANet on three datasets, in-
cluding our own proposed dataset BICDD, public dataset
CDD [47], and public dataset LEVIR-CD [48]. The test
results show that compared with the previous change de-
tection algorithm based on deep learning, the DAMFANet
is a new algorithm with higher accuracy and stronger
robustness.

The rest of this article is organized as follows. In Section II,
we introduce each module in the model in detail. In Section III,
we introduce the composition of the dataset. In Section IV, we
test the performance of the model through experiments. Finally,
Section V concludes this article.

II. METHODOLOGY

Our research aims to solve the change detection task, that
is, to accurately detect change regions and invariant regions in
two dual-time remote sensing images. Previous studies have
shown that the CNN has been widely used in the field of
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Fig. 1. Proposed DAMFANet framework. First, the temporal feature is extracted from a registered pair of images by the weight-shared ResNet-34 in the encoding
stage. Then, we use MASAM to aggregate the temporal features of adjacent scales to enhance its feature representation ability. TBFFM aims to fuse global features
and difference features to better capture the change area of dual-time features. In the decoding stage, DAFM can adaptively capture the changing information in
the spatial and channel dimensions, which can better extract the correlation information of the input feature map and suppress the information of the unchanged
region. GSEM aims to aggregate and refine features at different scales to improve the expression ability and discrimination of global semantic features. Finally, a
change map is obtained by gradually aggregating multiscale temporal difference features. And we introduce deep supervision signals into the model to help the
model converge better.

semantic segmentation [49], [50], because they can effectively
classify images at the pixel level. Therefore, we choose the
CNN as the basic framework of the algorithm, and we believe
that this method can also be applied to change detection tasks.
Our goal is to design an end-to-end learning model that can
automatically extract features from two remote sensing images
and classify change regions and invariant regions. We believe
that the Siamese network [51], [52] can be well applied to
the change detection task by extracting the features of the two
images by sharing the weights and comparing the differences
between them. Therefore, we can use the Siamese network to
compare two photos taken at the same place and at different times
and detect differences between them. We believe that this method
can effectively solve the change detection task and provide a new
idea and method for change detection research.

Our change detection model adopts a U-shaped structure
based on the Siamese network, and its overall architecture is
composed of an FCN composed of an encoder and a decoder.
Among them, the encoder is divided into two branches with
shared weights. We use the pretrained ResNet-34 [38] network
to extract global semantic information and differential semantic
information of dual-temporal remote sensing images, while the
decoder is used to perform multiscale fusion and upsampling of
the extracted feature maps to obtain change detection results.
In order to further improve the performance of the model,
we also introduce four auxiliary modules and three auxiliary

classifiers. In the encoding stage, in order to make full use of
the semantic information of different scales extracted by the two
encoder branches, the MASAM we designed can integrate the
adjacent semantic information extracted by the feature extractor
at different scales, realize the information interaction and en-
hancement of multiscale features, and help the network to better
capture the key features in the image. In the decoding stage,
the DAFM can adaptively capture the changing information in
the spatial and channel dimensions and can better extract the
correlation information of the input feature map and suppress
the information of the unchanged region. The TBFFM can fuse
the global information and difference information of the input,
which can improve the representation ability of the model to the
input features and refine the edge texture features better. The
GSEM can aggregate and refine features at different scales and
can improve the expression ability and discrimination of global
semantic features, thereby enhancing the network’s ability to ex-
tract and recognize global semantic information. The complete
architecture of the model is shown in Fig. 1.

A. Backbone

We propose a change detection network based on the Siamese
network and the U-shaped structure, in which we use pre-
trained ResNet-34 as the backbone network. It consists of five
convolution blocks, which are named Conv-1, Res-2, Res-3,
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Res-4, and Res-5. We only use the four convolution blocks from
Res-2 to Res-5 and use them as a connected network to gener-
ate four different scale outputs, so that we can cross-integrate
multiscale semantic information later. In the task of change
detection, the choice of encoder is very critical, because the
quality of the encoder network directly affects the performance
of change detection. Therefore, in general, we choose networks
that perform well in large-scale image classification tasks as
encoders, such as VGG [39], ResNet, DenseNet [53], etc.
These networks have proven to have strong feature expression
capabilities, but the computational efficiency of the encoder
should also be considered. We know that as the depth of the
network becomes deeper and deeper, the features learned by the
network are more comprehensive, but the training difficulty of
the network also becomes larger. Moreover, when the network
is too deep, the disappearance of the gradient in the back propa-
gation becomes a problem. In order to solve these problems, we
use the residual structure of ResNet, which realizes the direct
connection between the front and back network layers through
skip connection, so as to avoid the problem of gradient disap-
pearance or gradient explosion in the training process of deep
neural network. Jump connection allows information to flow
more easily in the network, making training easier to converge.
Specifically, the input and output of the residual structure are
feature maps, in which the output is obtained by a series of
convolution, batch normalization, and activation operations on
the input, and the jump connection operation is also performed,
that is, the input feature map is added directly to the output
feature map. In this way, the output feature map can contain
both the information from the input feature map and the output
feature map of the previous layer, which makes the network
deeper and ensures the stability of the training. In ResNet,
the core idea of the residual structure is H(X) = F (X) +X ,
where X is the input, F (X) is the output, and F (·) represents
a series of convolution, batch normalization and activation op-
erations. Therefore, when a layer is determined to be a redun-
dant layer during the network training process, learning makes
F (X) = 0, that is, H(X) = 0, so that the input of the layer
network is exactly the same as the input of the previous layer,
thus avoiding the problem of network degradation to a certain
extent.

B. Multiscale Adjacent Semantic Information Aggregation
Module

Although ResNet has been proved to have good feature rep-
resentation ability as an encoder in change detection tasks, it
is important to note that the semantic features extracted by the
last four convolution blocks of ResNet34, at different scales,
are independent of each other. This means that there may be in-
formation islands between the semantic information of different
scales extracted by the last four convolution blocks of ResNet34,
resulting in insufficient feature representation and affecting the
performance of the model. Therefore, in order to make full use
of the semantic information of different scales extracted by the
encoder at different stages and strengthen the information inter-
action of multiscale semantic features, we design a MASAM to

aggregate semantic information of different scales, realize the
information interaction and enhancement of multiscale features,
and help the network better capture the key features in the image.

The structure of the module is shown in Fig. 2. Since we only
output the features extracted from the four convolution blocks
after the encoder, the adjacent aggregation between the four
scales has only two adjacent scales and three adjacent scales.
Therefore, we use three branches to form the whole module.
The sizes of feature maps fa, fb, and fc are (C/2)× (2×
H)× (2×W ),C ×H ×W , and (2× C)× (H/2)× (W/2),
respectively. When the two adjacent scales are aggregated, a
1× 1 convolution is first performed on fb to compress the num-
ber of feature channels to half of the original, extract more useful
channel information, and output to fb

′. Then, a 3× 3 convolution
is performed to further extract and enhance the features, and
the output is fb

′′. If it is aggregated with the next scale, a 1
× 1 convolution is performed on fc first, and then, a 3 × 3
convolution is performed to compress the number of channels to
half of the original and further extract and enhance the features,
and then, it is upsampled to restore the same size as the feature
map fb, and the output is fc

′. Then, the two features are spliced
on the channel dimension to obtain a richer feature map, and
then, it is first subjected to a 1 × 1 convolution, and then, a 3 ×
3 convolution is performed. The channel is compressed toC and
the feature information is further extracted, and the output is fd

′.
Then, add operations are performed on fd

′, fb′, and fc
′, and the

feature maps of these two scales are fused to improve the feature
expression ability of the model. The final output is fout, and the
size is C ×H ×W . If it is aggregated with the previous scale
feature map, a maximum pooling downsampling is performed
on the feature map fa, and then, a 3× 3 convolution is performed
to effectively extract the locally strongest feature, and the output
is fa

′. Then, the remaining operation is similar to the previous
one, and the feature maps of these two scales are fused. The
final output is fout, and the size is also C ×H ×W . When the
semantic information of three adjacent scales is aggregated, fa

′,
fb

′′, and fc
′ are spliced along the channel dimension to obtain

a feature map with more channels and richer features. Then,
it is first subjected to a 1 × 1 convolution, and then, a 3 × 3
convolution is performed. The channel is compressed to C, and
the feature information is further extracted to obtain fd

′. Finally,
the addition operation is performed on fd

′, fb′, fa′, and fc
′, and

the feature maps of the three scales are fused. The final output is
fout, and the size is alsoC ×H ×W . In general, the module can
effectively integrate the adjacent semantic information extracted
by the feature extractor at different scales, realize the information
interaction and enhancement of multiscale features, and help
the network better capture the key information and features in
the image. The calculation formula of the above process is as
follows:

fa
′ = f3×3(Maxpool(fa)) (1)

fb
′ = f1×1(fb) (2)

fb
′′ = f3×3

(
f1×1(fb)

)
(3)

fc
′ = Upsample(f3×3(f1×1(fc))) (4)
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Fig. 2. Structure of the MASAM. fa, fb, and fc represent the characteristics of different scales from the backbone network. fd represents the features obtained
by splicing the features of different scales on the channel dimension after a series of operations.

fout = f3×3
(
f1×1

([
fb

′′; fc′
]))

+ fb
′ + fc

′ (5)

fout = f3×3
(
f1×1

([
fb

′′; fa′
]))

+ fb
′ + fa

′ (6)

fout = f3×3
(
f1×1

([
fb

′′; fa′; fc′
]))

+ fb
′ + fa

′ + fc
′. (7)

In the formula, f1×1(·) represents the 2-D convolution, batch
normalization, and ReLU activation function with convolution
kernel size of 1, and f3×3(·) represents the 2-D convolution,
batch normalization, and ReLU activation function with convo-
lution kernel size of 3. MaxPool(·) denotes maximum pooling,
Upsample(·) denotes bilinear interpolation upsampling, and
[; ] denotes splicing operation. Among them, fa, fb, and fc
represent the feature maps of three different scales generated
by the encoder.

C. Three-Branch Feature Fusion Module

Considering that simple addition, splicing and convolution
operations on two different feature information cannot make full
use of these two types of feature information and even destroy
the integrity and diversity of these two types of information,
resulting in information redundancy. Therefore, for the global
semantic information of the original image and the difference
information after MASAM, we propose a new TBFFM to ag-
gregate these two feature information, which can improve the
model’s ability to represent the input features and refine the edge
texture features better.

The structure of the module is shown in Fig. 3. The module
consists of three branches. The left branch is used to extract
global features from the original image, the right branch is used
to extract the difference features after the MASAM, and the
middle branch is used to fuse and enhance the global information
of fcat and the difference information of fsub. The size of the
feature graph fcat is (2× C)×H ×W , and the size of the
feature graph fsub is C ×H ×W . For the left branch, it is
divided into two branches. One branch performs global average
pooling on fcat to obtain the feature map of (2× C)× 1× 1
and then performs two 1 × 1 convolutions to compress the

Fig. 3. Structure of the TBFFM.

number of feature channels to half of the original and extract
more useful channel information. The other branch performs 1×
1 convolution on fcat first and, then, 3 × 3 convolution to further
process and enhance the global features. For the two branches
of the right branch, one performs two 1 × 1 convolutions on
fsub, and the other performs two 3 × 3 convolutions on fsub

to extract and emphasize the difference features of the image.
For the intermediate branch, fcat and fsub are first spliced along
the channel dimension, and then, 1 × 1 convolution and 3
× 3 convolution are performed. Then, the output of the three
branches is added and fused, and then, a 3 × 3 convolution is
performed to obtain the output fout. The module can effectively
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Fig. 4. Structure of the DAFM. (a) Proposed DAFM. (b) Detailed structure of the SAM. (c) Detailed structure of the CAM.

fuse the global features extracted from the original image and
the difference features after the MASAM, so that the model can
understand the image more comprehensively and capture the
key features in the image. The calculation formula of the above
process is as follows:

fout1 = f3×3
(
f1×1 (fcat)

)⊗ f1×1(f1×1(Avgpool(fcat))) (8)

fout2 = f1×1
(
f1×1 (fsub)

)
+ f3×3(f3×3(fsub)) (9)

fout3 = f3×3
(
f1×1 ([fcat; fsub])

)
(10)

fout = f3×3 (fout1 + fout2 + fout3) . (11)

In the formula, AvgPool(·) denotes the global average
pooling, and ⊗ denotes the element-by-element multiplication.
f1×1(·) represents a 2-D convolution, batch normalization, and
ReLU activation function with a convolution kernel size of 1,
and f3×3(·) represents a 2-D convolution, batch normalization,
and ReLU activation function with a convolution kernel size of
3. fout1, fout2, and fout3 represent the outputs of the left branch,
right branch, and middle branch, respectively. Let fR1 and fR2

represent the original feature map generated by the two branches
of the encoder, and fS1 and fS2 represent the feature map of
the original feature map after the MASAM. The calculation
formulas of global feature map fcat and difference feature map
fsub are as follows:

fcat = [fR1; fR2] (12)

fsub = abs (fS1 − fS2) . (13)

where [; ] denotes the splicing operation and abs(·) denotes the
absolute difference operation.

D. Dual Attention Fusion Module

Remote sensing images usually contain a large amount of
background information and noise, and key change information
may be submerged in these data. Therefore, if the change areas

that need to be paid attention to are not clearly distinguished,
it will be difficult for the network to assign accurate labels to
each pixel. The CBAM is a lightweight attention module [42]. It
consists of two submodules, channel attention module (CAM)
and SAM, which perform channel and spatial attention, respec-
tively. Inspired by the CBAM, we propose a new DAFM, which
can automatically learn and assign the weights of the changed
region and the unchanged region, so that the network can give
greater weight to the pixels of the changed region and suppress
the interference noise of the unchanged region, so as to better
capture the change information.

Fig. 4 describes the structure of this module, where the size
of the input feature graph fin is C ×H ×W . First, the channel
refinement of the input features is performed by the CAM, that
is, the average pooling operation and the maximum pooling
operation are performed on the input features, and the feature
map is compressed into two tensors of C × 1× 1 size. Then,
these two tensors are input into the multilayer perceptron (MLP),
and the output of MLP is combined by summing the elements.
Finally, a channel weight vector Wc is obtained by the Sigmoid
function, and then, the channel weight vector Wc is weighted
by the input feature fin, which can strengthen the channels
that are useful for the change detection task and suppress the
unimportant channels. Then, the feature map refined by the
CAM is first subjected to a 3 × 3 convolution and then further
refined by the SAM in the spatial dimension. First, AvgPool
and MaxPool operations are performed on the fc after a 3
× 3 convolution along the channel direction. At this time, the
feature map is compressed into two tensors of size 1×H ×W ,
and then, the two tensors are spliced, and 7 × 7 convolution is
used to capture a wider range of spatial information and convert
it into a higher level feature representation. Finally, a spatial
weight vector Ws is obtained by the Sigmoid function, and then,
an element-by-element multiplication operation is performed on
the fc after a 3 × 3 convolution and the spatial weight vector
Ws, which can emphasize the changing region and suppress the
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Fig. 5. DAFM heat map comparison. (a) and (b) Bitemporal remote sens-
ing images. (c) Label. (d) Feature heat map without DAFM in the network.
(e) Feature heat map with DAFM in the network.

invariant region. The calculation formula of the above process
is as follows:

Wc = σ (MLP(Avgpool(fin)) + MLP (Maxpool(fin)))
(14)

fc = fin ⊗Wc (15)

Ws = σ(f7×7([Avgpool(f3×3(fc));Maxpool(f3×3(fc))]))
(16)

fs = f3×3(fc)⊗Ws (17)

where σ(·) represents the Sigmoid activation function, and ⊗
represents the element-by-element multiplication. f3×3(·) de-
notes 2-D convolution, batch normalization, and ReLU activa-
tion function with convolution kernel size of 3, and f7×7(·)
denotes 2-D convolution and batch normalization with con-
volution kernel size of 7. fc represents the feature map after
CAM refinement, and fs represents the feature map after SAM
refinement.

Then, fs is spliced with the original feature map, and then, the
feature map after 1× 1 convolution is multiplied by the previous
spliced feature map to obtain fd element by element, so that
the global semantic information of the original feature map can
be retained and the important features of channel direction and
spatial direction can be fused. Then, two 3× 3 convolutions of
fd are added to the input features to obtain the final output. The
calculation formula of the above process is as follows:

fd = f1×1([fs; fin])⊗ [fs; fin] (18)

fout = f3×3(f3×3(fd)) + fin. (19)

Fig. 5 shows the heat map of our DAFM. Fig. 5(a) and (b)
shows bitemporal remote sensing images, Fig. 5(c) shows labels,
and Fig. 5(d) and (e) shows the heat maps without DAFM and
with DAFM, respectively. It can be seen that for the changed
regions that have not been paid much attention before, after
adding the DAFM, the network assigns a larger weight to the
pixels in these changed regions, that is, the red region in the heat
map, and the network assigns a smaller weight to the pixels in
the invariant region, that is, the blue region in the heat map.

E. Global Semantic Enhancement Module

We know that the change detection task is a pixel-level predic-
tion task. In the classification of distinguishing the change region
from the invariant region, the global semantic details are often
not taken into account, resulting in the omission of some small
target features. In some change detection tasks, pyramid pooling
module (PPM) is usually used to extract the context information
of the feature map by using pooling modules of different sizes,
and finally, the context information is spliced with the original
input features . Although this effectively alleviates the problem
of context semantic loss, it is not sensitive enough to the pixel-
level classification of some detailed features. Therefore, in order
to better adapt to the change detection task, we propose a GSEM.

Fig. 6 shows the structure of this module. First, for the high-
level semantic features with rich category information extracted
by the two encoder branches, we add them to obtain the input
feature map fin with a size of C ×H ×W . Then, it is input
into four parallel branches, and the feature maps with rich
semantic information are subjected to four global pooling layers
of different scales to obtain a sub-region of size s× s, where
s = {1, 2, 4, 8} defines four pyramid scales to realize the aggre-
gation and refinement of semantic features of different scales.
Then, a 1× 1 convolution is performed separately, followed by
bilinear interpolation upsampling to restore the resolution of the
feature and increase the sensitivity of the detail feature. Then,
the four features of different scales are spliced to provide a richer
feature representation. Finally, a 1 × 1 convolution and a 3 × 3
convolution are added to the original features to obtain the output
fout, which can refine the rich semantic features after splicing
and avoid the loss of original detail information. The calculation
formula of the above process is as follows:

fouti = Upsample(f1×1(Avgpools×s(fin))), i = {1, 2, 3, 4}
(20)

foutc = [fout1; fout2; fout3; fout4] (21)

fout = f3×3
(
f1×1 (foutc)

)
+ fin. (22)

where Avgpools×s(·) represents the adaptive average pooling,
and the output size is s× s. fouti represents the output of each
parallel branch, and foutc represents the output of four parallel
branches after splicing.

F. Loss Function

We use BCEWithLogitsLoss as the loss function of the model.
In the change detection task, in most cases, the proportion of
the changed region is much smaller than that of the unchanged
region, which leads to the class imbalance problem. Therefore,
it is necessary to reduce the impact of this imbalance, that is, to
set the weight coefficient on the loss function to constrain the
network, so that its training is more focused on the changing
region. Therefore, during the training process, we conducted in-
depth supervision of the network. The loss consists of four parts,
namely, the loss of the main branch and three auxiliary losses.
The weight coefficients are 1, 0.5, 0.4, and 0.3, respectively. The
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Fig. 6. Structure of the GSEM.

binary cross-entropy (BCE) loss function can be expressed as

LBCE(c, g) = g · log c+ (1− g) · log(1− c) (23)

where · is the dot product operation, and c and g are the
predicted change graph and the corresponding real label graph,
respectively. The total training loss is expressed as

Ltotal = λ1LBCE(c1, g) + λ2LBCE(c2, g)

+ λ3LBCE(c3, g) + λ4LBCE(c4, g) (24)

where λ1 represents the weight coefficient of the main loss, and
λ2, λ3, and λ4 are the weight coefficients of the three auxiliary
losses, respectively. c1 represents the predicted change graph of
the main branch, and c2, c3, and c4 are the predicted change
graphs of the three auxiliary branches, respectively.

III. DATASETS

Data play an important role in deep learning. The quality
of the dataset determines the training results of the model. A
high-quality dataset can usually improve the quality of model
training and the accuracy of prediction. Since there are few
public datasets in the field of change detection, we construct
a bitemporal remote sensing image change detection dataset
(BICDD) to train the model. In order to fully verify the effec-
tiveness of the DAMFANet proposed in this article, we train and
test on the three datasets of BICDD, CDD [47], and LEVIR-CD
[48].

A. BICDD

Since there are few public datasets in the field of remote sens-
ing image change detection, we established a BICDD to verify
the effectiveness of the algorithm. The BICDD contains 6840
pairs of high-resolution dual-temporal remote sensing images;
each image size is 256 × 256 pixels, of which 5472 pairs of
images are used as training sets, 684 pairs of images are used
as validation sets, and 684 pairs of images are used as test sets,
which are divided according to the ratio of 8:1:1. All images
are images of different regions in China from 2010 to 2020.

Fig. 7. BICDD diagram. Each column represents a sample. The first and
second lines represent the two-phase Google Earth image, and the third line
represents the label (black represents the invariant area, and white represents
the change area). (a)–(e) represent factories, farmland, roads, buildings, and
unchanged areas, respectively.

The types of change areas include factories, farmland, roads,
buildings, mining areas, etc. As shown in Fig. 7, we select some
different types of samples from the dataset. It can be seen that our
dataset contains many common scenarios. In the production of
the dataset, we deliberately added some image pairs with large
deviation of shooting angle to simulate the actual application
scene as much as possible. In addition, we also selected some
image pairs taken in different seasons.

B. CDD

The CDD dataset is an open remote sensing image change
detection dataset composed of seven pairs of 4725× 2700 pixels
and four pairs of 1900 × 1000 pixels of dual-temporal remote
sensing images. We cut 11 pairs of images into 16 000 pairs of
images with a size of 256 × 256 pixels, of which 10 000 pairs
constitute the training set, 3000 pairs constitute the verification
set, and the remaining 3000 pairs constitute the test set. Fig. 8
shows a schematic diagram of some samples in the CDD dataset.
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Fig. 8. CDD dataset diagram. Each column represents a sample. The first line
and the second line represent the dual-temporal remote sensing image, and the
third line represents the label (black represents the invariant area, and white
represents the changing area). (a)-(e) represent roads, villas, factories, cars, and
buildings, respectively.

Fig. 9. LEVIR-CD dataset diagram. Each column represents a sample. The
first line and the second line represent the dual-temporal remote sensing image,
and the third line represents the label (black represents the invariant area, and
white represents the change area). (a)-(e) represent villas, apartments, large
warehouses, garages, and unchanged areas, respectively.

C. LEVIR-CD

The LEVIR-CD dataset is a large-scale building change detec-
tion dataset, including 637 pairs of ultra-high-resolution Google
Earth images with a size of 1024 × 1024. All images were taken
in 20 different regions of Texas from 2002 to 2018. The dataset
focuses on significant changes in buildings, including villas,
apartments, large warehouses, garages, etc. In addition, the
dataset takes into account seasonal changes and light changes.
The LEVIR-CD dataset includes 7120, 1024, and 2048 pairs of
images, which are divided at a ratio of 7:1:2. Some samples of
the LEVIR-CD dataset are shown in Fig. 9.

IV. EXPERIMENTS

A. Evaluation Indicators

In Section III, we have randomly divided the dataset into
training set, validation set, and test set according to a specific
proportion. In this section, we comprehensively evaluate the
performance of DAMFANet in change detection tasks. First, we

TABLE I
COMPARATIVE EXPERIMENTS OF THE DAMFANET UNDER DIFFERENT

BACKBONE NETWORKS

use the training set to train the model, evaluate the performance
of the model on the validation set, and adjust the hyperpa-
rameters of the model to obtain the best performance. Finally,
we use an unprecedented test set to verify the generalization
ability of the model and ensure the reliability of the model
in practical applications. The efficiency and advancement of
our proposed method are verified by ablation experiments and
comparative experiments. Our experiments are carried out on
BICDD, CDD, and LEVIR-CD datasets, using four evaluation
indicators, namely precision (PR), recall (RC), MIoU, and F1.
The mathematical expression of the evaluation index is as fol-
lows:

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

MIoU =
TP

TP + FP + FN
(27)

F1 =
2× Precision × Recall

Precision + Recall
. (28)

In the above formula, TP represents true positive, which refers
to the part that is correctly predicted as a change area; FP
represents false positive, which refers to the part that is wrongly
predicted as a change area; TN indicates true negative, that is,
the correct prediction is the part of the unchanged area; and FN
represents false negative, referring to the part of the region that
is incorrectly predicted to be unchanged.

B. Experimental Details

All the experiments in this article are completed on GeForce
RTX 3080 based on PyTorch. We use BCEWithLogitsLoss as the
loss function of the model and Adam as the optimizer for model
training. In view of the effectiveness of dynamically adjusting
the learning rate, we adopt the Poly learning rate strategy, and
the learning rate of each epoch is lr × (1− epoch

max _epoch )
power.

The batch size is set to 16, the maximum number of epochs
(max _epoch) is set to 200, the initial learning rate (lr) is set to
0.0001, and the power is set to 0.9. During the training process,
we conducted in-depth supervision of the network.

C. Network Backbone Selection

Before starting the experiment, we need to select a backbone
network. We used ResNet18, ResNet34, ResNet50, VGG16, and
VGG19 for experiments. Table I shows the experimental results.
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TABLE II
ABLATION EXPERIMENT OF DAMFANET

Fig. 10. Heat map under the action of different modules. (a) True label.
(b) Heat map of Backbone + MASAM. (c) Heat map of Backbone + MASAM
+ DAFM. (d) Heat map of Backbone + MASAM + DAFM + TBFFM. (e) Heat
map of Backbone + MASAM + DAFM + TBFFM + GSEM. (f) Heat map of
Backbone + MASAM + DAFM + TBFFM + GSEM + Aux. As shown in the
figure, as the modules are superimposed, the model’s attention to the changing
regions, especially the edge details and small targets, gradually increases, which
verifies the effectiveness of each of our modules in improving the model’s feature
expression ability.

Fig. 11. Comparison on the BICDD. The bar graph represents the F1 value,
and the standard deviation is displayed at the top.

The best scores are shown in bold. It can be seen from the table
that ResNet34 has the best overall performance.

D. Ablation Experiments

In this section, we conduct ablation experiments on the
BICDD to evaluate the effectiveness of each module in our
network. For relatively complex neural networks, it is necessary
to evaluate the network performance by adding or deleting

some networks, which helps us to understand our network. The
training strategies of all models are the same. In this experiment,
we add or delete the proposed modules on the backbone network
to verify the effectiveness of each module. Table II shows the
results of ablation experiments. We mainly focus on MIoU and
F1 to verify our module.

1) Ablation Experiment of the MASAM: The MASAM can
aggregate semantic information at different scales, realize in-
formation interaction and enhancement of multiscale features,
and help the network better capture key features in the image.
This method can make full use of the features of different scales
extracted by the encoder. The results in Table II show that the
MASAM increases MIoU score and F1 score by 1.08% and
1.31%, respectively.

2) Ablation Experiment of the DAFM: The DAFM can auto-
matically learn and allocate the weights of the changed region
and the unchanged region, so that the network can give greater
weight to the pixels of the changed region and suppress the inter-
ference noise of the unchanged region, so as to better capture the
changed information. The results of Table II showed that DAFM
increased MIoU and F1 by 0.43% and 0.44%, respectively. We
also compare our proposed DAFM with the CBAM. The results
show that our DAFM is superior to the CBAM, and MIoU and
F1 are increased by 0.32% and 0.22%, respectively.

3) Ablation Experiment of the TBFFM: Our proposed
TBFFM can better integrate global information and difference
information and can help the network to better refine edge texture
features. The results in Table II show that the TBFFM increases
MIoU score and F1 score by 0.32% and 0.37%, respectively.

4) Ablation Experiment of the GSEM: Our proposed GSEM
can aggregate and refine features at different scales and can
improve the expression ability and discrimination of global
semantic features, thereby enhancing the network’s ability to
extract and recognize global semantic information. The results
in Table II show that our proposed GSEM increases MIoU
and F1 by 0.46% and 0.44%, respectively. At the same time,
we also compare our proposed GSEM with the PPM module.
The experimental results from Table II show that our GSEM is
superior to PPM, and MIoU and F1 are increased by 0.31% and
0.21%, respectively.

5) Ablation Experiment of Auxiliary Classifiers: In order to
alleviate the problem of gradient disappearance, we introduce
auxiliary classifiers in the network decoding stage and generate
independent auxiliary losses for each auxiliary classifier. This
can provide additional supervision signals for the network,
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Fig. 12. Comparison of prediction maps of different algorithms on the BICDD. (I)–(III) are the comparative experiments of three pairs of dual-temporal remote
sensing images. Image1 and Image2 represent dual-temporal remote sensing images. (a)–(p) represent the prediction graphs of label, FC-Siam-Diff, FC-EF, FC-
Siam-Conc, PVT, SegNet, SegFormer, HRNet, FCN-8 s, PSPNet, UNet, DeepLab V3+, BiseNet, ChangeNet, SAGNet, and our network DAMFANet, respectively.

supervise at different levels of the network, make the gradient
spread better, and help the network better learn and optimize
the model parameters. In addition, we also fuse the output
of the three auxiliary classifiers with the output of the main
decoder to realize the fusion of multiscale features, which can
further improve the performance of change detection. It can be
seen from the results of Table II that the introduction of the
auxiliary classifier increases MIoU andF1 by 0.36% and 0.24%,
respectively.

The performance of the backbone network is further opti-
mized by the proposed MASAM, DAFM, TBFFM, GSEM, and
the introduction of auxiliary classifiers. With the introduction
of these modules, MIoU increased by 1.08%, 0.43%, 0.32%,
0.46%, and 0.36%, respectively, and F1 increased by 1.31%,
0.44%, 0.37%, 0.44%, and 0.24%, respectively. It can be seen
that under the synergy of these modules, our final model is 2.65%
and 2.8% higher than the MIoU and F1 of the base network,
respectively. Therefore, for the change detection task, the four
modules plus the introduction of auxiliary classifiers can assist
the basic network to reduce the occurrence of misclassification
and missed classification in the prediction stage, so as to ef-
fectively detect the change area. In addition, we perform visual

feature extraction at each stage of the model. The specific results
are shown in Fig. 10.

E. Comparative Experiments

1) Comparative Experiments on the BICDD: In order to test
our model more comprehensively, we compare our proposed
method with many cutting-edge change detection techniques
and other semantic segmentation techniques on the BICDD, in-
cluding CNN-based methods and Transformer-based methods.
In order to ensure the fairness of the comparison test, the training
strategies of all models remain unchanged. The experimental
results are shown in Table III. It can be seen from the table that the
detection result of FC-Siam-Diff is the worst, and its MIoU and
F1 scores are only 60.81% and 50.48%, respectively. SAGNet
is superior to other networks, with MIoU and F1 scores of only
85.30% and 86.19%, respectively. Our model DAMFANet is
superior to other algorithms in four indicators. MIoU and F1
scores are improved by 1.49% and 1.54%, respectively, on the
basis of SAGNet. Visually, Fig. 11 shows the F1 value and
its standard deviation on BICDD between our network and
several selected competitors. Obviously, the performance of our
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TABLE III
COMPARATIVE EXPERIMENTS ON THE BICDD

Fig. 13. Comparison on the CDD dataset. The bar graph represents the F1
value, and the standard deviation is displayed at the top.

DAMFANet is superior to others. It should be pointed out
that although our algorithm is superior to other algorithms in
performance, the parameters of our model are a little large and
the time complexity is high. We will solve this problem in the
future work. On the premise of ensuring performance, we will
reduce the complexity and parameters of the model, improve the
training speed, and reduce the training cost.

The comparison of the prediction maps of various algorithms
is shown in Fig. 12. By comparing the prediction maps on three
different pairs of dual-temporal Google Earth images, we tested
the effect of our method more comprehensively. In Fig. 12, (a)
represents the label graph and (b)–(p) represent the prediction
graph of each algorithm. It can be seen from the diagram that
the FC-Siam-Diff change detection method has poor prediction
effect, it is difficult to identify the change area, and there is a
large area of missed detection. The prediction maps of other deep
learning algorithms are also rough and can only approximately
estimate the location of the changing region. There is a large
degree of false detection and missed detection of edge detail
information. The prediction map of our algorithm can not only

TABLE IV
COMPARATIVE EXPERIMENTS ON CDD

TABLE V
COMPARATIVE EXPERIMENTS ON LEVIR-CD

locate the change area but also be more accurate than other
deep learning algorithms in edge details. Our algorithm adds
MASAM, DAFM, TBFFM, and GSEM between the Siamese
network structures and introduces an auxiliary classifier, which
can clearly distinguish the changing region from the unchanged
region and use the U-shaped structure to continuously fuse
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Fig. 14. Comparison of prediction maps of different algorithms on CDD. (I)–(III) are the comparative experiments of three pairs of dual-temporal remote sensing
images. Image1 and Image2 represent dual-temporal remote sensing images. (a)–(p) represent the prediction graphs of label, FC-Siam-Diff, FC-EF, FC-Siam-Conc,
PVT, SegNet, SegFormer, HRNet, FCN-8 s, PSPNet, UNet, DeepLab V3+, BiseNet, ChangeNet, SAGNet, and our network DAMFANet, respectively.

TABLE VI
COMPARATIVE EXPERIMENTS OF OUR METHOD BEFORE AND AFTER

PARAMETER PRUNING

multiscale feature information to correct edge details. Therefore,
the prediction graph of our algorithm is closer to the real label.

2) Comparative Experiments on CDD: A single dataset is
not enough to fully examine the performance of the model.
Therefore, we also test our model on the CDD dataset. Like the
previous experiments, the comparison of all algorithms is carried
out in the same environment. Table IV shows our experimental
results on the CDD dataset. As can be seen from the table,
compared with other deep learning algorithms, our algorithm
has obviously reached the optimal value on all four indicators.
The MIoU and F1 scores have increased by 0.53% and 0.49%,
respectively, on the basis of SAGNet. Visually, Fig. 13 shows

Fig. 15. Comparison on the LEVIR-CD dataset. The bar graph represents the
F1 value, and the standard deviation is displayed at the top.

the F1 value and its standard deviation on CDD between our
network and several selected competitors. Obviously, the per-
formance of our DAMFANet is superior to others.

The comparison of the prediction maps of various algorithms
is shown in Fig. 14. By comparing three groups of prediction
maps selected from 3000 pairs of dual-temporal remote sensing
images in the CDD dataset, we tested the effect of our method
more comprehensively. In Fig. 14, (a) represents the label graph,
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Fig. 16. Comparison of prediction maps of different algorithms on LEVIR-CD. (I)–(III) are the comparative experiments of three pairs of dual-temporal
remote sensing images. Image1 and Image2 represent dual-temporal remote sensing images. (a)–(p) represent the prediction graphs of label, FC-Siam-Diff,
FC-EF, FC-Siam-Conc, PVT, SegNet, SegFormer, HRNet, FCN-8 s, PSPNet, UNet, DeepLab V3+, BiseNet, ChangeNet, SAGNet, and our network DAMFANet,
respectively. Red indicates false detection, and green indicates missed detection.

and (b)–(p) represent the prediction graph of each algorithm. It
can be seen from the figure that for some small targets or slender
targets, that is, the area marked by the red box in the figure,
other algorithms either cannot identify the change area or can
only roughly identify the change area, and the identification
of small targets and slender targets is extremely vague. Our
algorithm performs best in this respect. It can not only accurately
identify all the changed regions but also accurately segment
the boundaries of the changed regions. In particular, there is
basically no adhesion between small target features. Therefore,
the prediction graph of our algorithm is closer to the real label.

F. Generalization Experiment on LEVIR-CD

We also conducted comparative experiments on the LEVIR-
CD dataset. Considering the limitations of GPU, we cut the
original image pair of 1024× 1024 pixels into 256× 256 pixels.
The training set includes 7120 pairs of images, and the test set
includes 2048 pairs of images. Like the previous experiments,
the comparison of all algorithms is carried out in the same
environment. The experimental results are shown in Table V.
It can be seen from the table that compared with other deep
learning algorithms, our algorithm has obviously reached the
optimal value on all four indicators, and the MIoU and F1
scores have increased by 0.54% and 0.59%, respectively, on
the basis of UNet. This fully proves the effectiveness of our

algorithm. Visually, Fig. 15 shows the F1 value and its standard
deviation on LEVIR-CD between our network and sev-
eral selected competitors. Obviously, the performance of our
DAMFANet is superior to others.

The comparison of the prediction graphs of various algorithms
on the LEVIR-CD dataset is shown in Fig. 16. The three groups
of prediction images were all from 2048 groups of prediction
images in the test set. In Fig. 16, (a) represents the label graph,
and (b)–(p) represent the prediction graph of each algorithm.
It can be seen from the graph that when detecting the changes
of multiple adjacent buildings, the existing deep-learning-based
algorithms predict that the boundaries are mostly jagged, and
there may be adhesions, resulting in false detection and missed
detection (represented by red and green, respectively). Our
algorithm can clearly distinguish each changing building and
predict the boundary of the changing area more smoothly, thus
effectively reducing the occurrence of false detection and missed
detection.

G. Parameter Pruning Experiments and Results

As our approach consists of a backbone network ResNet34
and four auxiliary modules, our model exhibits a multilevel
multiscale feature representation. While achieving commend-
able performance, our model incurs significant computational
overhead. Therefore, we aim to compress our model to reduce
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parameter count. Parameter pruning, as a model compression
technique, efficiently reduces the number of parameters, enhanc-
ing the inference efficiency while preserving model performance
as much as possible. The core idea of parameter pruning is
to eliminate weights or neurons in the model that contribute
minimally to task performance.

Due to the complex structure of our model, adopting the
fine-grained pruning method allows for flexible pruning across
different levels, channels, or modules. This approach enables
us to reduce the parameter count while retaining crucial in-
formation for the change detection task. Considering that the
TBFFM aims to fuse global semantic information and differ-
ential semantic information, these two types of semantic infor-
mation share some similarities. The intermediate branch in the
TBFFM concatenates these two types of semantic information in
the channel dimension, introducing some redundant channels.
Therefore, we performed channel pruning on the TBFFM by
removing channels that contribute minimally to the model’s
performance, reducing both parameter count and computational
burden. We also applied channel pruning to the GSEM. In addi-
tion, we evaluated the importance of certain layers in our model
using metrics such as gradients, activation values, and weight
magnitudes. Layers with small gradients, activation values, and
weight magnitudes were considered less contributive and were
pruned. However, we still need to evaluate the performance of the
pruned model through experiments. After multiple experiments
and comprehensive evaluations, we determined the redundant
channels removed through channel pruning and the redundant
layers removed through layer pruning. We evaluated the per-
formance of the pruned model on three datasets, comparing
it with the original model in terms of performance, parameter
count, and FLOPs. As shown in Table VI, after pruning, our
model’s parameter count and FLOPs were reduced by 28.14 M
and 4.69 G, respectively. Through fine-tuning, the performance
of the pruned model experienced a slight decrease but remained
relatively unaffected.

V. CONCLUSION

This article proposes a DAMFANet. Aiming at the problems
of multiscale feature fusion and attention allocation strategy in
previous deep learning methods, this algorithm makes full use
of the rich feature information in remote sensing images through
cross-fusion of different scales and uses unique dual attention to
guide fusion in space and channel information at the same time.
The target area, edge details, and small target features in the
process of dual-time remote sensing image change are restored
as much as possible, and the occurrence of missed detection
and false detection is also effectively avoided. Specifically, four
modules are designed to improve the accuracy and robustness
of the algorithm, and an auxiliary classifier is introduced to help
network training. We propose a MASAM to integrate semantic
information at different scales and strengthen the information
interaction of multiscale semantic features, so as to obtain
more discriminative feature representation. In addition, we also
propose a DAFM, a TBFFM, and a GSEM. While modeling
spatial information and channel information, the DAFM also

weightedly fuses the two attention-guided features, so that the
network can better pay attention to and guide the location
information and channel information of dual-temporal features
and reduce the interference of irrelevant noise. The TBFFM
combines the global semantic information and the difference
semantic information of the dual-time remote sensing image,
while retaining the original information to avoid information
loss. The GSEM obtains semantic information of different scales
and integrates them to make the model better understand the
global context semantic information. In addition, we also intro-
duce an auxiliary classifier, which can not only provide addi-
tional deep supervision signals for the network but also realize
multiscale feature fusion and further improve the performance of
the model. The experimental results show that the DAMFANet
is superior to other deep learning algorithms on BICDD, CDD,
and LEVIR-CD datasets. However, the algorithm still has room
for improvement. Under the premise of ensuring the detection
accuracy, the complexity and parameter quantity of the model
are reduced, the training speed is improved, and the training cost
is reduced.
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