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Abstract—Parameter extraction of radar signals is an important
but challenging task in electronic warfare. In the modern elec-
tromagnetic environment, the radiation sources greatly increase,
causing different radar signals to overlap, making the parameter
extraction of radar signals difficult. Meanwhile, using radar signal
parameter extraction methods that are not suitable for dealing
with overlapping signals can lead to serious errors in this case.
To address this, we propose a parameter extraction network for
overlapping radar signals using modulation recognition-guided
semantic segmentation. Specifically, we first design an encoder–
decoder to segment overlapping radar signals, which uses channel
rearrangement and modulation type filtering to increase the accu-
racy of segmentation. In this encoder–decoder, channel rearrange-
ment is an optimization of convolution operation, aiming to in-
crease the perceptual field while reducing feature information loss.
And modulation type filtering can convert the results of semantic
segmentation into masks corresponding to each radar signal, in-
creasing the accuracy of segmentation. After the encoder–decoder,
signal segmentation masks are obtained. Then, we compress these
segmentation masks in the time and frequency domains, and extract
the span of them to achieve accurate extraction of the pulsewidth
and bandwidth of each radar signal. The experiments validate the
feasibility of the proposed method.

Index Terms—Modulation recognition, overlapping radar
signals, parameter extraction, semantic segmentation.

I. INTRODUCTION

PARAMETER extraction of radar signals, as an important
part of electronic reconnaissance [1], refers to the analysis

and processing of the received radar signals to extract signal
parameters such as pulsewidth and bandwidth [2]. Parameter
extraction of radar signals is used in various fields, such as signal
sorting [3], jamming decision optimization [4], etc. However, the
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parameter extraction of radar signals in complex electromag-
netic environments, especially with overlapping signals, can be
challenging [5]. Therefore, the study of overlapping radar signal
parameter extraction is of significant practical application.

Traditional parameter extraction methods for radar signals
are mainly divided into maximum likelihood estimation [6],
Fourier transform [7], time–frequency analysis method [8], etc.
These methods are computationally simple to use. The parameter
extraction method based on maximum likelihood estimation
generally includes: modeling the system as a statistical model,
deriving the maximum likelihood estimation of the parame-
ter, and providing compact expressions of the Cramer–Rao
bound [9], [10], [11]. However, this stochastic modeling method
usually requires linear, stationary, and Gaussian assumptions.
The signals in the modern electromagnetic environment are usu-
ally nonlinear, nonstationary, and non-Gaussian, when the actual
scenario does not meet its assumptions, the accuracy of maxi-
mum likelihood estimation greatly decreases. Fourier transform-
based method is a non-time–frequency analysis method, which
converts time-domain signals into frequency-domain signals
for signal analysis [12], [13]. This method utilizes the Fourier
transform to extract frequency-domain parameters such as band-
width [14]. However, the Fourier transform-based method does
not consider the time domain information of the signal, which
is not conducive to improving signal parameter extraction per-
formance with time–frequency joint information.

The time–frequency characteristics can accurately reflect the
frequency variation of the signal with time, which are useful for
the parameter extraction of traditional radar signals [8]. The
radar parameter extraction method based on time–frequency
analysis usually consists of time–frequency diagram generation
and parameter calculation [15], [16], [17]. First, the time–
frequency diagram generation can be achieved using short-
time Fourier transform (STFT) [18], Wigner-Ville distribution
(WVD) [19], etc. Zhang et al. [20] observe that STFT calculation
is fast and easy to implement, but a tradeoff exists between time
resolution and frequency resolution. And improved methods for
generating time–frequency diagrams have been studied, such
as [21] and [22]. Then, the main idea of parameter calculation is
extracting parameters from the time–frequency diagram using
numerical methods such as inherit accumulation [23], scalar
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transform [20], etc. The aforementioned time–frequency analy-
sis methods are applicable to traditional radar signals. However,
in complex electromagnetic environments, radar signals employ
various modulation techniques, which are increasingly intricate
and varied, causing misjudgment during the demodulation pro-
cess and making it difficult to accurately distinguish different
modulation types [24]. Moreover, the noise interference present
in the contemporary electromagnetic environment is more com-
plex, encompassing diverse forms of electromagnetic interfer-
ence, multipath propagation interference, Doppler effect [25],
etc. As a result, traditional time–frequency analysis methods
face significant challenges in accurately extracting signal pa-
rameters.

With the great development of deep network technology, some
studies attempt to improve the performance of parameter extrac-
tion of radar signals using deep networks. Parashar et al. [26]
propose a method for learning micro-Doppler features using
autoencoders, which addresses the issues of high computational
complexity and slow response speed. Lv et al. [27] propose a
CNN-based jamming recognition and antijamming target de-
tection algorithm that can extract the real targets’ range and
velocity, which has higher accuracy and robustness compared
to traditional methods. Su et al. [28] present a method to extract
the central frequency of a linear frequency modulation (LFM)
signal by inputting a WVD time–frequency diagram into CNN,
which solves the problems of low accuracy and poor robust-
ness in traditional parameter extraction methods. Besides these
methods, support vector machine [29], modified CNN [30], [31],
domain adaptation [32], and transformer [33] are also employed
to solve the parameter extraction problem of radar signals. These
parameter extraction methods are effective for individual radar
signals. However, when radar signals overlap, parameters such
as the bandwidth and amplitude of the signals change, leading to
contamination of individual radar signal features. Consequently,
using these methods in overlapping situations may lead to se-
rious errors in parameter extraction. Therefore, it is necessary
to propose a parameter extraction method for overlapping radar
signals.

In the case of parameter extraction of overlapping radar
signals, it is necessary to first segment the overlapping radar
signals before extracting parameters. Wang et al. [34] propose
a squeeze-and-excitation Inception net with adaptive thresholds
to segment overlapping radar signals, which has a high recog-
nition rate and improved performance compared to traditional
methods. Chen et al. [35] develop a joint semantic learning
CNN to do semantic segmentation on low probability of in-
tercept (LPI) radar signals, which has higher separation and
recognition accuracy than traditional methods. Besides these
methods, attention [36] and reinforcement learning [37] are
also employed to segment overlapping radar signals. Although
some research has been conducted on the segmentation of
overlapping radar signals, the aforementioned algorithms do
not incorporate parameter extraction into overlapping radar
signal segmentation, so the aforementioned algorithms cannot
solve the problem of parameter extraction of overlapping radar
signals. Therefore, further research is needed to combine deep
networks with parameter extraction of overlapping radar signals,

especially in the cases of dense radar signal pulse streams. To
handle this issue, we propose a parameter extraction network
using modulation recognition-guided semantic segmentation for
extracting parameters of overlapping radar signals. Specifically,
we use modulation recognition-guided semantic segmentation to
segment the overlapping radar signals, and then, use a parameter
extraction module to extract the pulsewidths and bandwidths of
the overlapping radar signals from the segmentation results.

This article’s primary contributions are outlined as follows.
1) We propose a parameter extraction network of overlap-

ping radar signals that combines signal segmentation
and parameter extraction, which can effectively separate
overlapping radar signals and obtain the pulsewidth and
bandwidth of each signal.

2) The channel rearrangement and modulation type filtering
are proposed and integrated into the semantic segmen-
tation. The channel rearrangement layer can effectively
expand the perception field, and decrease the feature in-
formation loss. And modulation type filtering can increase
the accuracy of segmentation.

Meanwhile, we conduct comparative experiments, ablation
experiments, and experiments on different modulation types to
validate the efficacy of the proposed method.

The rest of this article is organized as follows. Section II
examines the characteristics of overlapping radar signals.
Section III offers a thorough explanation of the proposed pa-
rameter extraction network. In Section IV, we evaluate and
discuss the performance of our method using a generated dataset.
Section V discusses the performance and influence factors of the
proposed method, and the limitations are listed and future work
is outlined. Finally, Section VI concludes this article.

II. PROBLEM FORMULATION

This section provides a concise overview of overlapping radar
signals and the parameter extraction method after semantic
segmentation, aiming to describe the method for extracting
parameters of overlapping radar signals.

A. Analysis of Overlapping Radar Signals

Overlapping radar signals refer to the reception of more
than one radar signal within the sample period. The schematic
diagram of an overlapping signal consisting of two radar pulse
signals is shown in Fig. 1.

The length of overlapping time is often not equal to the total
time length of the signal. Therefore, the overlap degree is worth
studying for overlapping radar signals and can be used for dataset
generation. The overlap degree (Od) of the signal is calculated
as

Od =
nt0∑n
i=1 ti

(1)

where t0 represents the overlapping duration, n represents the
number of the radar signals, and ti{i = 1, 2, . . . , n} represents
the pulsewidth of the ith radar signal.

In addition, the amplitudes of two radar signals are often not
consistent, and signals with strong energy may drown out radar
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Fig. 1. Schematic diagram of overlapping signals. The received overlapping
radar signal is formed by signal 1 and signal 2, with a time width of t1 and an
amplitude of A1 for signal 1; the time width of signal 2 is t2 and the amplitude
is A2; the overlapping time width is t3.

signals with low energy. Therefore, when analyzing overlapping
radar signals, it is necessary to limit the amplitudes of the two
radar signals to a certain range. The signal power ratio (Pr) is
used to characterize the energy intensity ratio of overlapping
signals, and its expression is

Pr = 20 log

(
A1

A2

)
(2)

where A1 represents the amplitude of one signal, and A2 repre-
sents the amplitude of the other.

B. Parameter Extraction Problem of Overlapping Radar
Signals

This article examines the extraction of bandwidth and
pulsewidth from overlapping two radar signals. The pulsewidth
and bandwidth of a single radar signal can be obtained from its
time–frequency diagram. The time–frequency diagram’s hori-
zontal axis projection represents the signal’s temporal width, that
is, the pulsewidth; while the vertical axis projection represents
the signal’s frequency width, that is, the bandwidth. By ana-
lyzing the time–frequency diagram, we can extract information
about a signal’s pulsewidth and bandwidth.

If radar signals are overlapping to a certain extent in both the
time and frequency domains, it can be difficult to obtain each
signal’s distribution directly. Consequently, it is necessary to
separate overlapping radar pulse signals first, and then, extract
the parameters of each signal individually. In this article, the sep-
aration process of the overlapping radar signals is implemented
by modulation recognition-guided semantic segmentation. As a
typical computer vision problem [38], semantic segmentation
aims to classify each pixel of input image data. By semantic
segmentation of the time–frequency diagrams of received over-
lapping signals, all pixels can be divided into background and
individual signals. Through the semantic segmentation of the
time–frequency diagram, different modulated radar signals can
be separated.

The segmentation results may contradict the ground truth due
to the lack of guidance from physical prior information [39].

To avoid this situation, we incorporated modulation type prior
information at the end of the segmentation process, which we
refer to as “modulation recognition guided semantic segmen-
tation.” The prior knowledge about modulation types provides
essential understanding of the expected characteristics of radar
signals, which can be utilized to guide the segmentation process.
Specifically, different modulation types of radar signals exhibit
distinct features in the time–frequency diagram. When two sig-
nals with similar local features overlap, it becomes challenging
to accurately segment them at the overlap. By filtering the prior
information about modulation types, the segmentation algorithm
can effectively differentiate and localize the signals based on
their anticipated modulation characteristics, thus enhancing the
accuracy and precision of the segmentation results.

This article considers six modulated radar signals two-by-two
overlapping: single carrier (SC) signal, LFM signal, nonlinear
frequency modulation (NLFM) signal, frequency agility (FA)
signal, Costas frequency encoded signal, and P4 phase-encoded
signal, and the schematic diagram of parameter extraction
through semantic segmentation is shown in Fig. 2.

The problem of semantic segmentation of overlapping radar
signals has two main aspects [40]. First, the local segmentation
proble, refers to the accurate pixel-level segmentation of specific
signals within a time–frequency diagram, typically used to de-
scribe the texture, edges, corners, and other local features. This
involves precise segmentation of the boundaries and details of
each radar signal, requiring the model to capture fine features
and edge information. Second, the global segmentation prob-
lem, which can help the model understand the overall semantic
content of the time–frequency diagram, such as identifying
background, scenes, and the relationships between different
objects. It requires the model to have a holistic understanding
of the entire time–frequency diagram and accurately segment
different radar signals and background. To address the local
segmentation problem, this article uses channel rearrangement
instead of traditional pooling operations to retain more signal
features. In addition, the jump connections between the encoder
and decoder pass high-resolution features directly to the decoder,
enhancing local segmentation. To tackle the issue of global
segmentation, a global feature extraction layer is incorporated to
extract signal features on a larger scale. In addition, modulation
recognition results are used in segmentation to optimize the
global segmentation effect. Later on, we will delve into these
methods with more comprehensive explanations.

III. METHODOLOGY

This section covers the discussion of the proposed parameter
extraction network, starting with an explanation of the time–
frequency analysis method. Then, we present the architecture of
the proposed parameter extraction network and provide details
of each module in the proposed network.

A. Time–Frequency Analysis

The input for the suggested parameter extraction network
is the time–frequency diagram derived from overlapping radar
signals. Therefore, this subsection will present an introduction
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Fig. 2. Schematic diagram for extracting overlapping signal parameters through semantic segmentation. Overlapping radar signals can be separated into signals
marked orange and blue through semantic segmentation steps. Then, the bandwidth parameters (B1 and B2) and the pulsewidth parameters (τ1 and τ2) of each
signal can be extracted separately by projecting the signal on the vertical and horizontal axes of the time–frequency diagram.

to the time–frequency analysis method used in this article. For
radar signals, common time–frequency transformation methods
include STFT, WVD, and synchronous compression short-time
Fourier transform (FSST). Besides, compared with STFT, FSST
can make time–frequency analysis more precise [41]. Com-
pared with WVD, FSST does not have cross-interference terms,
which is extremely important when studying overlapping radar
signals. Therefore, this article will use FSST to extract the
time–frequency features of radar signals. FSST is developed
based on synchronous compressed wavelet transforms (SSWT),
and its core idea is to rearrange the results of STFT, which
can compress the scattered energy distribution to near the true
frequency. The expression for FSST is as

FSST(t, ω) =
1

g(0)

∫
Vf (η, t)δ (ω − ω̂f (η, t)) dη (3)

where g(0) represents the value of the sliding window g(t) at
0, δ(·) represents the Dirichlet function, Vf (η, t) represents the
STFT result of the signal, and the definition of ω̂f (η, t) is as

ω̂f (η, t) =
1

2π
∂t arg Vf (η, t) = Re

(
1

2iπ

∂tVf (η, t)

Vf (η, t)

)
(4)

where ∂t· represents differentiating · over t.

B. Structure of the Proposed Parameter Extraction Network

Fig. 3 shows the structure of the proposed parameter ex-
traction network using modulation recognition-guided semantic
segmentation.

1) Time–frequency diagrams of the overlapping radar signals
based on FSST are simultaneously input to the modulation
recognition module and the encoder.

2) Encoder consists of channel rearrangement layers, lower
basic blocks, a global feature extraction layer, and a in-
terpolate layer. The encoder captures high-dimensional

semantic features from the radar signal, and then, feeds
them into the decoder.

3) Decoder consists of upper basic blocks, interpolate layers,
and a semantic segmentation layer.

4) The time–frequency diagrams are also input to the modu-
lation recognition module. The results of the modulation
recognition are used to assist the semantic segmentation to
improve segmentation accuracy, and exclude classes that
do not exist in recognition results.

5) After the semantic segmentation layer, the parameter ex-
traction layer is followed, which is used to extract the
bandwidths and pulsewidths of the segmented signals.
And the model parameter table is shown in Table I.

The structure of the whole network is discussed in detail later.
In this article, semantic segmentation is utilized for separating

overlapping radar signals. Semantic segmentation based on the
CNN is generally structured as an encoder–decoder system [42].
The encoder is typically a network designed for feature extrac-
tion, with the primary objective of extracting high-dimensional
semantic features from the input image using convolutional
layers. The decoder is responsible for reprojecting the high-
dimensional features obtained by the encoder onto the pixel
space of the original image size, enabling the classification of
each pixel. Subsequently, parameters can be extracted from the
segmentation masks.

C. Encoder Design

The structure of the encoder is shown in Fig. 3. The input
time–frequency diagrams undergo multiscale feature extraction
initially, which includes four sets of two lower basic blocks.
The primary role of the multiscale feature extraction module is
to obtain features from different perceptual fields and integrate
these features. Following that, there are four identical feature
extraction modules, each containing a channel rearrangement
layer and two lower basic blocks. The channel rearrangement
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Fig. 3. Structure of the proposed parameter extraction network using modulation recognition-guided semantic segmentation.

Fig. 4. Structure diagram of the lower basic block. The blue diamond box
represents the judgment structure. If the number of input and output channels is
consistent, choose (a) to sum; if inconsistent, choose (b).

layer expands the convolutional perceptual field without losing
feature local information. The lower basic block uses residual
convolution to better propagate gradients. A global feature ex-
traction layer and an interpolation layer are inserted into the last
feature extraction module to obtain global features. Each of these
structures in the encoder will be further elaborated as follows.

1) Lower Basic Block: The schematic diagram of the lower
basic block is shown as Fig. 4. The lower basic block is a funda-
mental part of the encoder. The complexity of segmentation of
overlapping radar signals calls for a deepening in the network
layers to enhance its feature extraction capability [43]. In order
to better propagate gradients, and alleviate problems such as
gradient vanishing and gradient exploding, we used residual

convolution in the lower basic block. The lower basic block has
two convolution layers, two batch normalization (BN) layers,
and two ReLU activation functions.

2) Multiscale Feature Extract Module: Inspired by [44],
multiscale feature extraction module is designed as shown in
Fig. 3. This module employs parallel residual convolution opera-
tions, with each branch utilizing two lower basic blocks to extract
features at different scales. By using convolutional kernels at
different scales, time–frequency diagram information at differ-
ent scales can be captured, thereby improving the segmentation
ability of overlapping radar signals and enhancing the robustness
of the proposed model. When the bandwidth to the pulsewidth
ratio (BPR) of the radar signal is small, it appears as a flat curve
in the time–frequency plot. Therefore, using a 3 × 7 convolution
kernel is more advantageous for extracting the signal’s features.
Conversely, when BPR is large, it appears as a slender curve in
the time–frequency plot. In this case, using a 7 × 3 convolution
kernel is more effective for extracting the signal’s features. The
schematic diagram of multiscale feature extraction is shown as
Fig. 5.

The parameter settings can be found in Table I, which are
named as multiscale 1 to multiscale 5. Channel 1 adopts 3 × 7
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TABLE I
PROPOSED NETWORK PARAMETER TABLE

Fig. 5. Schematic diagram of the multiscale feature extraction.

convolution kernels to extract radar signal features with small
BPR; and channel 2 adopts 7 × 3 convolution kernels to extract
radar signal features with large BPR. Channel 3 adopts a 5 × 5
convolution kernel to extract the features of radar signals with
BPR close to 1. Channel 4 uses a 3 × 3 convolution kernel
to extract the subtle features. After four channels of feature
extraction, the features are concatenated, and then, input to two
lower basic block for feature fusion.

3) Channel Rearrangement Layer: To better capture the
overall structure of overlapping signals and reduce the oc-
currence of blurred boundaries and mis-segmentation in the
segmentation results, increasing the receptive field is crucial.
Traditional semantic segmentation networks often achieve this
by employing max-pooling operations. However, for overlap-
ping radar signals, max-pooling operations may loss the critical
features such as corners and edges, reducing the accuracy of sig-
nal segmentation. To address this issue, we propose the channel
rearrangement instead of max-pooling, whose effect is shown in
Fig. 6. Channel rearrangement is an optimization of the pooling
operation. It preserves the information by separating the feature
maps without deleting them. Specifically, for the input feature

Fig. 6. Schematic diagram of the channel rearrangement layer.

map, we rearrange it in the height and width dimensions with
a stride of 2, resulting in four nonoverlapping subfeature maps.
This approach requires that the height and width of the input
feature map are both even, which is satisfied in our network.
This method achieves the expansion of the perception field while
reducing information loss. Assume that the input feature map is

X = [xp,q]m×n (5)

where m and n present the height and weight of input feature
map. p and q present the height index and weight index. And the
formula of channel rearrangement is as follows:

Feature1 = [x2i,2j ]m2 ×n
2

Feature2 = [x2i,2j+1]m2 ×n
2

Feature3 = [x2i+1,2j ]m2 ×n
2

Feature4 = [x2i+1,2j+1]m2 ×n
2

(6)

where i = 0, 1, . . . , m
2 − 1, and j = 0, 1, . . . , n

2 − 1. And
Feature1,Feature2,Feature3, and Feature4 are four channels of
the output.
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Fig. 7. Structure diagram of the global feature extraction layer. The input size
of the global feature extraction layer is c×m× n, where c denotes the feature
channel dimension, and m× n denotes the size of the feature map. After the
GAP processing, the size of the features becomes c× 1 × 1. At this time, there
is only one feature value for each channel, and this feature value is calculated
from the global features of each channel.

4) Global Feature Extraction Layer: Inspired by [40], the
structure of the global feature extraction layer is shown in Fig. 7.
The purpose of the global feature extraction layer is to improve
the overall feature connectivity. In the context of semantic
segmentation, the features belonging to the same category in
long-distance communication pose challenges to the network.
This hinders the network’s ability to effectively establish con-
nections between distant features during the feature processing
stage. Consequently, the network may be limited to performing
semantic segmentation based solely on local features. More
seriously, in cases where a complete signal exhibits varying
frequency characteristics across different time intervals, it may
be partitioned into multiple distinct signals. Therefore, the pro-
posed semantic segmentation extracts the connection between
distant features through the global feature extraction layer.

Global average pool (GAP) can replace the features of each
channel with global information. GAP only focuses on the role of
each channel in the entire task while reducing the computational
complexity. The calculation formula is

GAP =
1

H ×W

H∑
i=1

W∑
j=1

x(i, j) (7)

where H and W represent the height and the width of the
input feature map, and x(i, j) represents the value of the input
feature at position (i, j). After GAP, the input feature dimension
becomes 1 × 1 × C, where C represents the number of channels
for the input feature.

5) Interpolate Layer: The proposed method uses bilinear
interpolation operation to interpolate after global feature extrac-
tion, and to do up-sampling in the decoder. The bilinear inter-
polation is one of the most widely used up-sampling methods in
semantic segmentation networks. It calculates the current pixel
value based on the distance between the interpolation position
and surrounding pixels. Assume that Point P is the target point
to be interpolated, and its interpolation is calculated from four
points: Q11, Q12, Q21, and Q22. The interpolation formula for
calculating the target point P is as follows:

⎧⎪⎪⎨
⎪⎪⎩
f (R1) =

x2−x
x2−x1

f (Q11) +
x−x1

x2−x1
f (Q21)

f (R2) =
x2−x
x2−x1

f (Q12) +
x−x1

x2−x1
f (Q22)

f(P ) = y2−y
y2−y1

f (R1) +
y−y1

y2−y1
f (R2)

(8)

where (x1, y1), (x1, y2), (x2, y1), and(x2, y2) presents the co-
ordinates of Q11, Q12, Q21, and Q22.

Fig. 8. Structure diagram of the upper basic block.

Fig. 9. Structure diagram of the semantic segmentation block.

D. Decoder Design

This section discusses the design of a decoder for the se-
mantic segmentation of overlapping radar signals. The structure
diagram of the decoder is presented in Fig. 3. The proposed
decoder consists of four semantic recovery modules and a se-
mantic segmentation block. In each semantic recovery module,
two upper basic blocks and a interpolate layer are included. In
addition to the output of the lower layer, each semantic recovery
module takes input from a jump connection at the same level as
the encoder. Following processing by three semantic recovery
modules, the features are combined with the recognition result
generated by the modulation recognition module, and fed into
the semantic segmentation block. The ultimate output of the
semantic segmentation block is the final segmentation results,
which represent the signal masks of various modulation types.

1) Upper Basic Block: The schematic diagram of upper basic
block is shown as Fig. 8. Upper basic block is a fundamental part
of the decoder. The upper basic block includes a convolution
layer, a BN layer, a ReLU activation function, and a dropout
layer.

2) Jump Connection: To solve the local segmentation prob-
lem mentioned previously, a jump connection is used in this
article. The role of the jump connection is to merge the shallow,
high-resolution features of the encoder with the deep, high-
semantic information features of the decoder. This feature com-
bination is conducive to recovering edge details in the process
of overlapping signal segmentation.

3) Semantic Segmentation Block: The structure of the se-
mantic segmentation block is the convolution layer plus the
softmax layer, which is shown in Fig. 9. After the softmax layer,
modulation type filtering is used, which is discussed later. As
one of the most common probability calculation functions in
multiclassification tasks, we leverage the softmax layer to com-
pute the category probability for each pixel, and its expression
is shown as

pi =
exp (vi)∑M
j=1 exp (vj)

(9)

where M represents the total number of categories to be clas-
sified, which is also equal to the length of the output vector of
the target, and vi(i = 1, 2, . . . ,M) represents the ith value in the
output vector. After the softmax layer’s calculation, the resulting
vector indicates the predicted probability of the classification
target belonging to each category, each value of the vector is
between 0 and 1, and the sum of each value of the vector is 1.
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Fig. 10. Schematic diagram of modulation type filtering. The size of the prediction probability matrix after the softmax layer is W ×H ×C, where C is the total
number of categories for classification, here it is the number of modulation types plus one, the reason for adding one is to include the background class. W ×H
is the size of the output features, also equal to the size of the input time–frequency diagram. The modulation recognition result is a vector of length C, where the
recognition presence class and background class values are 1, and the rest positions are 0.

4) Modulation Type Filtering: To solve the aforementioned
global segmentation problem, modulation type filtering is de-
signed. Modulation type filtering uses the output of modulation
recognition module [34], i.e., the recognition results, as prior
information to help increase the segmentation accuracy. The
modulation recognition module will be discussed later. By filter-
ing the recognition results with the output of the softmax layer,
the filtered prediction probability can be obtained.

As shown in Fig. 10, before modulation type filtering, the
network produces a tensor of size (7, 512, and 512). This tensor
comprises seven channels, with each channel representing a
modulation type or background class. Each point in the output
tensor represents the probability of belonging to a specific class.
The output of the modulation type recognition network is a
tensor of length 7, where each value is either 0 or 1, repre-
senting the predicted modulation type recognition results by the
network. Modulation type filtering means multiplying the two
tensors in the channel dimension to obtain the filtered probability
matrix. The filtered matrix contains zeros in positions where
the modulation type is recognized as nonexistent. Furthermore,
classes that are not recognized by the modulation will not be
present in the semantic segmentation results.

Following modulation type filtering, semantic segmentation
is performed by selecting the class with the highest predicted
probability for each pixel as the class to which the pixel belongs
(argmax operation).

E. Modulation Recognition Module

The structure of the modulation recognition module is shown
in Fig. 11 [34]. The recognition result is output by the modulation
recognition module. Within this module, an Inception block is
employed to extract features from varying receptive fields, while
a squeeze-and-excitation (SE) block is used to reduce noise. An
adaptive threshold block concludes two fully connected (FC)
layers and the ReLU/Sigmoid layer, which offers an adaptive
threshold and eliminates the difficulty of having to choose a
threshold in multiclassification tasks.

Fig. 11. Structure diagram of the modulation recognition module.

F. Parameter Extraction Layer

After performing modulation recognition guided-semantic
segmentation on the overlapping radar signals of two different
modulation types, we obtain a probability matrix of size (3, 512,
512), where each pixel represents the probability of belonging to
a specific modulation type or the background class. By applying
the argmax operation to this probability matrix, we obtain an
image of size (512, 512), where each pixel represents the most
probable modulation type or the background class. We refer to
this image as the mask. In the mask, different modulation types of
radar signals can be separated based on the pixel’s assigned class.
Subsequently, performing temporal compression on the radar
signal’s mask yields its projection on the frequency axis, while
similar frequency domain compression yields their projection on
the time axis. Finally, by extracting the span of the compressed
mask in the time and frequency domains, we can calculate the
pulsewidth and bandwidth of the signal.

The schematic diagram of parameter extraction is shown
in Fig. 12. The time–frequency masks of two signals are
obtained through semantic segmentation. By separating the
masks, the range of the two types of modulation signals on the
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Fig. 12. Schematic diagram of the parameter extraction layer. Typically, the time–frequency representation of the STFT transform is visualized using a heatmap.
However, for the purpose of intuitive visualization during the parameter extraction process, we have adopted the use of 3-D images to represent this data. Due to
space constraints, we do not list the cases of overlapping signals one by one. The overlapping signals of different modulation types can be seen in heatmap Fig. 2.

time–frequency diagram can be obtained. The bandwidth and
pulsewidth can be obtained by compressing the separated signal
masks and counting their span range on the time and frequency
domain. The calculation of the bandwidth and pulsewidth can
be written as

B =
nBl − nBr

nB
fs (10)

τ =
ntl − ntr

nt
t (11)

where B denotes the bandwidth of the signal, nBl denotes the
left edge subscript on the frequency axis after mask compression,
nBr denotes the right edge subscript on the frequency axis after
mask compression, nB denotes the total number of samples on
the frequency axis, and fs denotes the sampling rate. Similarly,
τ denotes the pulsewidth of the signal, ntl denotes the left edge
subscript on the time axis after mask compression, ntr denotes
the right edge subscript on the time axis after mask compression,
nt denotes the total number of samples on the time axis, and t
denotes the total observation time.

IV. EXPERIMENTS AND EVALUATIONS

In this section, experiments and evaluations of the proposed
method will be discussed. First, network training details and the
evaluation criterion are introduced. After that, to exhibit the ef-
ficacy of the proposed method, four experiments are conducted.
The first experiment shows the parameter extraction of common
overlapping radar signals. The second experiment displays the
capability of the proposed method under varying SNRs, and
compares it with conventional semantic segmentation networks
and parameter extraction methods. The third is the ablation

TABLE II
EXPERIMENTAL SIMULATION ENVIRONMENT

experiment, which verifies the effectiveness of channel rear-
rangement and modulation type filtering methods. The fourth
experiment demonstrates the differences in the effectiveness of
the proposed method on different modulation types.

The experimental platform and environment used in this
section are shown in Table II.

A. Network Training

1) Dataset: This section generates a dataset of overlapping
radar signals. The dataset consists of FSST time–frequency dia-
grams with six modulated radar signals two-by-two overlapping:
SC signal, LFM signal, NLFM signal, FA signal, Costas signal,
and P4 signal. The formulaic representation of six signals is pre-
sented in Table IV (due to space constraints, the specific mean-
ings represented by each symbol are not elaborated upon). After
generating simulated signals, Gaussian white noise is added
to meet the desired signal-to-noise ratio (SNR) requirements.
The length of the dataset is about 100 000. The pulsewidth,
bandwidth, power ratio, overlap degree, and SNR of the signals
are used as variable parameters, and their ranges are shown in
Table III. After generating the dataset, it is randomly divided
into training and testing sets using an 80-20 split.
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TABLE III
SIGNAL PARAMETERS

TABLE IV
FORMULAS OF SIX SIGNALS

2) Loss Function: On the time–frequency diagram of the
radar signal, since the pixel number occupied by the background
is far greater than those occupied by the signal, the same weight
of pixels occupied by the background and those occupied by the
signal would cause the loss function to fall into a local optimum.
Consequently, the focal loss function is applied to tackle the
challenge of imbalanced sample distribution, and its expression
is shown as follows:

loss = −αt (1− pt)
γ log (pt) (12)

where αt represents the weight of the category, pt represents the
prediction probability, and γ is a hyperparameter. In this article,
αt of the background is taken as 0.1; αt of the signal is taken as
0.9; and γ is taken as 2.

3) Network Configuration: The network parameters are set
according to the Table I. The input images are normalized and
transformed to the size of (512, 512). The network was trained
using the Adam optimization algorithm with an initial learning
rate of 0.001. We employed a batch size of 32 and trained
the network using the aforementioned focal loss function. In
addition, we employed a learning rate scheduler to adjust the
learning rate based on the training progress, ensuring stable and
efficient convergence. Specifically, we decayed the learning rate
by a factor of 0.5 if the validation loss did not improve for five
consecutive epochs. If the validation loss does not improve after
continuously changing the learning rate five times, stop training.

B. Evaluation Criterion

The effectiveness of the experiments is assessed through two
metrics. In this article, mean intersection over union (MIoU) is
employed to gauge the efficacy of semantic segmentation for
overlapping radar signals; root mean squared error (RMSE) is
adopted to assess the efficacy of parameter extraction.

1) MIoU: MIoU is defined as the average of the intersection
ratio for each category [45]. Fig. 13 displays the schematic

Fig. 13. Schematic diagram of the segmentation results.

TABLE V
OVERLAPPING SIGNAL PARAMETERS

diagram of the segmentation outcomes. True positive (TP) de-
notes positive samples that have been accurately predicted by the
model; false negative (FN) represents positive samples that have
been inaccurately predicted by the model; and false positive (FP)
signifies negative samples that have been inaccurately predicted
by the model. The expression of MIoU is shown as

MIoU =
1

k + 1

k∑
i=0

TP
FN + FP + TP

=
1

k + 1

k∑
i=0

pii∑k
i=0 pij +

∑k
i=0 pji − pii

(13)

where i denotes true class, j denotes predict class, pij denotes
predicting i as j, i.e., FN, pji denotes predicting j as i, i.e., FP,
pii denotes predicting i as i, i.e., TP.

2) RMSE: The definition of RMSE is the distinction between
the predicted parameters and the actual parameters [46]. Its
expression is shown as follows:

RMSE =

√
1

n

∑n

i=1

(
Yi − Ŷi

)2

(14)

whereYi denotes the true parameter, and Ŷi denotes the predicted
value.

C. Parameter Extraction of Typical Overlapping Radar
Signals

This experiment demonstrates the parameter extraction pro-
cess of the proposed method using overlapping Costas signal
and NLFM signals as an example, and the results are shown in
Fig. 14. The parameters of the two signals are shown in Table V.
Set SNR as 0 dB, the sampling rate as 600 MHz, and the total
signal duration as 7 μs.

After the semantic segmentation of the overlapping radar
signals, the time–frequency masks for both NLFM and Costas
signals are acquired. The masks for these two signals are then
separated and compressed in the time and frequency dimensions,
respectively. In this experiment, the real pulsewidth of the Costas
signal is 5.5μs and the bandwidth is 200 MHz, and the estimated
values are 5.53 μs and 193 MHz, with the relative errors of 0.5%
and 3.5%. The real pulsewidth and bandwidth of the NLFM
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Fig. 14. Parameter extraction results of typical overlapping radar signals using the proposed method.

Fig. 15. Comparison experiment. (a) Segmentation MIoU comparison. (b) Pulsewidth RMSE comparison. (c) Bandwidth RMSE comparison.

signal are 4.8 μs and 190 MHz, and the estimated values are
4.79 μs and 202 MHz, with relative errors of 0.2% and 6.3%.

In addition, the signal time–frequency map size is 512 × 512,
the sampling rate is 600 MHz, the total signal duration is 7 μs,
the frequency accuracy of each pixel point in the time–frequency
map is 1.17 MHz, and the time accuracy is 0.016 μs. In this
overlapping case, the Costas signal has an error of 2 and 6 pixels
on the time and frequency axes; the NLFM signal has an error
of 1 and 10 pixels on the time and frequency axes, respectively.
The outcomes of this experiment illustrate that the proposed
method can proficiently extract the pulsewidth and bandwidth
of overlapping radar signals.

D. Parameter Extraction Performance Comparison at
Different SNRs

This experiment compares the signal segmentation and pa-
rameter extraction performance of the proposed method with
four commonly used segmentation networks: fully connected
network (FCN) [47], a milestone network in image segmen-
tation; Deeplab v3 [48], a widely used CNN based network;
Res2Net [49], an improved network for ResNet; Pyramid vision

transformer (PVT) [50], a transformer-based network. After
employing these networks for semantic segmentation, the same
operation is carried out to extract parameters as the proposed
method. The results of the comparison experiments are shown
in Fig. 15.

1) Semantic Segmentation Comparison: The MIoU of the
proposed method is higher than 0.9 at 0 dB. Across all SNRs,
the proposed method’s MIoU is significantly higher than that
of FCN and Deeplabv3. At SNRs greater than 0 dB, the MIoU
of the proposed method is approximately 3% higher than that
of Res2Net and roughly equivalent to that of PVT. At SNRs
below 0 dB, the proposed method exhibits the most gradual
decrease in MIoU compared to the other four methods. Specifi-
cally, at −10 dB, the proposed method achieves an MIoU 1.7%
higher than that of Res2Net and approximately 8% higher than
that of PVT. The MIoU results illustrate that the segmentation
results obtained by the proposed method exhibit superior effi-
cacy compared to those generated by Res2Net, PVT, Deeplabv3,
and FCN.

2) Parameter Extraction Comparison: The pulsewidth
RMSE of the proposed method is 0.06 μs at 0 dB, and the
bandwidth RMSE is about 8 MHz. Across all SNRs, the
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Fig. 16. Ablation experiment. (a) Segmentation MIoU comparison. (b) Pulsewidth RMSE comparison. (c) Bandwidth RMSE comparison.

proposed method exhibits significantly higher pulsewidth
RMSE compared to that of FCN and Deeplabv3, as well as
significantly higher bandwidth RMSE compared to that of
FCN. Above 0 dB, the proposed method’s pulsewidth RMSE
is similar to that of PVT, and approximately 0.07 μs higher
than that of Res2Net; and the proposed method’s bandwidth
RMSE is similar to PVT, Deeplabv3, and Res2Net. Below
0 dB, the proposed method’s pulsewidth RMSE and bandwidth
RMSE are significantly higher than those of Res2Net and PVT,
except for at −10 dB, where it is slightly lower than that of
Deeplabv3. The RMSE outcomes indicate that the proposed
network exhibits improved global performance in parameter
extraction.

3) Discussion: Compared to the proposed method, the re-
ceptive field of FCN and Deeplabv3 is smaller, so the ability
to obtain global information is poorer, and the modulation
type recognition result is not used as a prior to modify the
segmentation result. The rationale behind the effectiveness of
the proposed method in contrast to FCN and Deeplabv3 is that
channel rearrangement and modulation type filtering improve
the accuracy of segmentation.

We observe that at SNR above 0, the performance difference
between PVT and the proposed method is relatively small.
However, when the SNR falls below 0, the performance of PVT
significantly deteriorates, leading to an increasing disparity com-
pared to the proposed method. This is due to the PVT model’s
ability to better utilize clean input data, resulting in a relatively
minor impact from noise, thus minimizing the performance gap
with the proposed method. Conversely, as the SNR decreases, the
influence of noise becomes more pronounced, causing a notable
decline in the performance of PVT. In contrast, the proposed
method employs channel rearrangement and modulation type
filtering, which are specific operations designed to address the
overlapping radar signals under low SNRs, enhancing robust-
ness against noise.

In addition, we observe that when the SNR is less than 0,
the performance difference between res2net and the proposed
method is relatively small; however, when the SNR is greater
than 0, the performance gap of res2net is significant. This is
because when the SNR is less than 0, the impact of noise is
predominant, and both res2net and the proposed method are
similarly affected. However, when the SNR is greater than 0, the

significance of the signal becomes apparent, and the proposed
method, which employs channel rearrangement and modulation
type filtering, is able to better utilize the signal information,
leading to the observed performance disparity with res2net.

E. Ablation Experiments

To verify the effects of channel rearrangement and modulation
type filtering, ablation experiments are designed in this section.

1) Ablation of Channel Rearrangement: In this ablation ex-
periment, the channel rearrangement method is replaced by
the maximum pooling method, and the results are shown in
Fig. 16. When ablating the channel rearrangement, the maximum
reduction in pulsewidth RMSE is 0.7 μs, and the maximum
reduction in bandwidth RMSE is 83 MHz. After adding the
channel rearrangement, there is an improvement in both signal
segmentation and parameter estimation. This is because channel
rearrangement preserves more features, which is conducive to
the segmentation of details such as the edges of the signal
time–frequency diagram.

2) Ablation of Modulation Type Filtering: In this ablation
experiment, the modulation type filtering is removed, and the
results are shown in Fig. 16. When ablating the modulation
type filtering, the maximum reduction in MIoU was 0.22, and
the maximum reduction in RMSE of pulsewidth and bandwidth
was 2.96 μs and 248 MHz, respectively. The modulation type
filtering method has a relatively small impact on the segmen-
tation but has a significant impact on the parameter estimation.
This is because modulation type filtering can pull the wrong
part of the signal segmentation back to the correct class. If the
filtering operation is ablated, a small part of the signal will be
segmented incorrectly. The reduced value of MIoU is related
to the area of segmentation error. When extracting parameters,
only the distance between the compressed mask edge affects the
extraction of bandwidth and pulsewidth. Even if only a small
portion is segmented incorrectly, it could lead to significant
parameter extraction errors.

F. Parameter Extraction for Different Modulation Types

This experiment demonstrates the parameter extraction per-
formance of the proposed method from different overlapping
radar signals. This experiment involves the preparation of six
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Fig. 17. Effect of the proposed method for different modulation types. (a) Segmentation MIoU. (b) Pulsewidth RMSE. (c) Bandwidth RMSE.

modulation radar signal types. The outcomes of this experiment
are illustrated in Fig. 17, where the signal’s modulation type is
exhibited on the horizontal axis, while MIoU and RMSE are
showcased on the vertical axis. Experiments show that signal
segmentation and parameter extraction of each type of radar
signal are effective. The experimental result shows that the signal
segmentation and parameter extraction effect of the SC signal is
the best, because the SC signal is reflected in the time–frequency
diagram as a straight line, which is the simplest modulation type.
The signal segmentation and parameter extraction effect of the
FA signal is the worst, which is because the frequency variation
of the FA signal with time is discontinuous and the modulation
type is more complex.

In the aforementioned four experiments, the performance
of the proposed method in signal segmentation and parameter
extraction is evaluated under different modulation types and
SNR conditions. And the effectiveness of channel rearrange-
ment and modulation type filtering is validated through ablation
experiments. The results indicate that the proposed method
outperforms traditional four methods in terms of separation and
extraction accuracy.

V. DISCUSSION

This section begins by analyzing the performance of the
proposed channel rearrangement and modulation type filtering.
Subsequently, it delves into the examination of misidentification
cases and their respective causes. Finally, the section outlines the
limitations of the proposed algorithm and provides an overview
of future work.

Channel rearrangement play a crucial role in the proposed
method. It is an optimization of the pooling operation in the
context of overlapping radar signals. The comparative effects of
this operation are illustrated in the Fig. 18. The raw feature map,
with a size of (32, 32), can be transformed into a size of (16, 16)
through max pooling or channel rearrangement. In the result of
max-pooling, the edge, protrusion, and corner information of the
raw feature map (as indicated by the colored box) are disrupted,
which would result in incomplete semantic segmentation masks,
reducing the accuracy of parameter extraction. In comparison,
the proposed channel rearrangement offers the advantage of
working with four channels, preserving crucial information for
the parameter extraction of overlapping radar signal.

Fig. 18. Comparison effect of channel rearrangement and max-pooling oper-
ation.

The effectiveness of modulation type filtering is shown in
Fig. 19, where an LFM signal overlaps with a Costas signal.
In segmentation without using modulation type filtering, the
overlapping signal is incorrectly divided into two LFM signals
and one Costa signal. However, when implementing of mod-
ulation type filtering, the overlap part of signals is effectively
segmented, demonstrating the effectiveness of prior knowledge
about modulation types in improving the accuracy of signal
segmentation.

It should be noted that in certain specific scenarios, some mod-
ulation types may be prone to confusion, leading to a decrease in
parameter extraction accuracy. On one hand, when the subbands
of a Costas signal are relatively long, they may be identified as
several SC signals. This is due to the fact that the time–frequency
representation of an SC signal appears as a horizontal line, while
that of a Costas signal appears as multiple horizontal lines. On
the other hand, in scenarios with relatively low SNRs, there is
often a tendency to confuse SC signals with P4 signals. This is
because, the time–frequency representations of these two types
of signals under lower SNRs appear more similar. Therefore,
when dealing with overlapping Costas, SC, and P4 radar signals,
it is highly likely that they may be misidentified as the same type
of signal, leading to errors.
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Fig. 19. Ablation effect of modulation type filtering. The yellow, red, and blue
parts in the figure represent the segmented LFM signal 1, LFM signal 2, and
Costas signal, respectively.

The proposed method still has certain limitations. First, this
method focuses primarily on the extraction of the most signif-
icant parameters for electronic reconnaissance: bandwidth and
pulsewidth, while disregarding other parameters such as pulse
amplitude, the LFM slope, and the Costas encoding, etc. Second,
the proposed network structure can be further streamlined, which
can accelerate the convergence of the network and reduce com-
putational resources. Finally, the method utilizes the encoder–
decoder network architecture, which is well-established in the
field of radar signal segmentation, instead of employing more
advanced backbones developed for semantic segmentation tasks.
Therefore, in future work, we intend to address parameter extrac-
tion for radar signals with unknown modulation types, explore
more advanced networks for complex situations, and explore
more effective methods to extraction more valuable parameters.

VI. CONCLUSION

In this article, we propose a parameter extraction method for
overlapping radar signals, which primarily comprises two steps:
the first step involves separating the overlapping radar signals by
semantic segmentation, and the second step is to compress the
separated signal masks to extract signal parameters. As the effect
of signal segmentation determines the accuracy of parameter
extraction, the channel rearrangement is added to the semantic
segmentation network to minimize the feature information loss.
In addition, the output of semantic segmentation is multiplied
by the modulation recognition result to increase the accuracy of
segmentation, which is named modulation type filtering. Com-
parison experiments, ablation experiments, and experiments on
different modulation types verify the effectiveness of the pro-
posed method in extracting parameters from overlapping radar
signals. At 0-dB SNR, the segmentation MIoU of the proposed

method can reach over 0.9; the pulsewidth extraction RMSE is
0.06 μs, and the bandwidth extraction RMSE is 8 MHz.
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