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Snow and Cloud Classification in Historical SPOT
Images: An Image Emulation Approach for Training
a Deep Learning Model Without Reference Data

Zacharie Barrou Dumont

Abstract—The lack of revisit in long-term satellite time series,
such as Landsat is an issue to assess ecosystems response to snow
cover variations in mountains. A recent release of the Satellites Pour
I’Observation de la Terre (SPOT) 1-5 satellite images collection by
the SPOT World Heritage (SWH) program offers the opportunity
to increase the temporal revisit of Landsat from 1986 to 2015 at
20 m resolution. However, spectral and radiometric limitations of
these images hinder the application of well-established pixel-wise
methods to extract the snow cover area. As a work-around, deep
learning techniques, such as convolutional neural networks can
incorporate both spectral and spatial information to classify every
pixel as snow, cloud, or snow-free. However, the lack of reference
data poses a challenge to the implementation of such data-driven
approaches. Here, we develop an emulator of SPOT images, which
takes as input Sentinel-2 images. As a result, an emulated SPOT
image can be paired with a reference snow map generated from
its source Sentinel-2 image to train a deep learning model able
to process actual SPOT images. We follow this approach to train
a U-Net and evaluate different training strategies. We apply the
different models to classify actual SPOT images for which we have
reference data for validation. The method yields high precision in
detecting snow, with minimal false snow pixel identification. This is
at the cost of overestimating cloud pixels around clouds and highly
saturated areas. The results confirm the potential of this method to
generate time series of snow cover maps using the SWH collection.

Index Terms—Deep learning, image classification, Satellites Pour
I’Observation de la Terre (SPOT) World Heritage (SWH), sentinel-
2, snow cover, u-net.

1. INTRODUCTION

HE snow cover area (SCA), defined as the spatial extent
T of the snow cover on the land surface [1], is an important
variable to understand hydrological and ecological processes in
mountainous regions. In particular, mountain soil and vegetation
properties are largely driven by seasonal snow cover duration and
snow melt-out date [2], [3], [4], [5], [6]. Therefore, information
on the spatial-temporal variability of the SCA over long time
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periods is critical to study the response of mountain ecosystems
to climate change. In addition, high resolution observations are
needed since the mountain snow cover varies at spatial scales
typically of 100 m or below due to topographic heterogeneity [7].

The Landsat program provides the opportunity to map the
extent of snow cover at decametric resolutions (60-30 m) since
1972 with theoretical revisit times of 16 to 8 days [8]. However,
the theoretical revisit time is not always guaranteed due to
technical obstacles, mission constraints, and cloud cover [9],
[10]. Considering that the cloud cover probability often exceeds
50% in temperate mountainous regions [11], [12], such revisit
time enables approximately one observation per month or less,
which is insufficient to characterize the seasonal evolution of the
snow cover [13].

The United States Geological Survey also provides free access
to the data acquired by the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) instrument on
the Terra satellite, which has been capturing images since 2000
with resolutions of 15 to 90 m. The ASTER instrument does
not, however, allow systematic acquisitions and only collects an
average of 8 min of data per 99-min Sun-synchronous orbit, i.e.,
650 scenes per day [14].

The French Space Agency (Centre National d’Etudes Spa-
tiales, CNES) led the Satellites Pour 1I’Observation de la Terre
(SPOT) program (https://spot.cnes.fr/) by launching five Earth
observation satellites between 1986 and 2002. The SPOT satel-
lites observed the Earth in the visible and infrared bands with
spatial resolutions of 10 and 20 m. Accessible for free since
2015, nearly 20 million of SPOT 1 to 5 products from acquisi-
tions between 1986 and 2015 can be obtained through the SPOT
World Heritage (SWH) program at the 1 A processing level
(without orthorectification) [15].

Because SPOT image acquisitions were performed on a
demand basis rather than systematically, it is challenging to
determine the average revisit frequency. However, SWH can
significantly increase the number of available observations. For
example, SPOT products account for approximately half of the
acquisition dates over the French Alps and Pyrenees that could be
obtained from Landsat and ASTER only over 1996-2005 [16].

Although higher level products or processing algorithms are
readily available to extract snow cover maps from Landsat
and Sentinel-2 missions [17], [18], there is no equivalent for
SWH. Well-established methods for snow/cloud discrimination
on Landsat and Sentinel-2 images primarily rely on pixel-based
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spectral signatures, such as the normalized snow difference
index [18], [19] or spectral unmixing [20]. Both approaches
take advantage of the specific spectral properties of snow cover
surfaces, highly reflective in the visible but not in the shortwave
infrared wavelengths (SWIR, typically 1.6 ;zm), whereas clouds
tend to have a higher reflectance in the SWIR [21]. SWH data
are encoded in 8-b, with only 256 different reflectance values
per band, and often saturate when clouds or snow are present.
This saturation, combined with the lack of SWIR band in SPOT
1-3 products, makes it difficult to differentiate snow from clouds
with a per-pixel approach. A solution to overcome these issues
is to use deep learning approaches, which can take into account
both the spectral and spatial information to segment a satellite
image into snow, clouds, and ground [22], [23].

Despite the slow uptake of deep learning methods in the
remote sensing field, there has been a rapid increase in the
number of studies utilizing these techniques [24]. Deep learning
has been used for various remote sensing tasks, such as road
detection, sea-land detection, land cover mapping, and cloud
detection. In particular, convolutional neural networks (CNNs)
have emerged as a highly effective tool in remote sensing image
classification (semantic segmentation in deep learning terminol-
ogy). A significant advantage of CNNs over previous methods is
their ability to automatically extract features, which used to be
a manual task. Specifically, a CNN architecture developed for
biomedical image segmentation, U-Net [25] was used to develop
a cloud detection algorithm for Landsat 8 imagery trained on
annotations from the Fmask processor and has shown increased
performances compared to the processor itself [26]. However,
the lack of reference snow cover maps corresponding to SWH
images impedes the implementation of such approaches.

In this work, we present a novel approach for training a
U-Net to generate thousands of snow cover maps from SPOT
images at 20 m resolution. We developed an emulator of SPOT
images, which takes as input a Sentinel-2 image. As a result,
the emulated SPOT image (pseudo-SPOT) can be paired with a
reference snow map generated from its source Sentinel-2 image.
We used this approach to train the U-Net over the Pyrenees.
The trained U-Net can then be used to segment actual SPOT
images into a snow, clouds, and ground map. The advantage
of this method is twofold: the ability to do snow detection
with highly-saturated images without an SWIR band, making
it most useful when processing SPOT 1-3 images, and the
ability to train and use a U-Net model over any region covered
by SWH images thanks to the global coverage of Sentinel-2.
The method is evaluated by testing the U-Net’s performances
in learning from pseudo-SPOT4 images and inferring on real
SPOT4 images. SPOT4 images have an SWIR band, which we
can use to generate reference maps using a pixel-based approach.

II. DATA
A. Satellites Pour I’Observation de la Terre

Each SPOT had two identical instruments. The first gener-
ation SPOT1 to 3 were equipped with twin high resolution
in the visible (HRV) instruments with green, red, and near-
infrared bands at 20 m spatial resolution. SPOT4 was equipped
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TABLE I
SPATIAL RESOLUTIONS OF SATELLITE MISSIONS

Spatial resolution (m)

Mission (i Ghle NIR  SWIR Period
Sentinel-2 10-20 20-60  Since 2015
SPOTI-3 20 - 1986-2009

SPOT4 20 20 1998-2013

SPOTS 10 20 2002-2015

with identical instruments (HRV-IR) excepted for an additional
short-wave-infrared band (SWIR) at the same resolution. The
SPOTS5 high-geometrical-resolution twin instruments had the
same characteristics as HRV-IR excepted for an improved spatial
resolution of ten meters for the three visible bands (see Table I).
The swath of SPOT multispectral sensors was 60 km and,
contrary to Sentinel-2, SPOT images have varying incidence
angles.

SPOT pixel values were encoded in 8 b (only 256 different
values). The conversion from the instrument outputs to radiance
values was done via a ground controlled preset gain chosen
depending on the context of the image acquisition to optimize the
image dynamics. This radiometric gain was generally adjusted
for vegetation surfaces and, therefore, often saturates over snow
and clouds. We used SPOT images at the 1 C processing level
(ortho-rectified and top-of-atmosphere reflectance) available
from the Theia catalog (https://www.theia-land.fr/product/spot-
world-heritage-fr/). The images are distributed as integers in
milli-reflectances (reflectance x 10%) in 16-b unsigned integer
but actually contain only 256 values. SPOT instruments also
include a panchromatic band, which is not included in the Theia
products and, thus, is not used in this work.

B. Sentinel-2

The Sentinel-2 mission is a constellation of two satellites (2 A
and 2B). Both Sentinel-2 A and B use the same multispecral im-
ager (MSI) with 13 bands in the visible and infrared ranges and
with spatial resolutions of 10, 20, and 60 m [27]. Following the
launch of Sentinel-2B in 2017, the Sentinel-2 mission observes
the global land surface with a revisit time of 5 days (see Table I).

In this work, we use Sentinel-2 products at level-1 C to match
the processing level of the SWH data. Sentinel-2 level-1 C
imagery is projected on a grid of 100x 100 km? tiles defined by
the military grid reference system. MSI sensitivity allows precise
radiometric measurements over a large range of reflectance and,
therefore, saturated pixels are very rare even over bright clouds
or snow covered surfaces.

We also use level-2B products from Theia, providing a classi-
fication of the land surface at 20 m resolution into four classes:
snow, no snow, cloud (including cloud shadow), and no data.
The Theia snow products are generated using the MAJA and
LIS software [18]. MAJA performs the atmospheric correction
and cloud detection to generate level-2 A products [28], which
are then used as input to LIS to perform the snow detection. The
performance of the snow detection using the MAJA-LIS pipeline
was assessed on the French Alps and Pyrenees with an accuracy
of 94% (kappa 0.83) [18]. A more comprehensive evaluation
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Fig. 1.  Flow chart of Sen2SPOT + U-Net training.

was conducted at pan European scale and yielded comparable
results [29]. However, where transparent or semitransparent
clouds are present, LIS conservatively keeps them as cloud
pixels, although they could be visually identified as snow [30].

C. Auxiliary Data

We also use a digital elevation model (DEM) and a tree cover
density map (TCD) in our processing workflow. The DEM was
sourced from the Copernicus global 30 m DEM [31]. The TCD
was obtained from the Copernicus Land Monitoring Service.
It was derived from Sentinel-2 data and is available at 20 m
resolution with pixel values ranging from 0% to 100% [32].

III. METHODS
A. Sen-2-SPOT

To extract the SCA from SPOT images, we aim to use the
U-Net architecture, a fully convolutional segmentation network,
which can be trained to extract contextual features from animage
and localize them, generating an output image with pixel-wise
annotation [25]. The U-Net should classify every valid pixel of a
SPOT image in one of the following classes: ground (snow-free),
snow, or cloud. The main challenge is the lack of reference data
to train the network since we do not have reference cloud/snow

cover maps generated from SPOT images. We could find Landsat
images (and their associated snow/cloud mask) acquired on the
same day as some SPOT images, but even a time difference of a
few minutes remains too large with respect to the variability of
the cloud cover. Hence, to differentiate snow and cloud with the
U-Net, itis imperative to generate reference data at the exact time
the SPOT image was taken. As a solution, we developed a tool
(Sen-2-SPOT), which emulates a SPOT data from a Sentinel-2
data, allowing us to make use of the corresponding Sentinel-2
cloud/snow cover map as reference data to train the U-Net from
pseudo-SPOT data.

Sen-2-SPOT works in three main steps. First, it computes
reflectance values for the pseudo-SPOT bands green, red, and
NIR by combining Sentinel-2 spectral band reflectances (see
Section ITI-A1). Then, itreduces the image dynamic by clamping
the pseudo-SPOT reflectances between a minimum and max-
imum reflectance (see Section III-A2). Last, it performs the
radiometric compression to 8-b encoding (see Section III-A3).
Sen-2-SPOT can emulate a SPOT image of any sensor from
SPOT1 to SPOTS. It was designed to output image patches of
any size, which can be directly ingested into the U-Net training.
It is not possible to emulate the variability of the incidence
angles of SPOT acquisitions, so the pseudo-SPOT images are all
at the same incidence angles as their corresponding Sentinel-2
images.



5544
band 2 (blue) band 4 (red) band 7 (vegetation)
Sentinel2 ba‘nd 3 1gree‘n) i i band 8 (nir)
H H band 8A (mr)
band 1 (green)
SpoT4 band 2 (red)
band 3 (n‘m :
500 600 700 800 900
Reflectances

Fig. 2. SPOT4 spectral bands and corresponding Sentinel-2 spectral bands.

Fig. 1 schematizes the process of (i) emulating a pseudo-
SPOT image patch from a Sentinel-2 image patch, (ii) passing
the pseudo-SPOT patch through a U-Net to segment it into snow,
ground, and cloud classes using the Theia snow products as
reference data to optimize the network weights.

1) Spectral Bands Combination: The spectral ranges of the
HRV-IR bands overlap the spectral ranges of Sentinel-2. For
example, the SPOT green band (0.5-0.59 pm) overlaps both the
Sentinel-2 blue band (0.46—0.525 pm) and the Sentinel-2 green
band (0.54-0.58 pum) (see Fig. 2). Here, we use a first-order
approach to estimate SPOT reflectance from Sentinel-2 data. For
simplicity, we assume a constant instrument sensitivity for each
band as we do not expect that omitting the sensitivity functions
will impede the training over a large dataset. For each SPOT
band, the pipeline finds the Sentinel-2 bands with overlapping
spectral ranges and averages the corresponding reflectance using
the overlapping band width as weight:

225 Xij Ry
> Xij

where 7 is the SPOT band to estimate and j an overlapping
Sentinel-2 band. R is the reflectance value of a pixel and X; is
the overlapping band width between ¢ and j.

Only the Sentinel-2 red band overlaps the SPOT red band, so
the reflectances are equal. The SPOT NIR band is overlapped by
the Sentinel-2 bands 7 (vegetation), 8 (NIR), and 8 A (narrow
NIR) but, since the overlaps of 7 and 8 A are covered by the
overlap of 8, only the Sentinel-2 NIR band 8 is used. Hence, the
value of the SPOT NIR band is equal to the one of the Sentinel-2
band 8.

2) Radiometric Clamping: In contrast with images captured
by modern sensors, such as Sentinel-2 MSI, SPOT images are
prone to saturation, especially over bright areas, such as clouds
and snow covered surfaces. Given the lack of objective criteria
to determine the saturation value, i.e., the reflectance above
which a pseudo-SPOT image should be saturated, we adopted
an empirical approach to estimate it from a large number of
SPOT images. We parsed every SPOT product available over
the Pyrenees from the SWH level 1 C collection available
and extracted the saturation values of the green, red, and NIR
reflectance bands from the metadata. The number of images is
271, 1281, 132, 776, and 683 for SPOT 1 to 5, respectively. A
statistical model of the saturation values per spectral band was
built separately for every SPOT sensor.

Fig. 3 shows a scatter plot between the saturation values of the
NIR and red bands for SPOT4. The data are also classified by

R; = ey
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Fig. 3. Distribution of SPOT4 saturation reflectance values (green, red, nir).

Left: distribution of values from an actual sample of images over the Pyrenees;
center: Gaussian kernel density estimation of the distribution; right: 500 random
samplings from the estimation.

bins of saturation values in the green band. The distribution fol-
lows multiple linear relationships, indicating that the saturation
of the NIR and red bands are related, and the same observation
can be drawn with the other band combinations. Therefore, we
generate a trivariate Gaussian kernel density estimation (GKDE)
from the distribution. We use the gaussian_kde function of the
scipy Python library (Version 1.10.1) [33]. For a distribution of
size n, the probability density function for a saturation vector of
size d = 3 & = (Tgreen, Tred, Tnir) . 1S Written as

(x —x;))

n|H| ZK

with H = hly ()

where I is the identity matrix. Gaussian_kde uses a Gaussian
kernel K to smooth the data, and a bandwidth parameter h
to determine the width of the kernel. The bandwidth controls
the tradeoff between bias and variance in the estimation, with
a smaller bandwidth leading to a higher variance and a larger
bandwidth resulting in a higher bias.

Fig. 3 (center) displays the 2-D projection of the density
function between NIR and red values. We use a small bandwidth
= 0.1 to ensure that the GKDE will fit the shapes of the
multiple linear relations and keep a probability of O between
them. When processing a Sentinel-2 image, the Sen-2-SPOT
pipeline will randomly sample a set of saturation values from this
probability density. Fig. 3 (right) illustrates how the sampling
of 500 data points reproduces a similar distribution to that of
SPOT4.

We apply the same process to estimate the minimum re-
flectance values from the metadata files and generate a syn-
thetic minimum value for each band and sensor. However, the
minimum reflectance exhibits much less variability than the
maximum reflectance value and its estimation is far less critical
for the snow/cloud classification.

3) Compression: For each Sentinel-2 band, Sen-2-SPOT
rescales the clamped reflectance values Rgo into a distribu-
tion Rgpor of 256 different reflectance values inside the range
[Rnin, Rmax] [see (3)] with Ryin and Rpax the minimum and
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Fig.4. Above: Sentinel-2 image patch with a histogram of the red band. Below:
saturated pseudo-SPOT4 image patch with a histogram of the red band.

maximum reflectance values of Rgo Section III-A2

RS’Z - Rmin -‘

3
Rmax - Rmin ( )

Rgpit = {255
where the |a| notation denotes the function, which rounds a
decimal number a to the nearest integer.
Then, the 8 b values Rgy; are rescaled to integers in milli-
reflectance units to match the distribution format of SWH level
1 C images (see Section II)

Riyax — Rmi
%RS bit + Rmin- “4)

Fig. 4 shows the conversion from an (a) input Sentinel-2 patch
with a histogram (b) of the red band to (c) a pseudo-SPOT4
patch with a histogram (d) of the same band. In this example,
red reflectance values are converted from a range of [0.05; 1.30]
to [0.05; 0.49], which creates large areas of saturation.

Rspor = 1000

B. U-Net

1) Architecture: We use the same U-Net architecture as de-
scribed in [25]. A U-Net is composed of two symmetric paths for
encoding and decoding. At the encoding path, the network takes
an input patch with C' channels and passes it through five steps
of convolution with a downsampling using a 2 X 2 maximum
pooling between each step. An encoding step is described as
follows.

a) A first convolution layer with 64 x 2¢ x C; kernels of size

3% 3 bringing the number of channels to C; 1 = 64 x 2°.
Where i € [0,. .., 4] is the step number.

b) A batch normalization.

¢) A rectified linear unit activation function, bringing nega-

tive values to zero.

d) A repeat of the three previous steps.

The decoding path consists of four steps of convolution with
a bilinear upsampling followed by a skip connection with the
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encoder before each step. A skip connection involves concate-
nating the output of the convolution layers from an encoding step
with the features generated by the corresponding decoding input,
enabling the transfer of raw information from the former to the
latter (as illustrated by the crop and copy operations in Fig. 1). A
decoding step brings the number of channels to C; | = 1024 /2°
(with ¢ € [0, ..., 3] the decoding step number). The last step
ends with a final convolution layer witha 1 x 1kernel generating
a patch with one channel for each class.

During the training phase, it is important to ensure that input
data is normalized or standardized to a consistent scale before
being passed through the network. Hence, for each channel,
we normalize the dataset used for the training by subtracting
the mean from band and dividing the result by the standard
deviation. In addition, because dense tree canopy impedes snow
detection performances with optical satellite sensors [34], we
mask pixels with a tree cover density greater than 50%.

2) Input Features: An input patch is formed by the concate-
nation of the pseudo-SPOT image green, red, and NIR bands,
and two additional bands: a DEM and a hillshade layer giving
the pixel illumination at the acquisition time. The DEM was
included because the SCA is largely influenced by elevation.
The hillshade was included because the surface reflectance of
the snow cover at the acquisition time is highly correlated to
the hillshade contrary to clouds. By providing these contextual
features, the model should be better equipped to discriminate
cloud and snow areas.

The elevation is extracted from the Copernicus DEM and
resampled to 20 m using bilinear interpolation. The hillshade
was calculated from the DEM and from the sun azimuth (¢) and
zenith (6) angles at acquisition time given in the image metadata

Hillshadepixer = 255(cos 6 cos Spixel 5)
+ sin € sin Spier cos (¢ — Apixel))
dz\? dz\?
Spixel = arctan\/<%> + (d_y> (6)
Apixel = arctan2 (Z—Z - 3—;) 7

The slope S of a pixel is calculated from the horizontal g—; and
vertical g—z rates of elevation change in a 3-by-3 window centered
on the pixel. The aspect A is the orientation of the slope.

3) Loss: Table II shows how the classes can be unbalanced
in the training dataset, with the snow class being the minority.
Hence, when comparing the output of the U-Net with the refer-
ence data, we calculate the loss for one batch using a weighted

cross entropy function

o2
= > > WjRijlog(Pi;) ®)
i=1j=0

. _ Fftrain
with W; = Strain,” ©))

With j € [0, 1, 2] the class (3 being a mask), 7 the pixel, W
the weight, R the target (true) probability 1 or 0, P the predicted
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TABLE I
DISTRIBUTION OF TRAINING (TOP TABLE) AND TESTING (BOTTOM TABLE)
PIXELS ACROSS THE FOUR TILES 30TXN, 30TYN, 31TCH, 31TDH, OVER
THE PYRENEES

Tiles
Training datasets 5,y 30ryN 3iTcH 31TDH 0@
Nb of pixels 5.2e7 10.9¢7 8.5¢7 3e7 27.7¢7
% of snow pixels 11.8 16 23.8 14.6 17.4
% of cloud pixels 28.6 35.5 29.1 26 31.2
Testing dataset
Nb of pixels 1.3e7 2.9e7 2.2e7 0.8e7 7.2¢7
% of snow pixel 14.3 16.6 239 12.1 17.9
% of cloud pixel 28.2 34.1 31.8 31.6 32
Step 1 | | Step 2
I|_ _.I || Select best seed
‘/‘/T \ ith minimum loss|
Seed1 | Seed2 | Seed3 Seed 10 Best Seed [»{>clectcf
ith loss|

Epoch 1
Epoch 2

Epoch 1
Epoch 2

Epoch 1
Epoch 2

Epoch 1
Epoch 2

Epoch 1
Epoch 2

Epoch40 | Epoch40 | Epoch 40 Epoch 40 Epoch 200

Final
model

Fig. 5. Step 1: light training of the U-Net model. Step 2: heavy training from
the best checkpoint of step 1.

probability, and I the amount of pixels in the batch. We calculate
the weight for the class 7 by dividing the number of pixels in
the training dataset with the number of pixel of class j in the
training dataset.

4) Training: An input patch has a size N x N x C with N
=572 pixels and C' = 5 channels (3 pseudo-SPOT bands, | DTM
band, and 1 hillshade band). The U-Net is trained iteratively with
batches of 11 patches at each iteration. The training dataset is
run through the U-Net multiple times (one time being an epoch)
in random order.

For each model, 90% of the training dataset is used to actually
train the U-Net while the other 10% is used to follow the
evolution of the loss after each epoch. The initial parameters
of a neural network impact if and how well the training will
converge toward a minimum in the loss curve. In this work, the
training is done in two steps (see Fig. 5).

1) The first step is a preliminary short training repeated 10
times with the same split of the training set but with
different weights initialization (seeds). The trainings last
40 epochs each and use alearning rate of 0.01. At the end of
each epoch, we save a checkpoint of the network’s weights
and biases and of the training and evaluation losses. In
this step, we use a high learning rate to “look™ for the
checkpoint where the U-Net can converge to a state with
minimum loss.

2) The second step is a more intensive and time-consuming
training starting from the checkpoint found in step 1. Step
2 uses a lower learning rate of 0.0001 for 200 epochs. A
checkpoint is saved after each epoch and we keep the one
with the lowest evaluation loss. The loss curves can be
found in Appendix A.
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C. Evaluation of the Model

1) Evaluation of the Model Training Strategy: Using Sen-
2-SPOT allows us to test several strategies to train the model.
In particular, we intend to evaluate the best strategy to obtain a
robust model to classify SPOT images over a large region, such
as the Pyrenees mountain range.

We evaluate the following five models: four “local” models,
which are trained and tested separately from data extracted
over one of the Sentinel-2 tiles covering the French Pyrenees
(B0TXN, 30TYN, 31TCH, and 31TDH) and another model
(referred to as PYR) trained and tested from the combination
of the same four training datasets and, therefore, covering the
whole French Pyrenees (PYR) (see Table II).

To train and test these models, we randomly select 12 Sentinel-
2 images per tile, i.e., one image per month between 2016 and
2019, for a total of 46 images. The random selection was done
with the following conditions:

1) a minimum of ten days between two images of the same

tile;

2) no simultaneous acquisitions between two adjacent tiles
to avoid duplicate data in the overlapping regions;

3) acloud coverage below 90%:;

4) the relative orbit numbers of the Sentinel-2 images for the
tiles 30TXN, 30TYN, 31TCH, and 31TDH are 94, 51, 51,
and 8, respectively.

That last condition ensures that only complete images (no data

in the image edges) are selected.

We divided the input Sentinel-2 data into patches. However,
the output patches from the U-Net will have a reduced size of
388 pixels due to repeated convolutions. Consequently, patches
are extracted from input Sentinel-2 images with an overlap of
184 pixels between them.

To reduce the amount of unnecessary data outside of the
Pyrenees (without any mountainous features relevant for the
training), we use the DEM resampled to 20 m to filter the patches
and only keep those covering or partially covering regions above
1200 m of altitude. As an example, Fig. 6 shows 80 patches
distributed among four Sentinel-2 products (one for each tile).
Tiles 30TXN and 31TDH, situated at the extremities, cover both
smaller portions of the Pyrenees above 1200 m. Table II shows
the distribution of unmasked snow and cloud pixels used in
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Fig. 7.  Map of the four SPOT4 images used for the inference test.

the training and testing sets between the four tiles. Even after
filtering for high elevations, the total distribution is still uneven
with approximately half the pixels being either snow or clouds
and two times more clouds than snow pixels. Tiles 30TXN and
especially 31TDH have a noticeably smaller sample size (see
Fig. 6).

We randomly split the data into two sets, which are used
to train and test the U-Net model with pseudo-SPOT data,
with the respective ratios of 80% and 20%. These ratios are
imposed for each Sentinel-2 image. We evaluate each model by
computing the confusion matrix metrics for the snow, cloud,
and ground labels using those 20% testing data. Given that the
testing datasets are greatly imbalanced, the F1 score is a suitable
measure in such cases for evaluating a classifier’s performances
for a specific label. For each tile, we computed the F1 scores
of each label snow, cloud, and ground. We also computed the
precision and recall scores of the snow label for each month
of the year. The Cohen’s kappa coefficient expresses with only
one value the overall agreement between two classifications.
While the kappa might not be as useful as other methods when
comparing different datasets [35] or when evaluating a classifier
on an imbalanced dataset, we use it to compare, for each tile,
the local model, and the PYR model.

2) Evaluation Using Actual SPOT Data: In the previous
section, we rely on Sentinel-2 data for training and validation.
To make sure that the Sen-2-SPOT/U-Net pipeline is efficient to
classify actual SPOT data, we create a validation dataset from
actual SPOT4 data. Using SPOT4 allows us to generate areliable
reference dataset by supervised classification of the image since
SPOT4 images have an SWIR band. For the same Sentinel-2
tiles as above, we select four level 1 C SPOT4 products (see
Fig. 7). The selected products contain a mixture of snow, ground,
and cloud pixels, including regions where clouds and snow are
overlapping. Fig. 8 shows an example of how the SWIR band (b)
helps differentiate between clouds (white color) and snow (cyan
color), as both the snow and cloud covers are entirely saturated
in the green and red bands as seen from a manually generated
saturation map (a). In (c), the SWIR band is replaced with the
NIR band and both clouds and snow are the same color.

The supervised classification of the selected SPOT4 images
is done by manual selection of snow, cloud, and ground samples
from color composites using the SWIR band. We use 50% of
the samples to run a Gaussian mixture model with the default
parameterization as implemented in scikit-learn [36] to classify
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Fig. 8.  Zoom on the 20120528 SPOT4 image with (a) manually generated
saturation map, (b) false color with the green, red, and SWIR bands, (c) green,
red, and NIR bands.

TABLE III
DISTRIBUTION OF SPOT4 PIXELS ACROSS THE FOUR TILES 30TXN, 30TYN,
31TCH, 31TDH OVER THE PYRENEES

Tiles
SPOT4 dataset  301wN 30TYN  31TCH  31TDH 0%
Nb of pixels 1.1e7 3.7¢7 2.8¢e7 1.8e7 9.3e7
% of snow pixel 6.5 13.0 21.1 73.6 25.8
% of cloud pixel 34 332 10.7 4.4 18.1

the entire image. This procedure is repeated for each SPOT4
product. The classification is evaluated both visually and using
the confusion matrix computed from the remaining 50% samples
that were not used for the training (results not shown here for
the sake of brevity). If necessary, the classification is refined by
adding new samples. Table III shows the distribution of classified
snow and cloud pixels for each tile.

Heavy saturation, transparent clouds, and SPOT4 images
being encoded in 8 b pixels made the classification challenging.
A visual inspection of the four images has shown that this is
especially the case in areas of transition between snow and
ground and between snow and clouds where, in both cases, pixels
tends to be miss-classified as clouds. On the other hand, pixels
are rarely miss-classified as snow. For this reason, we focus this
evaluation of the U-Net’s performances on the classification of
snow pixels only. For each image, we compute the precision and
recall of the snow label.

IV. RESULTS
A. Evaluation of the Model Training Strategy

Fig. 9 shows, for the local and PYR models, respectively, the
confusion matrix between the reference labels from LIS and the
predicted labels from the U-Net on the pseudo-SPOT datasets
over the combined four Pyrenean tiles.

Both (a) and (c) show similar performances: for each label, the
amounts of true snow, true ground, and true clouds are one or two
orders of magnitude larger than the amount of false detections.
In (a), between snow pixels and cloud pixels, the U-Net has twice
the amount of falsely predicted snow than of falsely predicted
cloud.

Fig. 9(b) and (d) shows, for the local and PYR models,
respectively, the kappa and F1 scores for each tile. Despite
a larger training dataset, the PYR model only brings a slight
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Fig. 9. For the ground, snow, and cloud labels, confusion matrices (left)
and per-tile performance metrics (right) of the local models 30TXN, 30TYN,
31TCH, and 31TDH, (a) and (b) of the PYR model, (c) and (d) on the testing
pseudo-SPOT4 dataset.
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Fig. 10.  Precision and recall for the snow class and kappa score of the PYR
model over each tile for each month of the year.

increase of both kappa and F1 performances for the 30TXN,
30TYN, and 31TCH tiles. On the contrary, we notice a more
marked improvement over the 31TDH tile, which has the lowest
performances with both the kappa, the snow F1 and the cloud
F1 scores below 0.75. As seen in Table II, the 31TDH training
dataset is notably smaller than the other datasets, which reduces
the effectiveness of the locally trained model 31TDH while the
PYR model relies more on its training over the other tiles.

The tile 30TYN also shows significantly lower scores than
30TXN and 31TCH despite being the tile with the largest
dataset. To better understand the factors behind the results of
Figs. 9 and 10 show, for each month of the year and for each
tile, the kappa, snow precision score, and snow recall score of
the PYR model. The snow scores have less weight on the kappa
in the warmer months (June to October) as there is little snow
compared to the rest of the year (a negligible amount of snow
can produce extremely low or high scores).

In colder months, low precision scores happen when the U-
Net retrieves snow pixels in regions where LIS did not detect
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Fig. 11.  Patch of December over the 30TYN tile. (a) False color green, red,
SWIR of the Sentinel-2 patch. (b) LIS classification. (c) False saturated color
green, red, NIR of the pseudo-SPOT4 patch. (d) U-Net classification with the
local model. (e) U-Net classification with the PYR model.
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Fig. 12.  Patch of February over the 30TYN tile. (a) False color green, red,
SWIR of the Sentinel-2 patch. (b) LIS classification. (c) False saturated color
green, red, NIR of the pseudo-SPOT4 patch. (d) U-Net classification with the
local model. (e) U-Net classification with the PYR model.

them. This happens especially when LIS detected clouds where
there are none, for example, in February for the tile 31TDH
and in December for the tile 30TYN. Fig. 11 shows a patch of
the December product of tile 30TYN, where both the local and
PYR models retrieve snow pixels (purple) from falsely detected
clouds (green) and from missed snow cover in shadow areas (red
circle).

Where clouds are present, the U-Net generates larger cloud
covers in comparison to LIS, reducing the recall score of the
snow label. Fig. 12 shows a patch of the February product of tile
30TYN, where both the local and PYR models have a coarser
cloud cover than LIS.

B. Evaluation Using Actual SPOT Data

Fig. 13(a) and (c) shows, for the local and PYR models,
respectively, the confusion matrix between the reference labels
generated with manual classification and the predicted labels
from the U-Net on the SPOT4 datasets over the combined four
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Fig. 13.  Ground, snow, and clouds labels confusion matrices (left) and per-tile
snow label performance metrics (right) of the local models 30TXN, 30TYN,
31TCH, and 31TDH (a) and (b) and of the PYR model (c) and (d) on the testing
SPOT4 dataset.
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Fig. 14.  SPOT4 20100614 image section over the 30TXN tile. (a) False color
green, red, SWIR. (b) Supervised classification. (c) False color green, red, NIR.
(d) U-Net classification with the local model. (e) U-Net classification with the
PYR model.

Pyrenean tiles. For (a), we ran the local models over their respec-
tive tile and summed the respective confusion matrices together.
The recall and precision of the snow label are, respectively, 0.46
and 0.97 for the local models and, respectively, 0.44 and 0.98
for the PYR model.

From (b) and (d), where each tile correspond to one SPOT4
image, we do not observe the same performance improvements
from the PYR model over SPOT4 images as we did over pseudo-
SPOT4 images. With the exception of 30TYN, the PYR model
improves the snow precision slightly across the dataset at the
cost of aloss of snow recall. Figs. 14—16 show comparative maps
of the manual classification, local model prediction, and PYR
model prediction for, respectively, the tiles 30TXN, 30TYN,
and 31TCH. We also display the TCD masks, as the pixels cor-
responding to a TCD > 50% were not included in the analysis.
In each case, the U-Net enlarges the detected clouds, including
the cloud shadows, with a buffer. There is a stronger effect from
the PYR model, losing both true and false snow pixels, which
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Fig. 15.  SPOT4 20120528 image section over the 30TYN tile. (a) False color
green, red, SWIR. (b) Supervised classification. (c) False color green, red, NIR.
(d) U-Net classification with the local model. (¢) U-Net classification with the
PYR model.
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Fig. 16.  SPOT4 20010530 image section over the 31TCH tile. (a) False color
green, red, SWIR. (b) Supervised classification. (c) False color green, red, NIR.
(d) U-Net classification with the local model. (¢) U-Net classification with the
PYR model.

explains the improvement of the snow precision and loss of snow
recall. The tile 31TDH is not displayed as it is heavily masked
by high TCD and does not provide additional information to the
results.

1) 30TXN: Fig. 14 displays an image with sparse clouds
above and next to snow-covered areas. The local model
correctly classifies most of the snow with a precision
of 0.88 and recall of 0.78. The PYR model has a snow
precision of 0.94 and a snow recall of 0.63.

2) 30TYN: Fig. 15 displays a heavily saturated image with a
mix of clouds and snow difficult to differentiate without
the SWIR band. Compared to the reference, the U-Net
classifies most of the image as clouds, resulting in a very
low recall of 0.034 (local). The PYR model retrieves more
snow without error, augmenting the recall to 0.1 without
lowering the precision (both models at 0.93).

3) 3ITCH: We observe a behavior similar to 30TXN. Fig.
16 displays an image with clouds mostly above borders
between snow and no-snow areas. The local model cor-
rectly classifies most of the snow with a precision of 0.95
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Fig. 17.  For the 30TYN pseudo-SPOT4 testing dataset, bar plots of the local

model (blue) and LIS (orange) of the percentage of pixels detected as snow
across the hillshade values.

and recall of 0.71. The PYR model has a snow precision
of 0.96 and a snow recall of 0.64.

V. DISCUSSION

When tested on pseudo-SPOT4 images, both the local and
PYR models showed high agreement with LIS, with the lowest
kappa being close to 0.7. Those results show that the less com-
putationally intensive local models are sufficient for tiles with
significant snow cover. The PYR model trained over the entire
French Pyrenees only improves the results on tile 31 TDH where
snow pixels are rare. Yet, the performance on this tile remains
lower than the performance of the other tiles, suggesting that
the information brought from the other tiles does not completely
compensate for the lack of local training data.

The LIS algorithm (as discussed in Section II-B), which
generates snow and cloud maps at the operational scale from
Sentinel-2 data, was designed to minimize false snow positives
at the cost of overestimating the cloud mask since cloud pixels
can be filled by temporal interpolation [18], [30]. The U-Net
reproduces this behavior, with an overall precision of 95% at
the cost of overestimating the amount of clouds. When tested
on independent and actual SPOT4 data, we also observe that
the local models yield high precisions in snow detection while
overestimating the cloud cover. However, the PYR model does
not improve the performances over the SPOT4 dataset as it did
over the pseudo-SPOT4 dataset, suggesting that a locally trained
model might be a good approach to process more SPOT images.
A possible explanation for the failure to classify the 30TYN
SPOT4 image is that high, transparent, and semitransparent
clouds, which can be detected by the MAJA-LIS pipeline from
Sentinel-2 images, thanks to their higher radiometric quality
and spectral extent, would not be visible from the same images
downgraded to pseudo-SPOT, creating “false” cloud pixels in
the training dataset and generating a bias toward that label.

Another interesting observation from the results is the de-
tection of snow pixels by the U-Net in less illuminated areas
compared to LIS. From the pseudo-SPOT4 testing 30TYN
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dataset, Fig. 17 shows for both the local U-Net model (blue)
and LIS (orange) a bar plot of the percentage of pixels detected
as snow across 17 equal ranges of hillshade values. The local
model detects more snow pixels than LIS, and the difference gets
bigger as the hillshade value gets lower. Inside the ]0,15] range,
hillshade values of 1 corresponds to areas with no direct sunlight.
In those areas, the U-Net model detected 1.5 times more snow
pixels than LIS. Those results hint at the potential capacity of
the model to retrieve missing snow pixels in mountain shadows
(as seen in Fig. 11) as an improvement over the reference data.

VI. CONCLUSION

Emulating SPOT images from Sentinel-2 data (Sen-2-SPOT)
enables to train a deep learning model (U-Net) to extract the SCA
from historical SPOT images. We find that the trained U-Net
performs well despite the frequent saturation of SPOT bands
over cloud and snow surface, and the absence of an SWIR band
(SPOT1-3). This is due to the fact that the U-Net takes advantage
of the spatial context around each pixel to determine its class in
contrast with standard pixel-based classifications. The training
can be performed separately by Sentinel-2 tile, although a more
robust model might be obtained in areas with scarce snow cover
by using neighboring tiles. The U-Net outputs a confidence value
for the detected class, and that confidence value can potentially
be used to generate a pixel quality flag with the snow map.
However, more work should be done on the interpretation of
those values, as high confidence values are often given to false
clouds.

The main limitation of the method is the classification of false
cloud pixels over both ground and snow cover. Future work
could include the masking of transparent and semitransparent
clouds in the training data, as these clouds can artificially create
false cloud labels by being visible only in Sentinel 2 images, and
invisible when those images are “downgraded” as pseudo-SPOT
images.

In theory, this approach has no geographical limitations since
Sentinel-2 can be used to produce snow cover maps anywhere.
However, the method does not work in forest regions due to the
inability of optical sensors to observe the snow underneath dense
canopies. In addition, it was designed and tested for mountain
regions where the elevation plays a first-order role in the spatial
distribution of the snow cover at the pixel level. It should be
less effective in flat regions where the pixel elevation has less
importance than the subpixel topography like arctic regions.

Further improvements could be added either to the emulation
process, the training dataset duration or the U-net architecture it-
self. The standard U-net architecture we used could be improved
upon similar to the RS-Net of [26]. We could also investigate
other different architectures. It may also be possible to further
improve the model by feeding the panchromatic band (if it
becomes available at the 1 C level) or additional auxiliary data
to the U-Net such as snow cover probability maps or gridded
meteorological data.

Once the training is done, the inference is fast and can be
applied to large volumes of data. Therefore, it can be used to
generate high resolution time series of snow cover maps from the
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SWH collection over entire mountain ranges like the Pyrenees
or the Alps from 1986 to 2015. This pipeline can also be applied
to reconstruct the snow cover from other satellite missions with
similar spatial and spectral characteristics, such as Landsat from
1972 to now. It might also allow for the generation of high res-
olution snow cover maps from low-cost satellite missions with
reduced numbers of acquisition bands and lower radiometric
performances.

APPENDIX A
Loss CURVES

To ensure that the models do not suffer from overfitting or
underfitting, both the training loss and the validation loss are
monitored throughout the training. Fig. 18 displays the loss
curves from the second step of the training from Section I1I-B4
for each model. The checkpoints with the minimum loss for each
model are as follows:
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Fig. 18. Validation loss (blue) and training loss (orange) curves from the
second step of the training from Section III-B4 for each model. (a) 30TXN.
(b) 30TYN. (c) 31TCH. (d) 31TDH. (e) PYR.
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