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Abstract—Airports represent essential infrastructure, offering
substantial research and application potential. However, extracting
airports from complex synthetic aperture radar (SAR) scenes is
challenging due to the cluttered background and fine structure
of airports. This necessitates the integration of global and local
information for fine-grained extraction. To tackle this issue, this
article introduces a novel framework for fine-grained extraction
of airports from large-scale SAR images. First, a convolutional
neural networks (CNN) transformer hybrid semantic segmentation
network with multiscale contextual fusion is proposed, named
CNN-transformer network (CTMANet). In this network, the en-
coder combines CNNs and transformers to capture local and global
information, while the multiscale context aggregation block fuses
multiscale contextual information. Skip connections between the
encoder and decoder are established to minimize the loss of detailed
information and fuse low-level features with high-level semantic
features. Moreover, a category balance block is designed to ad-
dress class imbalance. Experimental results on the GF-3 dataset
demonstrate that CTMANet outperforms state-of-the-art methods,
proving its superior suitability for fine-grained airport extraction
in large-scale scenarios.

Index Terms—Convolutional neural networks (CNN) trans-
former hybrid, fine-grained airport extraction, multiscale context
fusion, semantic segmentation.

I. INTRODUCTION

A IRPORTS are significant infrastructure and transportation
hubs. Therefore, airport extraction is widely employed in

civil and military applications like airport navigation and aerial
reconnaissance [1], [2], [3]. Synthetic aperture radar (SAR) has
the advantage of all-day, all-weather imaging for earth observa-
tion, which can overcome the impact of inclement weather on
airport observation [4], [5], [6]. In SAR image, rough ground
surfaces exhibit higher backscatter while flat ground surfaces
appear as dark areas. According to the scattering properties
of SAR images, as shown in Fig. 1(a), the airport region typ-
ically presents distinctive visual features in SAR images [7]. In
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summary, SAR image is ideal for researching airport extraction.
Therefore, this article aims to precisely extract airport regions
from high-resolution large-scene SAR images, focusing on three
crucial aspects.

1) The complex scenes often contain areas with visual char-
acteristics similar to the airport such as rivers and roads,
which can lead to false alarms.

2) A significant class imbalance exists between the airport
class and the background class in large-scale SAR images.
An example is shown in Fig. 1, where the airport occupies
only a fraction of the total image area [see Fig. 1(a)], with
the minimum bounding box encompassing merely 6% of
the entire image [see Fig. 1(b) and (c)].

3) Airports exhibit diverse structures with rich details, and
their runways are interconnected with long spans.

Therefore, it is essential for the airport extraction network
to effectively capture and leverage both global and local infor-
mation. Specifically, airport runways, rivers, and roads exhibit
properties of long-span and connectivity. Therefore, the network
requires a large receptive field and the capacity to extract and
distinguish these global pieces of information. Conversely, the
intricate structure of airports, including smaller-scale targets
like aprons and the rich detail in the background, demands the
network that focuses on minimizing resolution loss and retaining
fine-grained features to capture these local pieces of information
effectively. Additionally, multiscale feature fusion is crucial for
this task.

In recent years, plentiful airport extraction studies have been
proposed and we summarize these studies in two ways: 1)
traditional methods and 2) deep learning-based methods. In
traditional approaches, researchers mainly utilize priori knowl-
edge and hand-designed features to extract airport. There are
three primary categories of traditional approaches, but each has
some clear flaws. 1) Extract the airport through the runway’s
edges [8], [9], [10]. Such methods merely use the most obvious
low-level features of airport and are only effective for small
scene images. However, this line segment-based method is prone
to interference from other objects with line features in complex
scenes, resulting in false alarms. 2) Using image segmentation to
extract airports by leveraging high-level features such as texture
and region [11], [12]. These approaches demonstrate superior
accuracy compared to the line segment-based method. Despite
this, its implementation is intricate and time-consuming due to
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Fig. 1. Example of the airport in large-scale images. (a) SAR image. (b) Corresponding ground truth with the airport’s minimum bounding box. (c) Ratio of the
minimum bounding box to the area of the whole image.

the pixel-level analysis and multifaceted features. 3) Methods
based on saliency analysis [13], [14], [15]. Such methods pri-
marily utilize information on differences between the airport
area and other areas to extract the airport. Nevertheless, areas
such as rivers and roads generally present salient features similar
to airports in SAR images. Furthermore, the background of
large-scale SAR images is complicated, making it difficult for
such methods to accurately and effectively extract airports. To
sum up, most traditional methods rely on the priori knowledge
and manually predesigned features, with limited parameters,
making them challenging to apply in complex scenarios.

Deep neural networks (DNN) have the capability to learn
feature representations from data, overcoming the limitations of
traditional methods based on manual tuning of finite parameters
and feature design [16]. In recent years, object detection and
semantic segmentation based on DNN have been widely used
for airport extraction. However, the airport extraction method
based on object detection [2], [17], [18], only employs bound-
ing boxes to represent the detected airport area, which cannot
precisely identify the airport contour. The extraction of contours
can be achieved by semantic segmentation method [7], [19],
which employs neural networks to classify pixels into airport or
background categories to obtain airport contours. Although the
promising results have been obtained, they involve the following
limitations. 1) The object detection [17], [18] or the semantic
segmentation that only extracts runways [19] fails to finely
extract the complete airport areas including runway, taxiway,
and apron (hereinafter collectively referred to as airport areas).
Extracting these components holds significant importance. First,
these areas serve as distinguishing features that set airports
apart from other regions. Second, extracting these areas can
narrow the detection area of military targets in large-scale SAR
images, thereby boosting the detection accuracy [20]. 2) Most
approaches are based on convolutional neural networks (CNN),
whose convolution can only model the relationship between
neighboring pixels in an image, weakening the importance of
contextual information [21], [22]. Transformer [23] can model
relationships between all pixels in an image, thus addressing the
limitation of CNN in obtaining global context [24]. But even so,
in contrast to CNN, transformer lacks two inductive biases: 1)

Locality: due to the sliding operation of convolutional kernels
over the image, CNN assumes greater correlation among adja-
cent pixels, with closer proximity indicating stronger correla-
tions. 2) Translation invariance. Consequently, transformer still
falls short in capturing local details [25]. Therefore, combining
the structures of CNN and transformer can complement each
other well, taking into account both local features and global
features. The combined CNN and transformer approaches have
proven to be effective in both object detection task [26], [27] and
semantic segmentation task [28], [29], [30]. CNN-transformer
architectures also have widespread applications in the field of
remote sensing [31], [32], [33], [34], [35], [36]. He et al. [31] em-
bedded the Swin transformer into the CNN-based UNet, design-
ing a transformer-CNN parallel structure with dual encoders.
Zhang et al. [33] proposed a hybrid network based on a multilevel
series-parallel combination of CNN and transformer. However,
these methods faced challenges in effectively fusing features
from the parallel CNN and transformer branches, potentially
increasing computational demands. Li et al. [34] proposed a
sequential structure combining transformer and UNet. However,
it did not take into account the fusion of multiscale features.

To tackle the aforementioned problems, this article proposes a
novel framework for fine-grained extraction of airports in large-
scale intricate scenes, in which a hybrid CNN-transformer net-
work (CTMANet) with multiscale context aggregation (MCA)
is presented. In CTMANet, an encoder is designed to capture
low-level features and local information with CNN and then
models long-range dependencies with transformer. The last
component of the encoder is the MCA block, which consists
of a sequence of cascaded dilated convolutions. This block
enables the fusion of detailed and coarse information, enlarging
the receptive field without compromising resolution. Moreover,
skip connections are utilized between the encoder and decoder to
restore the spatial information that is lost during downsampling.
Additionally, a category balance (CB) block is introduced to
split the SAR images and achieve category balance. The main
contributions of this article can be summarized as follows.

1) A novel method for fine-grained airport extraction from
high-resolution large-scene SAR images is proposed, ef-
fectively addressing the challenges posed by complex
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Fig. 2. Summary of the recent research on airport extraction.

backgrounds and intricate structures of airports. This
method demonstrates notable efficacy, achieving a mIoU
of 95.74% and an F1 Score of 95.59% on the Gaofen-3
large-scale SAR image dataset.

2) We proposed the CTMANet, a semantic segmentation
network that synergizes the strengths of CNN and trans-
former. The MCA block is introduced to capture and
fuse multiscale features. This network can handle the
complexity, long span, and scale variations of an airport,
making it easier to distinguish airports from objects that
have similar visual characteristics to airports.

3) We propose the CB block to process large-scale images,
achieving class balance instead of direct cropping or scal-
ing. This approach prevents the model from being biased
toward the background and enables fair treatment of both
positive and negative samples, subsequently enhancing the
accuracy of segmentation.

The rest of this article is organized as follows. Section II
reviews the current status of research on airport extraction.
Section III describes in detail the airport extraction method
proposed in this article. Section IV presents the experimental
datasets and details, and showcases the experimental results of
comparing CTMANet with state-of-the-art methods. In addition,
partial ablation experiments are also shown for better analysis of
the improved components of the network. Section V includes a
discussion of the experimental results and implications. Finally,
Section VI concludes this article.

II. RELATED WORK

In this section, we summarize the recent research on airport
extraction and categorize these works into two groups: tradi-
tional methods and deep learning-based methods, as depicted in
Fig. 2.

A. Traditional Airport Extraction Methods

Previous researches focused on airport extraction using a
priori knowledge and limited feature design. Xiong et al. [8]
proposed an airport runway recognition method in SAR images
based on Radon transform and hypothesis testing. Di et al. [9]
extracted the airport using a combination of improved chain

codes based edge tracking and the Hough transform. To ad-
dress the drawbacks of the Hough transform such as long time
consuming, Bai et al. [37] introduced an improved algorithm
based on the Hough transform. Kou et al. [38] proposed a
remote sensing image airport extraction method based on line
segment detector. Wang et al. [39] introduced a fast line segment
detection algorithm with a new filter for SAR images. This
group of methods concentrates on extracting airport by detecting
the edges of airport runways. Aytekin et al. [11] introduced a
texture-based approach for airport runway detection. Liu et al.
[40] combined texture segmentation and shape detection to
extract airport. Tao et al. [12] proposed an airport extraction
method based on the clustered scale-invariant feature transform
key points and region information. Zhang et al. [41] used image
segmentation, support vector machine classification, and shape
analysis to extract airport. These methods mainly employ image
segmentation to obtain the region of interest and extract airports
using high-level features such as texture, shape, and region of
the airports. Different from the pixel-by-pixel analysis method
based on region segmentation, Wang et al. [13] proposed an
airport extraction method based on saliency map. Zhang et al.
[14] utilized a two-layer visual saliency analysis model and
support vector machine to detect airport. To further enhance
the efficiency, Liu et al. [42] combined line segment grouping
and saliency analysis to extract airport. These saliency analysis-
based methods primarily use the differences between airport
areas and other areas to extract airport. However, traditional
methods face limitations in adaptability, scalability, and model
capacity to their reliance on prior knowledge and manually pre-
designed features. These approaches struggle with large-scale
datasets and are sensitive to parameter tuning.

B. Airport Extraction Methods Based on Deep Neural
Networks (DNN)

DNN excel in automatically learning hierarchical features
from data, exhibit superior performance across varied scenar-
ios and extensive datasets. DNN overcome the limitations of
traditional methods, which rely on manual tuning of limited
parameters and feature design. Combining traditional methods
with DNN is one of the airport extraction research directions.
Zhang et al. [43] combined transfer learned CNN and region
proposal with prior knowledge to extract airport. Zhu et al.
[44] proposed a two-step object detection framework integrating
saliency and ResNet. Xiao et al. [45] proposed an approach to
detect airport by using a GoogleNet with a light feature module
model and a support vector machine enhanced with hard negative
mining. Although the above methods improve the efficiency of
airport extraction, they still require tedious image preprocessing.

In recent years, object detection and semantic segmentation
have emerged as the primary approaches for investigating airport
extraction, which almost no longer relies solely on manual prior
knowledge. Chen et al. [17] used an improved Faster RCNN
algorithm to deal with the typical elongated linear geometric
shape of an airport, reducing the image preprocessing to some
extent. Yin et al. [18] applied multiscale training and hard sample
mining strategy to Faster RCNN for airport extraction. Cai et al.
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Fig. 3. Overview of the proposed airport extraction method.

[46] proposed a hard examples mining based CNN to solve the
airport-background class imbalance problem in training. Men
et al. [19] utilized DeepLabv3 with Lovasz-Softmax loss to
extract contours of airport runways from remote sensing images.
Daltla et al. [47] introduced a multimodal semantic segmentation
for extracting airport runway in panchromatic remote sensing
images. The two above methods [19], [47] focus solely on
pixelwise airport runway extraction, ignoring other important
components of the airport such as taxiway and apron. Therefore,
Chen et al. [7] proposed the multilevel dual attention mechanism
network, which can extract the airport’s runway area including
runway, taxiway, and apron. However, they downsampled the
SAR images by a factor of five before splitting, which class
imbalance between airport and background was also ignored.
To overcome these limitations, CB block is proposed to preserve
more detailed information and achieve class balance.

III. METHODOLOGY

This section provides a comprehensive introduction to the
proposed method. We first present an overview of the airport
extraction process and the general framework of CTMANet.
Next, we delve into two crucial components of CTMANet: the
transformer encoder and the MCA block. Finally, we introduce
the specific functionality of the CB block.

A. Overview

Fig. 3 illustrates the overall workflow of the proposed method.
Given a large-scale SAR image, its size is too large to be
directly processed by DNNs. As a preliminary step, the CB
block is applied to slice images and equalize the class distri-
bution within the training set. Specifically, the CB block first
segments these images into 512 × 512-pixel nonoverlapping

slices. It then focuses on slices containing airports (determined
from the minimum bounding box coordinates of the airports),
and performs overlapping slicing on these areas along with
data augmentation. The CB block ensures the generation of a
class-balanced dataset. This dataset is then fed to CTMANet, a
hybrid network composed of an encoder and a decoder.

The encoder operates in three stages: it first employs the resid-
ual block for initial feature extraction. On the one hand, CNN
can offer more prior knowledge to capture local information
because of its inductive biases. On the other hand, downsampling
the input feature map with CNN before applying transformer’s
self-attention can reduce computational load. Then, utilizes the
transformer encoder to capture long-range contextual informa-
tion, and finally incorporates the MCA block to fuse multiscale
contextual information. In addition, skip connections between
the encoder and decoder are added to preserve low-level feature
details.

Finally, the decoder yields an output image of 512 × 512
pixels, generated through four up-sampling operations. During
the prediction phase, the image slices are stitched together to
generate the final large-size prediction results. To be specific,
slices are systematically named and indexed row-by-row and
column-by-column during the CB block slicing process. The
network’s predictions align with the naming scheme. Subse-
quently, the slices are indexed row-by-row and column-by-
column to facilitate the connection of the slices to reconstruct
the complete image.

B. CTMANet Architecture

The overall architecture of the proposed CTMANet is shown
in Fig. 4, which follows an encoder–decoder structure. We
design a three-stage encoder consisting of a residual block,
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Fig. 4. Structure of the proposed CTMANet. It mainly consists of a CNN-transformer hybrid encoder with multiscale aggregation and a decoder with upsampling
by transposed convolution.

transformer encoder, and MCA block. In the first stage, a pre-
trained ResNet50 [48] serves as the residual block to capture
local information. Note that the last layer of ResNet50 [48] is
removed to reduce down-sampling operations, thus enlarging the
size of the feature map to retain more details. In the second stage,
transformer encoder is employed to capture global information.
For the feature map X ∈ RH×W×C , the Img2Seq block first
reshapes it into patches xp ∈ RN×D, where H , W , and C
denote the height, width, and channel number, respectively.
Here, N = (H ×W )/P 2 and D = P × P × C represent the
patch count and dimension. Then, Img2Seq block maps the
patches xp into latent embedding space using a learnable linear
projection, obtaining patch embeddingxpe ∈ RN×d, where d is
the embedding dimension. The xpe processed by the Img2Seq
block is then fed into the transformer encoder for long-range
dependency capture. Seq2Img block initially employs a linear
projection to transform the output of the transformer encoder
into patches z ∈ RN×Dwith dimensions D, and then reshape
patches z into feature maps Z ∈ RH×W×C . In the third stage,
the MCA block captures and fuses multiscale contextual in-
formation from the feature maps of maximum size. After the
above three encoding stages, feature maps with a size of 1/16
of the original input image are obtained. High-level features
in the decoder possess robust semantic information but lack in
detailed information, while low-level features in the encoder
are semantically weaker but rich in detail. Consequently, two
skip connections are established between the encoder’s resid-
ual block and the decoder to fuse high-level semantics with
low-level details, and to recover local spatial information lost
due to downsampling. In the decoder, transposed convolution
is employed for upsampling, restoring spatial resolution incre-
mentally. Ultimately, a prediction mask is obtained through a
sigmoid function.

C. Transformer Encoder

Transformer excels in modeling long-range dependencies
within a sequence of embeddings owing to the self-attention

Fig. 5. Structure of the transformer Encoder.

mechanism. As shown in Fig. 5, the transformer encoder takes
the patch embedding xpe ∈ RN×d derived from Img2Seq
block, concatenates a learnable class token, and then adds a
position embedding. The transformer encoder’s core consists
of M transformer layers, with input tokens t ∈ R(N+1)×d.
Each transformer layer comprises layer norm (LN), multihead
attention (MHA), and multilayer perceptron (MLP). The single-
head self-attention (SHSA) projects the input t into query (Q),
key (K), and value (V ) via different projection matrices WQ,
WK , and WV , respectively. MHA extends on SHSA by using
distinct projection matrices in each attention head. Specifically,
for h attention heads, the Qi, Ki, Vi of the ith attention head
are obtained from the projection of matrices WQ

i , WK
i , WV

i ∈
Rd×(d/h), respectively. They can be formalized as follows:

Qi = tWQ
i (1)
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Ki = tWK
i (2)

Vi = tWV
i . (3)

Scaled dot-product attention (SDPA) of ith attention head in
MHA can be defined as

Attention (Qi, Ki, Vi) = Softmax

(
QiK

T
i√

(d/h)

)
Vi. (4)

The formula involves three main steps: First, the dot product
between Qi and Ki is computed and scaled by the square root of
the dimension of Vi(d/h). Then, the Softmax function is applied
to the scaled dot product to generate the attention weights.
Finally, the attention weights are multiplied by Vi to obtain the
output of SDPA. The output of MHA is produced by applying
a linear projection to the concatenated results of SDPA. Both
M and h are set to 12 in this article. The output zm of mth
transformer layer can be expressed as

zmt = MHA (LN (zm−1)) + zm−1 (5)

zm = MLP (LN (zmt)) + zmt. (6)

Here, zm−1 is the output from (m− 1)th transformer layer.
zmt is the result of applying MHA to the output of the (m − 1)th
layer after LN, and then adding zm−1. Finally, the output zm is
obtained by applying MLP to the result of LN applied to zm−1,
and then adding zmt.

D. Multiscale Context Aggregation Block

The MCA block is proposed to fuse multiscale features. This
block is composed of dilated convolution, which can enlarge the
receptive field while maintaining the resolution of the feature
map, preventing the loss of spatial information. Deeplabv3 [49]
designed modules that use dilated convolution in cascade or
parallel manner to address segmenting objects across multiple
scales. Inspired by this, this article integrates both parallel
and cascaded structures. As shown in Fig. 4, the MCA block
incorporates four parallel branches, each cascaded by dilated
convolutions with varying dilation rates. The receptive fields of
the final output feature maps across these four branches stand at
37, 15, and 31, respectively. The fusion of multiscale features is
achieved by summing the output feature maps of these branches
with the MCA block’s input feature map.

E. Category Balance Block

The CB block is designed to address class imbalance in the
dataset, given that airports comprise only a minor segment of
the total image. As depicted in Fig. 3, the CB block initially
partitions the input large-scale SAR images and ground truth
into nonoverlapping 512 × 512-pixel slices. Following this,
the minimum bounding box coordinates for the airports are
identified based on their labels, and the airport sections within
these boxes are subsequently cut. The nonoverlapping slices bear
no correlation to one another, but the pixels of objects belonging
to the same class are contiguous and have inherent semantic cor-
relation. Consequently, a 50% overlap rate is allowed between

adjacent slices by setting the slicing stride to 256 pixels, ensuring
semantic information continuity to some extent. Through over-
lapping slicing, each slice incorporates some duplicated pixel
information, belonging to both the current slice and its adjacent
slices. The model can leverage pixel information within the
overlapping region to infer and capture continuous features in the
image. Consequently, when processing each slice, the model can
acquire contextual information, mitigating errors during slice
stitching. Subsequently, data augmentation is employed, such
as flipping and random rotations, to inject diversity within the
class data. This strategy effectively alleviates the negative impact
of class imbalance.

IV. EXPERIMENTS

In this section, we introduce the dataset and the experimental
setup. To evaluate the performance of CTMANet, we compared
the proposed approach with seven state-of-the-art semantic seg-
mentation methods, and reported quantitative results on the
test set. To showcase CTMANet, we provide the visualization
results and details of two airport scenes. Moreover, we conducted
ablation experiments to evaluate the impact of individual blocks
in the proposed architecture. Finally, we present an analysis of
the impact of the ratio of positive and negative samples on the
segmentation performance.

A. Dataset

The dataset used in this article contains 34 real SAR im-
ages captured by the Gaofen-3 satellite with a resolution of
0.5 m/pixel. The size of each image is about 15 000× 10 000 pix-
els. And the polarization modes include horizontal–horizontal
and vertical-vertical. Pixel-level labeling is performed on the
SAR images using MATLAB’s image labeler. For precise anno-
tation of the airport contour, optical images from Google Earth
are used as a reference. Airport regions are annotated as the
airport class in white masks (255, 255, 255), while the rest are
labeled as background class in black masks (0, 0, 0). An example
is shown in Fig. 6.

To facilitate the experiments, the input large-scale SAR im-
ages and corresponding ground truths are split into small slices of
512 × 512 pixels via the CB block. Furthermore, to mitigate the
class imbalance in the training set, data augmentation strategies
are employed in CB block. The training set and test set encom-
pass 26 783 and 7208 small images, respectively. Representative
slices of the dataset are shown in Fig. 7. To better visualize the
performance of the proposed model, the predicted masks for
the test set are stitched back to match the original size of the
large-scale image.

B. Implementation Details

The experimental parameter settings are presented in Table I.
During the training phase, the SGD optimizer with a batch size
at 16 is employed. The initial learning rate is set to 0.05 and
gradually decreases from the initial value to the lowest point
and then gradually returns to 0.05 within every 100 epochs
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Fig. 6. Example of SAR images used in this article. (a) Original large-scale
SAR image. (b) Ground truth of (a). (c) Details of the airport in (a). (d) Ground
truth of (c).

Fig. 7. Samples of the dataset.

with the CosineAnnealingLR scheduler. The network reaches
convergence at approximately 500 epochs.

The sum of binary cross entropy (BCE) loss LBCE and dice
loss LDice are used as loss functions, which can be expressed as
follows:

LBCE = −X log Y + (1−X) log (1− Y ) (7)

TABLE I
TRAINING SETTING

LDice = 1− 2 |X ∩ Y |
|X|+ |Y | (8)

Ltotal = LBCE + LDice (9)

where X denotes the ground truth and Y is the prediction of the
model.

In tasks like airport extraction where the imbalance be-
tween target and background is significant, BCE loss is less
effective. This is due to the imbalance between the airport
(Y = 1) and background (Y = 0) pixels, where BCE loss bi-
ases the model towards the background. Dice loss measures
the overlap between predictions and labels, which can ad-
dress the class imbalance problem by focusing more on air-
port regions. However, dice loss can be prone to significant
loss fluctuations and gradient instability in training, especially
in binary classification with small positive samples. There-
fore, we combine BCE loss and Dice loss to mitigate these
issues.

C. Evaluation Metric

This article adopts Intersection over Union (IoU), mean IoU
(mIoU), and F1 score to evaluate the model’s performance.
IoU measures the overlap between the predicted segmentation
and ground truth, computed as the ratio of the intersection
to the union of the prediction and ground truth for a single
category. And mIoU is the average of IoU of all categories in
the dataset. F1 score is the harmonic mean of Precision and
Recall. Precision represents the proportion of pixels correctly
predicted as positive (i.e., airport) among all pixels predicted
as positive. And Recall indicates the proportion of pixels cor-
rectly predicted among all pixels whose ground truth is the
airport. The formulas used to calculate these metrics are as
follows:

IoU =
Pii∑k

j=0 Pij +
∑k

j=0 (Pji − Pii)
(10)

mIoU =
1

k + 1

k∑
i=0

∑k
i=0 Pii∑k

j=0 Pij +
∑k

j=0 (Pji − Pii)
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)
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TABLE II
QUANTITATIVE COMPARISON OF SEGMENTATION RESULTS ON TEST SET (%)

F1 Score =
2× Precision × Recall

Precision + Recall
(14)

where k + 1 denotes the number of categories, and k = 1 given
that airport extraction constitutes a binary semantic segmen-
tation task in this article. Pii represents the count of pixels
belonging to class I that are correctly predicted. Pij is the count
of pixels whose ground truth is class I but are predicted as class
J. Pji denotes the count of pixels that belong to class J but are
predicted as class I. TP, FP, and FN correspondingly represent
true positive, false positive, and false negative, respectively.

D. Comparison With State-of-the-Art Methods

To validate the segmentation performance of CTMANet, it
was compared with seven state-of-the-art semantic segmentation
methods. The backbone of DANet [50], PSPNet [51], DMNet
[52], Deeplabv3+ [53] is ResNet50 [48]; for HRNet [54], OCR-
Net [55], it is HRNetV2-W18; and for Segformer [56], it is
MIT-B0.

Table II presents the quantitative comparison between CT-
MANet and these other methods on the test set. Among the other
four methods utilizing ResNet50 [48] as their backbone, DANet
[50] and Deeplabv3+ [53] emerged as superior performers.
CTMANet rivals or even surpasses both these methods, with
at least 2.18% (91.57 versus 89.39) higher IoU of the airport
and 1.1% (95.74 versus 94.64) higher in mIoU. Compared
with HRNet [54], the IoU of airport, mIoU, and F1 score of
the proposed method are 7.19% (91.57 versus 84.38), 3.67%
(95.74 versus 92.10), and 4.06% (95.59 versus 91.53) higher,
respectively. Segformer [56], which is based on the transformer,
and OCRNet [55], which combines HRNet [54] and transformer,
deliver comparable performance. Though CTMANet also in-
corporates the benefits of transformer, it surpasses these two
methods by achieving at least 5% (91.57 versus 86.57), 2.53%
(95.74 versus 93.21), and 2.79% (95.59 versus 92.80) higher
IoU of airport, mIoU, and F1 score, respectively. CTMANet
achieves the most competitive results among all considered
methods, which quantitatively demonstrates the effectiveness
and superiority.

To provide a more intuitive demonstration of CTMANet’s
performance, we showcase visualizations and in-depth details
for two airports.

TABLE III
INFORMATION OF AIRPORT I

1) Results of Airport I: Table III illustrates the information
about the image containing airport I. Fig. 8 shows the segmen-
tation results on airport I. Fig. 8(a) depicts the SAR image and
corresponding ground truth. Fig. 8(b)–(i) presents the fusion
maps and predictions from DANet [50], PSPNet [51], HRNet
[54], DMNet [52], Deeplabv3+ [53], OCRNet [55], Segformer
[56], and CTMANet, respectively. The details of the airport
I extraction results are shown in Fig. 9. Notably, the yellow
boxes highlight regions where the background is misclassified as
airport categories, whereas the red boxes represent the misclas-
sification and omission of airport regions. This airport is situated
in a farmland area with a town area to its right [see Fig. 8(a)]. The
complex road network in the vicinity tends to be misclassified
as the airport category due to its similar appearance. Other
methods exhibit varying degrees of misclassification in these
areas, as shown in the yellow boxes of Fig. 8(b)–(h). On closer
examination, it can be seen that the roads surrounding the airport
are often misinterpreted as airport areas by other methods [see
Fig. 9(b)–(h)]. In contrast, the proposed method, exhibits almost
no such errors, demonstrating its capability to better distinguish
these roads from the airport areas. Meanwhile, this airport is
surrounded by buildings with irregular boundaries, especially
noticeable in the apron area. Other methods exhibit serious
misclassification and omission in these areas, as indicated by
the red boxes in Fig. 9(b)–(h). However, CTMANet aligns most
accurately with the airport area, as shown in Fig. 9(i). Finally,
at the splicing of slices, some methods [see Fig. 9(b), (c), (e),
and (f)] show different degrees of errors, while CTMANet has
almost no errors at the splicing. This demonstrates CTMANet’s
superiority to capture and fuse multiscale information, enhanc-
ing the overall scene understanding.

Table IV summarizes the quantitative results of these meth-
ods on airport I. The IoU of airport for the other methods is
below 80%, whereas CTMANet achieves 88.91%. Moreover,
CTMANet outperforms the other methods in terms of both mIoU
and F1 score.
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Fig. 8. Segmentation results for airport I. (a) Original SAR image and the corresponding ground truth. (b) DANet. (c) PSPNet. (d) HRNet. (e) DMNet. (f)
Deeplabv3+. (g) OCRNet. (h) Segformer. (i) Ours.

2) Results of Airport II: The segmentation results of CT-
MANet compared to currently popular methods on airport II are
visualized in Fig. 10. Table V provides information about the im-
age. This airport is located on the outskirts of town, surrounded
by buildings and roads. Most other methods inaccurately classify
darker areas, like roads, as part of the airport (as seen in the

yellow box). However, CTMANet does not share this issue,
showing practically no false alarms.

The advantages of CTMANet are evident in the extraction
results of airport II, as shown in Fig. 11. In the upper part
of the airport, the airport area is prone to confusion with its
surrounding nonairport areas. And this area is also where the
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Fig. 9. Details of segmentation results for Airport I. (a) SAR image and the
corresponding ground truth. (b) DANet. (c) PSPNet. (d) HRNet. (e) DMNet.
(f) Deeplabv3+. (g) OCRNet. (h) Segformer. (i) Ours.

slices are spliced. However, as demonstrated in Fig. 11(b)–(h),
other methods suffer from severe misclassification and omission
in this region, whereas CTMANet extracts the airport area almost
completely in terms of edge and detail extraction.

Table VI illustrates the quantitative comparison of segmen-
tation results on airport II of the eight methods. Even though
there are a few misclassified pixels, they are relatively small in

TABLE IV
QUANTITATIVE COMPARISON OF SEGMENTATION RESULTS ON AIRPORT I (%)

TABLE V
INFORMATION OF AIRPORT II

TABLE VI
QUANTITATIVE COMPARISON OF SEGMENTATION RESULTS ON AIRPORT II (%)

comparison to the total number of background pixels. Therefore,
the IoU of the background remains high despite the obvious
misclassification. Reducing background misclassifications has
a negligible effect on the IoU of the background. In this case,
comparison of other evaluation metrics unambiguously shows
that CTMANet outperforms the other methods, particularly in
terms of the IoU of airport

The elaborate experimental results and analysis demonstrate
that CTMANet can accurately and completely extract the airport
region from large-scale images, while exhibiting almost no
false alarms. It proves that the proposed method shows stronger
robustness in complex scenes, especially in challenging regions
such as those with dark visual features and messy environments.

E. Ablation Study

To verify the effectiveness of each block, an ablation study was
conducted. The quantitative results are displayed in Table VII
and the corresponding visualizations are in Fig. 12. The baseline
model is a version of CTMANet, which does not include the
transformer encoder and MCA block. We assessed the impact
of transformer encoder, MCA block, and CB block on seg-
mentation performance. Additionally, the influence of backbone
selection on segmentation accuracy by substituting ResNet50
[48] with ResNet101 is further investigated.
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Fig. 10. Segmentation results for airport II. (a) Original SAR image and the corresponding ground truth. (b) DANet. (c) PSPNet. (d) HRNet. (e) DMNet.
(f) Deeplabv3+. (g) OCRNet. (h) Segformer. (i) Ours.
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TABLE VII
ABLATION STUDY ON TEST SET (%)

TABLE VIII
EFFECT OF DIFFERENT BRANCHES IN MCA BLOCK ON SEGMENTATION RESULTS (%)

As illustrated in Table VII, the baseline method attains an
IoU of airport, mIoU, and F1 score of 74.98%, 87.34%, and
85.70%, respectively. Notwithstanding the multitude of misclas-
sifications, the IoU of the background remains high due to the
sheer abundance of background pixels. The visualization result
of the baseline [see Fig. 12(c)] displays a misclassification of
dark areas, such as water bodies, as airport regions. Moreover,
the model exhibits insufficient accuracy in airport extraction,
particularly at the edges.

1) Effect of MCA block: Table VII indicates that incorpo-
rating the MCA block led to a significant improvement in
segmentation performance, with the IoU of airport increasing by
10.97%, mIoU by 5.56%, and F1 score by 6.74%. Furthermore,
as shown in Fig. 12(d), the introduction of the MCA block
effectively reduced misclassifications in areas with dark colors,
such as rivers.

In addition, we explored the effect of different branches in
the MCA block on segmentation results. The four branches of
the MCA block are numbered 1 to 4 from top to bottom (see
Fig. 4). As shown in Table VIII, adding the first branch improves
the mIoU and F1 score by 0.18% and 0.19%, respectively. The
incorporation of the second branch led to increases in mIoU
and F1 score by 0.28% and 0.31%, respectively. Adding the
third branch resulted in further improvements in mIoU and F1

score by 0.15% and 0.17%, respectively. With the addition of
the fourth branch, the mIoU and F1 score increased by 0.24%
and 0.25%, respectively. Each branch captures information at
different scales, so each is important for enhancing segmentation
accuracy.

2) Effect of Transformer Encoder: Table VIII demonstrates
that after employing the transformer encoder independently, the
model achieves 14.91%, 7.55%, and 8.97% improvements on
IoU of airport, mIoU, and F1 score, respectively. Fig. 12(e)
shows a marked reduction in the number of false alarms in the

background part, maintaining only a marginal fraction of mis-
classifications, thereby enhancing the accuracy of segmentation.

3) Effect of CB Block: the effect of the class balance strategy
in CB block is also verified. Fig. 12(f) illustrates that the model
exhibits poorer performance without the class balance strategy.
Owing to the severe disproportion between positive and negative
samples in the original dataset, the model fails to adequately
learn features of the airports. Moreover, it demonstrates a sig-
nificant reduction in errors at the splice of the image when
using the CB block [see Fig. 12(h)] compared to not using it
[see Fig. 12(f)], highlighting the importance of the CB block
in ensuring the continuity of semantic information between
neighboring slices.

Furthermore, the impact of the proportion of positive and
negative samples on segmentation accuracy is explored. Fig. 13
provides details for three datasets exhibiting different propor-
tions. The original dataset contains only 666 airport slices with
a positive-to-negative sample ratio of approximately 1:20. To
overcome the issue of class imbalance, the class balance strategy
is used in the CB block to expand the dataset and acquire two
additional datasets with positive-to-negative sample ratios of
roughly 1:4 and 1:1.

The segmentation results for the different datasets are dis-
played in Fig. 14. Notably, with the ratio at 1:4, there is a
marked improvement in mIoU andF1 score by 4.65% and 5.5%,
respectively. Furthermore, the ratio of 1:1 proved to be the most
advantageous for all evaluation metrics, enhancing the mIoU by
6.75% and the F1 score by 7.81% in comparison to the original
dataset.

CTMANet achieves the best performance [see Fig. 12(h)],
which is closest to the ground truth with almost no false alarms.
The effectiveness of the joint blocks is fully demonstrated in
ablation experiments. And ResNet50 [48] is still adopted as
the backbone because our replacement of the backbone with
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Fig. 11. Details of segmentation results for Airport II. (a) SAR image and the
corresponding ground truth. (b) DANet. (c) PSPNet. (d) HRNet. (e) DMNet.
(f) Deeplabv3+. (g) OCRNet. (h) Segformer. (i) Ours.

ResNet101 [48] did not show any particular impact on the
segmentation accuracy.

V. DISCUSSION

This article proposes CTMANet, a CNN-transformer hybrid
network with a MCA block, designed to address the challenges

Fig. 12. Segmentation results of ablation study. (a) SAR image. (b) Ground
truth. (c) Baseline. (d) Baseline + MCA block. (e) Baseline + trans-
former encoder. (f) CTMANet without CB block. (g) CTMANet (ResNet101).
(h) CTMANet.

Fig. 13. Datasets with different proportions of positive and negative samples.

posed by complex contexts and the fine structure of airport in
airport extraction. CNN is adept at capturing local information
because of its inductive biases: locality and translation invari-
ance. But fall short in global context comprehension. In contrast,
transformer excels at capturing long-range dependencies and can
obtain global representations from shallow layers [57], but is
struggle to capture local information. CTMANet combines both
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Fig. 14. Segmentation performance of datasets with proportions of positive
and negative samples.

of these network architectures, aiming to effectively capture and
utilize local detail and global context for airport extraction.

The approach is validated through comparative experiments
and ablation studies. Experiments reveal that for long-span
targets within airports, CNN-based methods such as PSPNet,
DANet, and DeepLabv3+ (see Fig. 9) suffer from signifi-
cant misclassifications and omissions. Conversely, transformer-
based network like Segformer shows no severe errors for such
targets. For smaller-scale targets like aprons, the segmentation
accuracy of CNN-based methods surpasses that of Segformer.
The proposed method achieves accurate segmentation for both
long-span and small-scale targets.

Ablation studies (see Fig. 12) showcase a long-span river
in the original image. The baseline model [see Fig. 12(c)], a
CNN-based architecture without the transformer encoder and
MCA block, shows effective segmentation for smaller airport
targets, indicating CNN’s proficiency in capturing local infor-
mation. However, it significantly misclassifies the long-span
river and the airport runway. Adding the transformer encoder
to the baseline [see Fig. 12(e)] eliminates misclassifications in
the river and improves airport runway segmentation accuracy.
These experiments illustrate the transformer’s superior capabil-
ity to capture long-range dependencies for identifying long-span
targets, while also highlighting the CNN’s aptitude in capturing
fine-grained local information for smaller-scale targets. Consid-
ering the challenges posed by varying target scales, this article
further introduced the MCA block. Ablation studies reveal that
adding the MCA block to the baseline [see Fig. 12(d)] signifi-
cantly improves the misclassification of the long-span river and
restores finer details of the airport, demonstrating the module’s
effectiveness in capturing and fusing multiscale information.

Another challenge is the small proportion of airport areas in
large-scale SAR images, leading to an abundance of background
images in slices. Ablation experiments [see Fig. 12(f)] show that
without category balancing, the model heavily biases towards
background areas, resulting in accurate background segmenta-
tion but severe errors in airport areas. To address this, this article
introduced the CB block, which improves the segmentation
accuracy by implementing class balancing.

In summary, this article proposes a novel airport extraction
framework, stemming from perspectives of capturing global and
local information, multiscale information fusion, and positive-
negative sample class balance. This method enhances the
model’s comprehension of complex scenes, and improves seg-
mentation precision for objects of various scales.

VI. CONCLUSION

In this article, a method for fine-grained airports extraction
from large-scale SAR images is proposed, aiming to address
the challenges posed by the complex backgrounds and detailed
airport structures. A novel semantic segmentation network, CT-
MANet, is introduced, which combines CNN and transformer
to effectively capture both local and global contextual informa-
tion. The three-stage encoder includes CNNs for local feature
capture, transformers for long-range dependency processing,
and an MSA block for multiscale contextual feature fusion.
Skip connections between the encoder and decoder facilitate
the fusion of low-level details and high-level semantics, while
transposed convolution is employed for upsampling in the de-
coder. Additionally, a CB block is incorporated to alleviate the
class imbalance caused by the small proportion of airports in
large-scale images. Experiments with various state-of-the-art
methods on a real large-scale SAR dataset demonstrate the
effectiveness and superiority of CTMANet. Future work will
focus on optimizing and adapting the proposed method for
broader applications.
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