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CD-CTFM: A Lightweight CNN-Transformer
Network for Remote Sensing Cloud Detection Fusing

Multiscale Features
Wenxuan Ge , Xubing Yang , Rui Jiang , Wei Shao , and Li Zhang

Abstract—Clouds in remote sensing images inevitably affect
information extraction, which hinders the following analysis of
satellite images. Hence, cloud detection is a necessary preprocessing
procedure. However, most existing methods have numerous calcu-
lations and parameters. In this article, a lightweight convolutional
neural network (CNN)-Transformer network, CD-CTFM, is pro-
posed to solve the problem, which is based on encoder–decoder
architecture and incorporates the attention mechanism. In the
encoder part, we utilize a lightweight network combing CNN and
Transformer as backbone, which is conducive to extracting local
and global features simultaneously. The backbone of CD-CTFM
also incorporates attention gate based on dark channel extraction
module. Moreover, a lightweight feature pyramid module is de-
signed to fuse multiscale features with contextual information. In
the decoder part, a lightweight channel-spatial attention module is
integrated into each skip connection between encoder and decoder
to extract low-level features while suppressing irrelevant informa-
tion without introducing many parameters. Finally, the proposed
model is evaluated on two cloud datasets, 38-Cloud and MODIS.
The results demonstrate that CD-CTFM achieves comparable ac-
curacy as the state-of-art methods and outperforms in terms of
efficiency.

Index Terms—Attention mechanism, cloud detection, deep
learning, lightweight network, vision transformer (ViT).

I. INTRODUCTION

S INCE the 1960s, with the rapid development of satellite
remote sensing technology, the United States and China

have launched a variety of satellites, such as LandSat series and
GaoFen series [1], [2], [3]. Remote sensing images collected
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from satellites are widely used in various fields, including land
cover mapping, weather forecasting, marine pollution monitor-
ing, and other fields [4], [5]. However, optical remote sensing
images are inevitably affected by cloud appearing on them,
resulting in attenuation or loss of image information. Therefore,
to improve the utilization of images with cloud, it is necessary
to detect cloud before analyzing images.

Over the years, researchers have proposed a multitude of
approaches from different perspectives. Traditional cloud de-
tection methods can be broadly divided into two categories:
threshold-based and machine-learning-based methods [6]. Al-
though they are lightweight, their performance is not so satisfac-
tory due to limitations of algorithms. Threshold-based methods
are implemented using a threshold of different image param-
eters [7]. Among threshold-based algorithms, the Function of
mask (Fmask) is a widely used cloud detection approach [8]. In
Fmask, several rules are designed by expert knowledge of spec-
tral characteristics to distinguish clouds from noncloud. Fmask
identifies cloud by calculating cloud temperature probability,
which is based on the assumption that cloud and corresponding
shadows share similar shape and shadows follow the project
geometry. However, threshold-based methods have poor uni-
versality in that thresholds vary as per the location. Machine-
learning-based methods, such as decision tree [9], support vector
machine [10], and Bayesian classification [11], identify cloud by
learning from training data, which improves the performance of
cloud detection. In [9], a classification tree were used to build
the decision tree, which was designed based on empirical studies
and simulations. With a great deal of repeating scenes coming
from the same area, cloud pixels can be replaced by real surface
types. According to Ishida et al. [10], discriminant analysis was
incorporated into support vector machine (SVM), which made
it possible to subjectively determine the definition of typical
cloudy and clear sky. Moreover, if incorrect results occurred,
feature space used for cloud detection would be improved to ad-
just the classifier. The Bayesian method calculated a probability
of cloud for each image pixel, based on the satellite observations
and prior probability [11]. However, machine-learning-based
methods are highly affected by the handcraft features, which
is highly dependent on expert knowledge and experience.

With the advance in deep learning, methods based on convo-
lutional neural networks (CNNs) have achieved great success in
the field of computer vision (CV), overwhelmingly surpassing
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traditional algorithms. Scholars have applied deep learning to
optical satellite imagery, including cloud detection. Li et al. [12]
proposed graph-feature-enhanced selective assignment network
to mine meaningful features and effectively fuse multisource
remote sensing data. Focusing on subtle traits extraction, Zhang
et al. [13] designed a spatial-logical aggregation network with
morphological transformation for tree species classification.
Hang et al. [14] presented a multiscale progressive segmentation
network to obtain satisfactory segmentation results on small
or large objects. In addtion, he designed an edge-enhanced
multiscale convolutional network to identify oceanic eddy [15].
Francis et al. [16] proposed CloudFCN, which is based on fully
convolutional networks, to extract multiscale spectral features of
remote sensing images. Luotamo et al. [17] designed an architec-
ture of two cascaded CNN model components successively pro-
cessing undersampled and full-resolution images. Inspired by
cognitive psychology and neuroscience, scholars have applied
visual attention mechanism to the field of CV. Visual attention
mechanism selectively concentrates the significant parts within
remote sensing images and obtains discriminative features to
improve accuracy, for which some cloud detection approaches
incorporate the attention mechanism to further improve accu-
racy. In LSCNet, large kernel sparse ConvNet was weighted
by multifrequency attention for remote sensing scene under-
standing [18]. Guo et al. [19] incorporated attention mechanism
into their U-Net architecture-based cloud detection model, Clou-
dAttU, to achieve the fusion of high-level and low-level features.
CAA-UNet was a cloud detection network based on asymmetric
encoder–decoder architecture, where attention gate (AG) was
improved and integrated into each skip connection, making the
cloud detection model distinguish the cloud and noncloud more
accurately [20]. Zhang et al. [21] designed multiscale global
attention (MGA) module in their CRSNet in order to strengthen
the channel and spatial information. MGA was made up of three
submodules: hierarchical multiscale convolution module, global
spatial attention module (SAM), and global channel attention
module (CAM). However, the above methods have a large
number of parameters and computations, which can be tens of
millions. To alleviate this problem, Yao et al. [22] designed
a lightweight CAM in CD-AttDLV3+, which was based on
DeepLabV3+ architecture, to strengthen the learning of sig-
nificant channels. Also, to further reduce parameters and com-
putations, CD-AttDLV3+ used MobileNetV2 as its backbone.
However, there are still two problems in these cloud detection
methods. On the one hand, a majority of existing methods only
utilize the stack of convolutional layers to obtain local spatial
features, ignoring global semantic information of image. On the
other hand, existing models with attention mechanism still have
much room for improvement in both performance and efficiency.

In this work, we propose a lightweight encoder–decoder ar-
chitecture CD-CTFM for cloud detection. CD-CTFM utilizes
a lightweight network, on basis of CNN and Transformer, as
backbone. CNN has an excellent ability of local features extrac-
tion, while Transformer is good at extracting global contextual
information. Therefore, the combination of CNN and Trans-
former is conducive to fusing both local and global features,
thus improving accuracy of cloud detection. Considering dark

channel plays an important role in haze removal according
to [23], and cloud and haze have a strong visual similarity, dark
channel prior must help in cloud detection. Dark channel prior of
image can reflect the cloud distribution to a large extent, so the
backbone of CD-CTFM incorporates AG, which is based on dark
channel extraction module (DCEM). A novel lightweight feature
pyramid module (LWFPM), which consists of five paths and
three of them are shared and dilation (SD) blocks, is proposed
to fuse multiscale features. SD block is a residual structure made
up of pointwise (PW) convolution, shared convolution (SC), and
dilated convolution (DC). Besides, hierarchical feature fusion
(HFF), which is parameter-free, is used to solve the gridding
effect caused by DC. CD-CTFM incorporates a lightweight
channel-spatial attention module (LWCSAM) to suppress in-
valid information and highlight discriminative features. To al-
leviate the problem of information attenuation or loss caused
by pooling, LWCSAM introduces mixed pooling technique,
which is based on stochastic model. CD-CTFM has achieved
satisfactory results on public datasets 38-Cloud and MODIS.
To summarize, the main contributions of this work are listed as
follows.

1) CD-CTFM utilizes a lightweight CNN-Transformer net-
work as backbone and the backbone incorporates dark
channel-based AG.

2) A novel LWFPM based on SD block is proposed to fuse
multiscale features, where HFF technique is introduced to
solve the gridding effect caused by DC.

3) CD-CTFM incorporates a LWCSAM to suppress invalid
information and highlight discriminative features.

4) We conduct extensive experiments on 38-Cloud and
MODIS datasets. The results demonstrate that CD-CTFM
can obtain the best tradeoff in terms of performance and
efficiency.

The rest of this article is organized as follows. In Section II,
related works, such as visual transformer, attention mechanism,
dilated covolution, and lightweight model, are introduced. The
proposed CD-CTFM, LWFPM, and LWCSAM are detailed in
Section III. Section IV illustrates experimental settings and
results. Section V discusses some limitations of the proposed
method. Finaly, Section VI concludes this article.

II. RELATED WORK

A. Visual Transformer

Transformer is an excellent deep learning model that has
been widely used in many fields [24], such as natural language
processing, CV, and speech processing [25]. In the field of CV,
Transformer has been adopted for various tasks, e.g., image
classification [26], object detection [27], image generation [28],
and video understanding [29], [30], [31].

As for semantic segmentation task, which requires model-
ing rich interactions between pixels, Transformer also has a
wide range of applications. Some recent works have designed
encoder–decoder architectures based on transformer. Zheng
et al. [32] proposed a vision transformer (ViT) encoder and
three different types of decoders, which are based on naive
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upsampling, progressive upsampling, and multilevel feature ag-
gregation, respectively, in their segmentation transformer. Xie
et al. [33] designed SegFormer, of which the encoder is a
hierarchical pyramid ViT while the decoder is based on MLP and
simple upsampling operation. In Segmenter, Strudel et al. [34]
also empolyed a ViT encoder to extract feature maps, and used a
mask Transformer as the decoder, predicting sementation masks.

As a type of semantic segmentation application, cloud de-
tection task tends to get good results on the above models. In
addition, scholars have also proposed Transformer-based meth-
ods specifically for cloud detection. Zhang et al. [35] adopted
MobileViT as the backbone in their CloudViT. Singh et al. [36]
proposed a novel spatial-spectral attention transformer for cloud
detection with a spatial-spectral attention module that generates
an enhanced feature map to replace convolution by using the
image patches directly.

In CD-CTFM, we also utilize the visual transformer as the
backbone network. Uniqueness of the backbone lies in two
aspects. On one hand, we amalgamate CNN and Transformer,
allowing network to effectively capture both global and local
features. On the other hand, dark-channel-based AG is integrated
into backbone, leveraging the prior knowledge of the dark chan-
nel to enhance the model’s performance.

B. Attention Mechanism

Motivated by the fact that humans can effectively find salient
regions in complex scenes, attention mechanism, a dynamic
weight adjustment process based on feature maps, was intro-
duced into the field of CV. Attention mechanisms can be divided
into many types according to approach [37], such as channel
attention, spatial attention, temporal attention, and branch at-
tention. In the field of semantic segmentation, including cloud
detection task, the most commonly used attention mechanisms
are channel attention and spatial attention.

Channel attention adaptively recalibrates the weight of each
channel, because different channels in different feature maps
usually contain information of different degrees of importance.
SENet proposed by Hu et al. [38] used SE modules to obtain the
weight of feature maps of different channels. Yao et al. [22] intro-
duced the CAM in their cloud detection method, CD-AttDLV3+,
to strengthen the learning of important channels.

Spatial attention can be interpreted as an adaptive spatial
region selection mechanism, which foucses on where to pay
attention. Oktay et al. [39] proposed a simple and yet effec-
tive mechanism, the AG, to focus on targeted regions while
suppressing feature activations in irrelevant regions. In cloud
detection model CAA-UNet, Zhang et al. [20] modified AG
and integrated into each skip connection to hightlight salient
features.

Channel-spatial attention combines the advantages of channel
attention and spatial attention. Woo et al. [40] designed a novel
concolutional block attention module, which stacked channel
attention and spatial attention in series. Guo et al. [41] proposed a
channel-spatial attention-based module, adaptive feature fusing
model (AFFM), to fuse multilevel feature maps. AFFM was
composed of three submodules: channel attention fusion model,

spatial attention fusion module, and channel attention refinement
model.

The proposed LWCSAM falls under the category of channel-
spatial attention, formed by the cascade of a CAM and a SAM.
Its primary innovation revolves around the modeling of cross-
dimension interaction information between channel dimension
and either vertical spatial dimension or horizontal spatial dimen-
sion.

C. Dilated Convolution

In a CNN, if the sizes of convolutional kernals are too small,
the network tends to be limited to local information, decreasing
the accuracy of network. Conversely, if the kernals are too large,
the number of parameters and calculations will be too high,
which makes it hard to deploy model on mobile devices. This
problem can be solved by combining DC with different expan-
sion rates, according to atrous spatial pyramid pooling module in
DeepLab [42]. CD-AttDLV3+, proposed by Yao et al. [22] was
based on DeeplabV3+ architecture, which was able to robustly
segment objects at multiple scales. He et al. [43] proposed a
deformable context feature pyramid module in their DABNet to
improve the adaptive modeling capability of multiscale features,
which is also based on ASPP.

The difference between LWFPM and other methods lies in its
introduction of the parameter-free HFF technique to address the
grid effect, and employing the SD block instead of regular DC,
achieving improved accuracy at a low cost.

D. Lightweight Model

Due to the limited performace of mobile devices, deploying
models with huge parameters is impracticable. Therefore, it
is necessary to carry out lightweight design of the network.
Recently, a quantity of lightweight CNN have been proposed.
MobileNetV2 proposed by Google achieved great success in
compressing model [44], which was able to separate the network
expressiviness from its capacity thanks to inverted residuals and
linear bottlenecks. Han et al. [45] designed a novel Ghost module
to generate more feature map from cheaper operations.

As for cloud detection task, researchers have also designed
a multitude of lightweight models. Hu et al. [46] proposed two
novel lightweight modules in their LCDNet, one of which was
lightweight bottleneck, which had the ability to quickly capture
multiscale features. The other lightweight module proposed in
LCDNet was lightweight self attention module, which could
quickly establish the spatial location information of remote
sensing image (RSI). The abovementioned CloudViT was also a
lightweight cloud detection method. It was composed of a multi-
scale dark channel extractor, used to guide the network based on
dark channel priors, and an attention-based context aggregation
module, utilized to make cloud detection results more accurate.

III. METHODOLOGY

A. Overview of CD-CTFM

The CD-CTFM exploits the encoder–decoder architecture,
as shown in Fig. 1. The encoder part captures local spatial
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Fig. 1. Overall framework of CD-CTFM. The encoder contains a lightweight backbone and LWFPM while the decoder is based on DSC. LWCSAM filters
information propagated through the skip connections.

features and global context information simultaneously, making
the results of semantic segmentation more reliable. However,
processing large amounts of semantic features increases pa-
rameters and computations, which is contradictory to the aim
of lightweight cloud detection network. To ease this problem,
CD-CTFM combines dark channel prior [23] with attention
mechanism in the AG. With the guidance of the AG, the encoder
is able to highlight discriminant feature regions while suppress-
ing irrelevant regions, improving the performance of network.
Besides, local spatial features are further fused with global
multiscale features, for which the encoder is able to gain stronger
semantic information. To compensate for the attenuated or lost
low-level features, the decoder part fuses low-level information
with deep features through skip connectinos step by step, which
is based on LWCSAM.

In the encoder part, we propose a lightweight network based
on mobile-former (MF) block and DCEM as backbone, combing
CNN, and Transformer. In the backbone, a stem layer composed
of a convolution layer and a bottleneck layer is first adopted
to adjust the number of channels and downsample the feature
maps. Bottleneck is a structure that compresses and amplifies
information, which is able to remove high-frequency noise and
reduce parameters. Given a multichannel image FI as input, the
extracted feature maps of the stem layer can be stated as

Fstem = PW(DW(PW(Conv(FI)))) (1)

where Conv(·) is convolution, PW(·) is PW convolution, and
DW(·) is depthwise convolution.

Following the stem layer is DCEM. ForFstem, its dark channel
Fdark is given by

Fdark(x) = min
y∈Ω(x)

(
min
c∈C

Fstem[c](y)

)
(2)

where Ω(x) is a local patch centered at x, C is the channel set of
Fstem, c is an element of C, and Fstem[c] is the c channel of Fstem.
As Fig. 2 shows, the dark channel of RSI is the reulst of two
commutative minimum operators, of which one is performed
on all channel values of RSI at pixel level and the other is a
minimum filter.

After extraction, Fstem and its corresponding dark channel
Fdark are forwarded to the AG. As shown in Fig. 3, the two
inputs are elementwise merged after convolution and batch (CB)
nomalization blocks, respectively. After a rectified linear unit
(ReLU) activation function, CB block and sigmoid activation
function, we can get attention coefficientα. Finally, the output of
AG Fa is obtained by multiplying Fstem by attention coefficient
A. The above process is formulated as

Fa = BN(Conv(Fstem)) +BN(Conv(Fdark)) (3)

A = Sigmoid(BN(Conv(ReLU(Fa)))) (4)

FA = Fstem �A (5)

where � denotes elementwise product.
Then, feature maps guided by dark channel and global tokens

(learnable parameters) are forwarded to a sequnece of MF block
(see Fig. 4). In particular, the lengths of MF block sequences are
set to 2, 2, and 4, respectively. Different from ViT [47], there
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Fig. 2. Process of DCEM. (a) Remote sensing image from 38-Cloud dataset. (b) Minimum of the four channel values of the image at pixel level. (c) Dark of the
image. It is the result of performing minimum filter on (b), where the kernel size is 60×60.

Fig. 3. Structure of the AG used in backbone.

are only 6 global tokens in CD-CTFM, which are much fewer
than that of ViT. Global tokens are initialized from learnable
embeddings rather than linear projection of image patches. As
a result, fewer tokens can not only contain enough global prior
knowledge of RSI, but also contribute to reducing parameters
and computations.

In MF blocks, local spatial features and global context in-
formation are extracted simultaneously and fused bidirection-
ally, resulting in more representation power. Each MF block is
composed of four subblocks. Mobile subblock is essentially a
bottleneck, which contains two PW convolutions and a depth-
wise convolution. Former subblock is made up of a multihead
attention and a feedforward network. The other two parts are
mobile-former subblock and former-mobile subblock, which are
used to fuse information between mobile subblock and former
subblock based on attention mechanism.

After the performance of three stages of DCEM, AG, and
MF sequences, we obtain the output of the backbone. Followed
by the backbone is the LWFPM to fuse high-level multiscale
features with global interaction information.

In the decoder part, deep features coming from LWFPM are
up-sampled layer by layer. To compensate for the attenuated or
lost low-level features, a LWCSAM is introduced into each skip
connection, which suppress irrelevant low-level information and
highlight discriminative features.

Fig. 4. Details of MF block. Yellow blocks belong to Mobile sub-block,
green blocks belong to Former subblock, blue blocks belong to mobile-former
subblock, and red blocks belong to former-mobile subblock.

Fig. 5. Structure of LWFPM.

B. Lightweight Feature Pyramid Module

To further extract features propagated through backbone, we
design LWFPM, which consists of five parallel paths (see Fig. 5).
Except for one global average pooling (GAP) path and one
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Fig. 6. Details of SD block.

PW convolution path, the rest of the paths consist of three
novel SD blocks, of which the dilated rate is 6, 12, and 18,
respectively. As shown in Fig. 6, residual structure-based SD
block contains two PW blocks, a SC, and a DC. The effect of the
PW is dimensionality reduction while the purpose of SC is deep
features extraction, both of which are conducive to decreasing
parameters and computations. To fuse high-level multiscale
features with context information, DC with different dilated rates
are added. Inspired by ESPNet [48], LWFPM deploys HFF to
solve the gridding effect caused by DC without introducing extra
parameters. Given that the input of LWFPM is X , the output Y
can be obtained by the following equations:

X1 = PW(X) (6)

X2 = DC6(SC(PW(X))) +X (7)

X3 = DC12(SC(PW(X))) +X (8)

X4 = DC18(SC(PW(X))) +X (9)

X5 = GAP(X) (10)

Y = PW(concat(X1, X2, X3, X4, X5)) (11)

where PW is PW convolution, DCr is DC with a dilated rate
equal to r, SC is shared convolution, and GAP is the global
average pooling.

C. Lightweight Channel-Spatial Attention Module

With the help of the skip connections, CD-CTFM can get
more low-level information to detect the cloud. However, some
feature maps contain too much invalid or irrelevant information,
affecting the accuracy of the model. To alleviate this problem,
a LWCSAM is proposed, as shown in Fig. 7. LWCSAM is
composed of CAM and SAM, which are cascaded directly.

CAM is made up of two parallel branches, aiming at mod-
eling channel attention based on cross-dimension interaction
information between the channel dimension C and either the
vertical spatial dimension H or the horizontal spatial dimension
W. In CAM, the input feature maps X are first rotated around
either W-axis or H-axis, gettingXW andXH , respectively. Then
we need to compress the 0th dimension of feature maps in
order to construct the importance of each point on the C × W
(or C × H) plane. Since single maximum pooling or average
pooling tends to result in loss of much valuable information, the

Fig. 7. Details of LWCSAM. Yellow arrows represent rotating feature maps
around W-axis while blue arrows represent rotating feature maps around H-axis.
In addition, σ is a sigmoid activation function.

stochastic mixed pooling technique is used [49], which is able to
preserve rich information with high probability while keeping
computation lightweight. The stochastic mixed pooling can be
formulated as

yc = λ · max
(i,j)∈P

xijc + (1− λ) · 1

|P| ·
∑

(i,j)∈P
xijc (12)

where x and y are pixel values before and after pooling, c repre-
sents channel, (i, j) denotes pixel of RSI, P is the set of pixels,
and λ is a random value between 0.0 and 1.0. After pooling
and subsequent depthwise separable convolutions (DSC) and
sigmoid layers, attention maps are multiplied by corresponding
feature maps, getting X ′

W and X ′
H , respectively. At last, the

output of CAM, which is denoted as X ′, can be obtained by
adding X ′

W , X ′
H , and the feature maps that is not rotated.

SAM is employed to build spatial attention, of which the
structure is similar to that of CAM. X ′ is first passed through the
stochastic mixed pooling layer, DSC and sigmoid layer, After
which the shape of feature map is reduced to 1×H ×W . Then,
the result of sigmoid activation function and X ′ are aggregated
by elementwise multiplication. The output of SAM can be
stated as

X ′′ = Sigmoid(DSC(MP(X ′)))�X ′ (13)

where MP is mixed pooling.

D. Loss Function

By reason of the class imbalance problem manifested in cloud
detection tasks, CD-CTFM combine the dice loss and the binary
cross entropy loss as its loss function [50], which is defined as
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follows:

L(yi, ŷi,Θ) = − 1

n

n∑
i=1

(yilogŷi + (1− yi)log(1− ŷi))

+ λ

(
1− 2

∑n
i=1 yiŷi∑n

i=1(y
2
i + ŷi

2)

)
+

μ

2
‖Θ‖2 (14)

where the coefficient λ ≥ 0 specifies a relative importance of
the dice loss versus the binary cross entropy loss, µ

2 indicates
the relative significance of regularization, yi is the ground truth,
ŷi is the prediction result and n is the number of pixels in each
image.

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

1) Datasets: To train and test the CD-CTFM, we conduct
experiments on two cloud detection datasets: 38-Cloud and
MODIS datasets.

The 38-Cloud dataset is first released in [51]. The dataset
contains 18 LandSat-8 images for training and 20 images for
testing. Due to the large size of images, it is difficult to directly
use these images as inputs. Therefore, each image is cropped into
384 × 384 nonoverlapping patches. After cropping, the train-
ing set contains 8400 patches while the test set contains 9201
patches. Each patch has four corresponding spectral channels:
red (band 4), green (band 3), blue (band 2), and near infrared
(band 5).

MODIS dataset contains 1422 remote sensing images, which
are separated into 1272 training images and 150 test images [52].
After cropping them into 512 × 512 patches, the training set
and test set contain 19 080 and 2250 nonoverlapping patches,
respectively. Each patch consists of ten spectral channels: band
1, 3, 4, 18, 20, 23, 28, 29, 31, and 32.

2) Evaluation Metrics: In the experiment, the ground truths
and prediction results are divided into cloud and non-
cloud classes at pixel level. The performance of CD-CTFM
is evaluated by five quantitative metrics, including mean
intersection-over-union (mIoU), precision, recall, F1-score, and
overall accuracy (OA) [53]. These metrics are defined as
follows:

mIoU =
TP

TP + FN + FP
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1-score =
2 × TP

2 × TP + FP + FN
(18)

OA =
TP + TN

TP + TN + FP + FN
(19)

where TP, TN, FP, and FN represent the total number of true
positive, true negative, false positive, and false negative pixels,
respectively. Besides, we utilize two metrics, including giga

floating-point operations per second (GFLOPS) and the number
of model parameters, to measure the efficiency of models.

3) Implementation Details: Our experiments are based on
the Pytorch framework and Ubuntu 20.04 equipped with an
NVIDIA 3090 24 G GPU. All models are optimized by the
stochastic gradient descent algorithm and the learning rate de-
cays from 0.001 to 0. Besides, the batch sizes, momentum, and
epochs are 32, 0.9, and 50, respectively.

B. Ablation Studies
In this section, we utilize 38-Cloud and MODIS datasets to

verify the effectiveness of backbone, LWFPM and LWCSAM
in CD-CTFM.

1) Effectiveness of Backbone: To begin with, the backbone
of CD-CTFM is replaced by that of MobileNetV2 in order
to evaluate the performance and efficiency of our proposed
backbone. As we can see in Table I, although GFLOPS and
parameters of CD-CTFM is only 28% and 91% of the model
based on MobileNetV2, CD-CTFM still has a 1.98% increase in
mIoU in 38-Cloud dataset. Subsequently, we conducted exper-
iments on CD-CTFM without DCEM so that we can evaluate
the impact of dark channel on cloud detection. The result is
also given in Table I. With guidance of AG based on dark
channel, CD-CTFM gains a 0.15% increase in mIoU and a
0.12% increase in F1-Score when it comes to the MODIS
dataset while the parameters and GFLOPS are almost the
same.

2) Effectiveness of LWFPM: To verify the effectiveness of
LWFPM, it is replaced by a simple PW convolution and ASPP,
respectively. Table II gives the performance and efficiency of
CD-CTFM with different feature fusion modules. In terms of
performance, LWFPM achieves higher scores than ASPP in
all metrics in MODIS dataset. As for 38-Cloud dataset, OA of
LWFPM is only 0.14% lower than ASPP, recall is 0.96% lower
than ASPP, and other evaluation metrics are all higer than that of
ASPP. With regard to efficiency, the params of LWFPM are fewer
than that of ASPP while GFLOPS is more both in 38-Cloud and
MODIS datasets.

3) Effectiveness of LWCSAM: In this part, LWCSAM is first
removed to evaluate its performance and efficiency. As given in
Table III, LWCSAM is almost a parameter-free module and its
GFLOPS is quite small. On the other hand, LWCSAM improves
performance in all metrics, especially mIoU. Then, LWCSAM is
compared with SE module, of which the result is also exhibited in
Table III. While SE module slightly outperforms LWCSAM on
some performance metrics, such as recall, LWCSAM is lighter
than SE.

C. Comparison With Other Methods

To further validate the effectiveness of our proposed model,
we compare CD-CTFM with five non-lightweight models and
four lightweight methods on MODIS and 38-Cloud datasets.
Five nonlightweight models contain two semantic segmen-
tation model (UNet [54] and DeepLabV3+ [55]) and three
cloud detection models (CloudFCN [16], CloudAttU [19], and
CRSNet [21]). Four lightweight methods contain two traditional
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Fig. 8. MIoU performace, GFLOPS, and parameters of cloud detection models on 38-Cloud dataset. x-axis is the GFLOPS, y-axis is the MIoU, and the
size of bubble represents the parameters. Here, CD-CTFM is compared with UNet, DeepLabV3+, CloudFCN, CloudAttU, CRSNet, MobileNetV2, GhostNet,
CD-AttDLV3+, and LCDNet.

Fig. 9. Comparison between the results of different methods in 38-Cloud dataset. White area represents cloud, black area represents noncloud, red area represents
false-positive detection and green area represents false-negative detection. (a) False-color RSI. (b) UNet. (c) DeepLabV3+. (d) CloudFCN. (e) CloudAttU.
(f) CRSNet. (g) Ground truth. (h) MobileNetV2. (i) GhostNet. (j) CDAttDLV3+. (k) LCDNet. (l) CD-CTFM (ours).
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Fig. 10. Comparison between the results of different methods in 38-Cloud dataset. White area represents cloud, black area represents noncloud, red area
represents false-positive detection and green area represents false-negative detection. (a) False-color RSI. (b) UNet. (c) DeepLabV3+. (d) CloudFCN. (e) CloudAttU.
(f) CRSNet. (g) Ground truth. (h) MobileNetV2. (i) GhostNet. (j) CDAttDLV3+. (k) LCDNet. (l) CD-CTFM (ours).

TABLE I
ABLATION STUDY OF PROPOSED BACKBONE

TABLE II
ABLATION STUDY OF LWFPM
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Fig. 11. Comparison between the results of different methods in MODIS dataset. White area represents cloud, black area represents noncloud, red area represents
false-positive detection and green area represents false-negative detection. (a) False-color RSI. (b) UNet. (c) DeepLabV3+. (d) CloudFCN. (e) CloudAttU.
(f) CRSNet. (g) Ground truth. (h) MobileNetV2. (i) GhostNet. (j) CDAttDLV3+. (k) LCDNet. (l) CD-CTFM (ours).

TABLE III
ABLATION STUDY OF LWCSAM

lightweight models (MobileNetV2 [44], and GhostNet [45]) and
two cloud detection models (CD-AttDLV3+ [22], and LCD-
Net [46]).

1) Results on 38-Cloud Dataset: Table IV gives the per-
formance and efficiency of various cloud detection models on
38-Cloud dataset. On the one hand, CD-CTFM outperforms four
lightweight models on performance and efficiency. Compared
with other top-performing lightweight models, mIoU of CD-
CTFM is 1.91% higher than LCDNet, while the parameters and
GFLOPS are both significantly fewer than that of LCDNet. On
the other hand, compared to five nonlightweight models, CD-
CTFM achieves similar or better results on performance metrics,

but obviously improves efficiency. For example, the mIoU index
of CD-CTFM is 0.6% lower than CloudAttU, which has the
highest value in mIoU, but the parameters and computations
of CloudAttU are 40.45 (M) and 64.21 GFLOPS, which are
13.6 and 159.5 times larger than CD-CTFM, respectively. Even
though CRSNet has the highest recall value, its precision value is
lower than that of CD-CTFM. As for efficiency, the parameters
of CRSNet is 15 times larger than parameters of our proposed
CD-CTFM. Fig. 8 visually illustrates the comparison between
different models on 38-Cloud dataset.

Figs. 9 and 10 display the qualitative results on 38-Cloud
dataset. White pixel represents detecting cloud for cloud and
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Fig. 12. Comparison between the results of different methods in MODIS dataset. White area represents cloud, black area represents non-cloud, red area represents
false-positive detection and green area represents false-negative detection. (a) False-color RSI. (b) UNet. (c) DeepLabV3+. (d) CloudFCN. (e) CloudAttU.
(f) CRSNet. (g) Ground truth. (h) MobileNetV2. (i) GhostNet. (j) CDAttDLV3+. (k) LCDNet. (l) CD-CTFM (ours).

TABLE IV
PERFORMANCE AND EFFICIENCY OF VARIOUS CLOUD DETECTION MODELS ON 38-CLOUD DATASET

black pixle represents detecting background for background cor-
rectly. Red pixel represents mistaking background for cloud and
green pixel represents mistaking cloud for background. Fig. 9
contains flat lands with complicated texture and broken clouds.
Thanks to DCEM incorporated in backbone, CD-CTFM cannot
only clearly detect correct cloud regions, but also exclude surface
with complex texture, which are like clouds in terms of color and
shape. Fig. 10 demonstrates the results on remote sensing image
with cloud snow coexistence. CD-CTFM is able to identify

ice and snow surfaces with complex textures, benefiting from
the combination of CNN with Transformer and the fusion of
multiscale features.

2) Results on MODIS Dataset: Quantitative results of var-
ious cloud detection models on MODIS are displayed in
Table V. For lightweight models, CD-CTFM achieves the
best quantitative results among all competing methods. To be
specific, compared with CD-AttDLV3+, CD-CTFM achieves
performance gain by 3.14%, 1.58%, 1.96%, 2.17%, and 1.59%
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TABLE V
PERFORMANCE AND EFFICIENCY OF VARIOUS CLOUD DETECTION MODELS ON MODIS DATASET

on mIoU, precision, recall, F1-score, and OA, respectively. The
quantitative results demonstrate that the proposed CD-CTFM
are able to achieve promising cloud detection performance. For
nonlightweight models, CD-CTFM also achieves similar results
on performance metrics but better on efficiency metrics. For
example, mIoU of CD-CTFM is 0.27% lower than CRSNet, OA
of CD-CTFM is 0.05% lower than CRSNet, and the parameters
and GFLOPS of CRSNet are 15 and 46 times larger than that of
CD-CTFM, respectively.

Qualitative results on MODIS dataset are shown in Figs. 11
and 12. Clouds in Fig. 11 have quite different visibility due
to various factors, such as altitude. Most models do not per-
form well when testing on this RSI, especially DeepLabV3+,
CDAttDLV3+, and LCDNet, but performance of CD-CTFM is
satisfactory. Fig. 12 is almost full of large clouds. CDAttDLV3+
is able to achieve promising performance on most of areas, but
it mistakes much broken clouds for background. In contrast,
CD-CTFM can effectively detect cloud from RSI covered with
broken clouds thanks to the fusion of local and global features
and dark channel prior.

V. DISCUSSION

The proposed approach for cloud detection has some advan-
tages compared with other methods.

On the one hand, the integration of CNN and Transformer em-
powers CD-CTFM with the capacity to recognize ice and snow.
When focusing solely on local color information, models tend to
misclassify ice and snow as clouds due to the white appearance
ice and snow exhibit. For instance, models like CDAttDLV3+,
LCDNet, and CloudFCN easily misclassify ice and snow as
clouds. Most of their network modules are primarily focused
on extracting local information. The MF block in CD-CTFM
effectively endows the model with the capability to fuse both
local and global information, enabling the model to distinguish
between ice and snow from clouds more effectively.

On the other hand, the incorporation of attention mechanism
enables an accuracy improvement with a limited parameter
utilization. In LWCSAM, the utilization of CAM, which is based
on cross dimensional interaction information, is advantageous
for channel attention modeling, while the subsequent SAM is
able to proficiently model spatial attention. In addition, within
the backbone network, the use of AG effectively integrates the

dark channel prior into the feature maps. Compared with models,
such as GhostNet and DeepLabv3+, that do not employ attention
mechanisms, CD-CTFM demonstrates superior performance in
key metrics, such as mIoU and F1-score.

However, the proposed method still exhibits certain limita-
tions that need to be addressed in future research. To be specific,
CD-CTFM still lags slightly behind in performance metrics,
such as mIoU and OA, when compared with certain traditional
nonlightweight cloud detection models, such as CRSNet. To
address the aforementioned limitations, we can investigate the
subsequent avenues for improvement.

1) Designing refined structures for the backbone network to
better utilize dark channel prior and modifying the AG
between encoder and decoder to better fuse low-level and
high-level information.

2) Exploring techniques to improve model generalization
ability, such as leveraging large vision language models,
in a lightweight way [56].

3) Introducing knowledge distillation and model compres-
sion techniques to further reduce computations of our
model.

In future research, we will endeavor to address these lim-
itations and propose improved model to further enhance the
performance and efficiency of cloud detection model.

VI. CONCLUSION

In this article, we propose a lightweight network, CD-CTFM,
to detect clouds efficiently. A lightweight CNN-Transformer
network is utilized as the backbone to extract local and global
feature simultaneously, where dark channel prior is introduced
to improve performance. Then, we design a LWFPM to fuse
multiscale features with global context information. A LWC-
SAM is integrated between the encoder and the decoder through
skip connection. Experimental results on 38-Cloud and MODIS
datasets demonstrate that CD-CTFM achieves better or similar
performance while decreasing parameters and computations,
compared with state-of-art methods.
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