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Abstract—Interferometric synthetic aperture radar (InSAR)
technology is widely used to create digital elevation models and
measure dynamics on the Earth’s surface, including monitoring
ground displacements. The lack of or limited-collected ground-
truth data, however, often poses a bottleneck in validating the re-
search outcome, particularly at high precision and resolution levels.
To mitigate the gap, we introduce a new deep generative model
(DGM) for the simulation of linear deformation rate maps. We
demonstrate that our adversarial DGM architecture with carefully
designed preprocessing and postprocessing modules performs well
for InSAR deformation signal synthesis, even when limited data are
available. We also introduce a dimensionality reduction method,
based on the distance between the real-world and generated image
feature vectors, to address the lack of quantitative evaluation for
data simulation. Furthermore, we introduce a hybrid evaluation
metric integrating quantitative and qualitative measures, which is
more intuitive than the existing methods and makes it easier for
domain experts to participate in the evaluation. We compare the
results of our model with established methods. The comparison
result illustrates the superior performance of our proposed method.

Index Terms—Deep generative modeling, generative adversarial
network (GAN), interferometric synthetic aperture radar (InSAR),
radar signal processing, remote sensing images, simulation.

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (InSAR)
technology has been widely used to understand the Earth’s

surface and subsurface movements [1], [2]. In certain applica-
tions, InSAR delivers much better results compared to traditional
photogrammetry, level sensors, and light detection and ranging
technologies [3], [4]. The major advantage of InSAR is that it
uses an active microwave remote sensing detection mode, which
lets it work in 24 h lighting conditions and in any weather (even
with clouds or smoke). InSAR can extract line-of-sight shifts
with accuracy from centimeters to millimeters by utilizing the
phase difference between two time-and/or-space-separated SAR
images of the same area [4], [5]. Due to the highly precise and
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dense measurements provided by InSAR, gathering adequate
ground-truth data for validating InSAR measurements becomes
challenging. The scarcity or limited availability of collected
ground-truth data poses a significant hurdle in validating InSAR
pipelines and the related research findings. In addition, stake-
holders are consistently intrigued by the minimum detectable
size of deformation and displacement, but quantifying these
factors in practical scenarios presents inherent difficulties. In
order to generate surface motion information with high spatial
resolution and large coverage, there is a pressing need for a
reliable and efficient image synthesis method. This study aims
to mitigate this research gap by utilizing deep generative models
(DGMs) to simulate linear deformation rate maps, which are a
common product format derived from InSAR measurements.

A. Existing Synthetic InSAR Data

To the best of our knowledge, there are two synthetic InSAR
data methods: unconditional and conditional data generation.
For unconditional data generation, no previous generative ad-
versarial network (GAN) model has developed an InSAR signal
simulator for generating realistic complex features. Related
works of unconditional synthesis method only simulate basic
geometric features, such as cone, peak, slope, and square [6], [7],
[8], [9], [10]. They use various linear mathematical functions for
drawing basic geometric features [3], [11]. Conditional synthetic
method generate InSAR data [12], [13], [14], [15], [16], [17]
based on digital elevation model (DEM)/InSAR interferograms.
All of these methods are also based on mathematical models
to randomly generate basic geometric features like the previous
methods, but the difference is then used to add randomly crop
DEM/InSAR interferograms data, which is combined and used
as training data.

1) Unconditional Synthesis of InSAR Data: In terms of un-
conditional synthetic of InSAR data, Duan et al. [3] presented
a simulated annealing algorithm to achieve deformation results
with high accuracy and high efficiency. The main contribution
is that they designed different functions of acceptance crite-
rion and random solution generator. Furthermore, the random
solution generator introduced an exponential function as the
mapping function to transform the random number to speed up
the convergence of the final generation. As a result, the work
alleviated the drawbacks of traditional deformation estimation
methods, such as local extremums and computational efficiency.
In the same year, Anantrasirichai et al. [11], [18] proposed a
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synthetic training dataset for detecting volcanic deformation in
radar interferograms and InSAR time series based on the U.K.
velocity map characteristics. Since they lacked real deformation
signals, they trained with synthetic signals from point sources
and tunnels. To create the synthetic datasets, they used a simple
linear function with two components: the deformation and the
turbulent atmosphere. The authors utilized two deformation
models commonly associated with coal mining and tunneling
in the U.K. With the help of the synthetic training dataset,
Anantrasirichai et al. [18] adapted a pretrained CNN model to
classify sustained volcanic deformation in InSAR. The same
team [11] also adapted a pretrained CNN model to detect
ground deformation caused by mining, landslides, and dewater-
ing. By generating large volumes of training data using basic
geometric features, the authors could detect patterns related
to geological hazards. Sun et al. [9] introduced DeepInSAR,
a deep convolutional neural network-based model capable of
intelligently resolving phase filtering and coherence estimation
challenges. Through evaluations on simulated and real data,
the teacher–student framework addresses the issue of missing
clean InSAR ground truth, demonstrating superior performance
in both quantitative and qualitative assessments.

Sun et al. [10] introduced a two-stage black-box optimization
framework designed to jointly estimate average ground deforma-
tion rates and terrain DEM errors. The method leverages an iter-
ative grid search to obtain coarse candidate solutions, followed
by the application of a covariance matrix adaptive evolution
strategy to refine the final local results. Performance assessments
using both simulated and real datasets, including quantitative
and qualitative comparisons with different optimizers, affirm
the reliability and effectiveness of their approach. These two
papers provide a simulator that generates InSAR signals, as
illustrated in the left columns of Figs. 1 and 2. However, these
related works only use basic geometric features to simulate basic
isolated features. They do not simulate realistic characteristics
of composite features found in InSAR images.

2) Conditional Synthetic of InSAR Data: In terms of
DEM/InSAR interferograms-based conditional synthetic of
InSAR data, Rouet-Leduc et al. [14] demonstrated the use
of synthetic data to train an autoencoder model as part of a
generative model for detecting ground deformation signals from
noisy InSAR time series. The researchers added atmospheric
and topographic noise to interferograms to create synthetic time
series of deformation, which were then used to train two inde-
pendent models. One model was trained to recover point source
deformation, while the other was trained to recover deformation
on faults. Both models were designed to map synthetic noisy
time series to synthetic cumulative displacements [14]. The use
of synthetic data in this way enables the autoencoder model
to autonomously untangle ground deformation from noise in
InSAR time series and detect deformation signals without
prior knowledge of the location or slip behavior of a fault. By
successfully training models to detect deformation signals in
the presence of noise, this method has the potential to improve
the accuracy of ground deformation monitoring using InSAR
technology. The following year, Brengman et al. [15] also
adapted a CNN to detect, locate, and classify surface

Fig. 1. From left to right, we show samples of the simulated motion signals
(Sun et al. [8], [9] as baseline, and Wu et al. [16], [17], without DEM and with
DEM as compared work). All samples have a value range of [–15, +15] cm/year.

Fig. 2. From left to right, we show samples of the simulated resultant inter-
ferograms (Sun et al. [8], [9] as baseline, Wu et al. [16], [17] without DEM
and with DEM as compared work). All samples are the interferometric of phase
wrapping [–π, +π) – (Blue: –π; Red: +π).

deformation by using synthetic data. Specifically, they
generated synthetic interferograms containing wrapped and
unwrapped surface deformations with synthetic atmospheric
and topographic noise. To generate the noise, they used a
noise correlation scale to create atmospheric noise. Then, they
randomly added noise related to the landscape by scaling DEMs
and mixing in the noise. These steps created a final noisy
image with a millimeter to centimeter scale noise amplitude
that was spatially and topographically linked. As a result,
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generated atmospheric and topographic noise on interferograms
as synthetic data can make the CNN network capable of
detecting, locating, and classifying surface deformation with
high accuracy and high efficiency.

Wu et al. [16], [17] used deep convolutional neural networks
to detect and map rapid subsidence induced by mining activities
using time-series Sentinel-1 SAR images. They developed a
deformation detection network to automatically identify swiftly
subsiding areas from wrapped interferograms and a phase un-
wrapping network designed to unwrap interferogram patches
centred on detected subsidence locations [16], as illustrated in
the middle columns of Figs. 1 and 2. They provided interfero-
gram simulation strategies that generate diverse training samples
incorporating distorted 2-D Gaussian surfaces [19] and fractal
Perlin noise [20]. At the same year, Wu et al. [17] presented an
innovative approach to enhance the reliability of phase unwrap-
ping in interferograms. This article introduces the discontinuity
estimation network tailored to predict phase discontinuities with
remarkable precision. It utilizes a multichannel input approach,
encompassing interferogram data, range/azimuthal phase gradi-
ents, and residue maps, providing robust guidance for disconti-
nuity prediction, as illustrated in the right columns of Figs. 1 and
2. However, these methods are based on mathematical models
that randomly generate various shapes and combine them with
randomly cut DEM/InSAR interferograms data as training data.

B. Deep Generative Models

DGMs refer to neural networks with many hidden layers that
are used to approximate complex high-dimensional probability
distributions [21]. A deep neural network is used as a generator in
DGMs to transform a simple distribution, like a univariate Gaus-
sian, into a more complicated distribution [21]. However, the per-
formance of DGMs heavily depends on four hyperparameters,
including the customized network model, the training datasets,
the regularization, and the training algorithms [21]. Three pop-
ular DGM approaches are normalizing flows (NFs) [22], [23],
variational autoencoders (VAEs) [24], [25], [26], and GAN [27],
[28], [29]. We choose GAN because it has demonstrated superior
performance in generating realistic images compared to NF and
VAE [30]. However, selecting the appropriate hyperparameters
is crucial because the performance of DGMs can be very differ-
ent depending on the application and data distribution.

In 2014, Goodfellow et al. [27] presented GAN as an al-
ternative way of producing visual similar data based on the
characteristics of the original data. This original GAN model
has a generator and a discriminator with fully connected neural
layers [27]. Its uncomplicated structure has limitations and
can only be applied to some simple datasets, such as MNIST
and CIFAR-10. The original GAN algorithm was designed to
approximate data distributions, but a simple architecture may
not be sufficient to generate high-quality images [31]. Two years
later, Radford et al. [29] proposed a deep convolutional gener-
ative adversarial network (DCGAN), which is the first model
that uses the deep convolutional structure for the generator. This
model provides some guidelines for how convolutional layers
can be used with GANs. The generator of DCGAN has the

spatial upsampling ability of the deconvolution, which allows
it to generate higher resolution images. Furthermore, DCGAN
can synthesize more natural images using complex random noise
generation and a unique loss function [31]. Progressive GAN
(PROGAN) was presented in 2018 by Karras et al. [32]. The
core idea of PROGAN is to grow the generator and discriminator
gradually, which is a progressive neural network and leads to
faster and more stable training producing higher quality results.
Therefore, this network is popular for learning complex task
sequences. In the next year, one novel method for high-resolution
image synthesis is StyleGAN [33], which Nvidia researchers had
shown to work reliably on various datasets. The same researchers
exposed and analyzed several of its characteristic artifacts. To
address these issues, they proposed changes in both model
architecture and training methods. The results of evaluating the
StyleGAN model on the FFHQ dataset and the CELEBA-HQ
dataset show that StyleGAN is better than traditional GAN
generator architectures in every way.

Traditional CNN can only capture local spatial information.
It is difficult for CNN-based GANs to learn multiclass image
datasets, and some key parts in the generated images may be
displaced. Therefore, in 2019, Zhang et al. [34] employed a
self-attention mechanism in the generator and discriminator of
traditional GAN to design self-attention GANs (SAGANs). This
mechanism enables SAGAN to learn global and long-range
dependencies to generate images and it is widely applied in
large feature images to improve GANs. BigGAN [35] model
was proposed by Brock et al. in 2019 using SAGAN as the
baseline. This model proves that scaling up GAN training can
improve the performance benefits of larger models and larger
batches. BigGAN improves the state-of-the-art inception score
(IS, higher is better) from 52.52 to 166.5 and Fréchet Inception
Distance (FID, lower is better) from 18.65 to 7.4, respectively,
on ImageNet at 128× 128 resolution. The authors also evaluated
the BigGAN at 256 × 256 and 512 × 512 resolutions on
ImageNet: IS obtained 232.5 (256×256) and 241.5 (512×512),
and FID achieved 8.1 (256 × 256) and 11.5 (512 × 512).
Compared with DCGAN and SAGAN, BigGAN generates more
realistic and large-scale images. However, the computational
cost of BigGAN is relatively high, and therefore the model
should be selected appropriately according to the application
requirements. We are also aware of potential problems with
IS evaluation metric. In the training of GAN networks, larger
image scales pose greater difficulty and yield poorer results.
The FID aligns with the general consensus, indicating that as
the image scale increases, the generated results deviate further
from the real-world dataset. The IS metric provide the opposite
conclusion. This discrepancy arises because the IS metric does
not directly measure the similarity between synthetic and real
images.

Therefore, subsequent articles on GAN only use the FID
criterion and rarely use the IS for evaluation, as researchers have
doubts about the reliability of IS. In 2020, Schonfeld et al. [36]
proposed a U-Net GAN model based on the BigGAN model.
They substitute the original discriminator with an alternative U-
Net-based discriminator, which can help the GAN model focus
on both the global structure and local details of images following
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the principle of segmentation. The new U-Net discriminator
reuses the original discriminator classification architecture as
the encoder and its decoder part uses the building blocks of the
generator network [36]. Simulating global and local coherent
images with object shapes and textures that cannot be distin-
guished from real-world images is one of the main challenges
faced by GANs [36]. The specially designed discriminator in
the proposed U-Net GAN model can effectively alleviate this
problem. The authors evaluated U-Net GAN on FFHQ, CelebA,
and the proposed COCO-Animals datasets. Compared with the
BigGAN model, a better result was obtained with an average
decrease of 2.7 FID points.

Since then, the research in this area has continued to expand
and improve to address the shortcomings of earlier networks for
processing natural images. The generative adversarial model-
ing’s inherent research objective is that the generator and dis-
criminator are trained together to maintain an equilibrium [37].
Recent advances in this area have helped to achieve this goal and
have led to more effective models for generating images. Never-
theless, GAN has been successful only in image generation tasks
for specific datasets and is mainly limited to photorealistic image
generation. Further research is needed to expand its capabilities
for addressing its limitations, and exploring a wider range of
applications.

In this article, our main contributions are as follows.
1) We introduce deep generative modeling to generate large-

scale data for InSAR signal analysis.
2) Our signal simulator can generate data to help evaluate

different kinds of complex features, comparing to related
methods, in satellite remote sensing for practical industrial
applications.

3) We introduce a hybrid evaluation criteria (qualitative and
quantitative) to evaluate the proposed GAN-InSAR ap-
proach on synthetic signals.

II. MATERIALS AND METHODS

A. Mathematical Modeling for InSAR Simulator

InSAR processing usually starts with flat-Earth phase removal
(with orbit data) and topographic phase correction (with a DEM).
The remained phase difference (after flat-Earth phase removal
and topographic correction) is mainly affected by five factors:
1) surface deformation, 2) topographic errors (i.e., phase con-
tributed by DEM height errors), 3) atmospheric delay, 4) orbital
errors, and 5) decorrelation noise [10], [12], [38], with each
representing a different phenomenon [39], [40]. For a given
pixel location l in InSAR, the differential interferogram phase
is described as follows:

φl = φdef,l + φtopo,l + φatm,l + φorbit,l + φnoise,l

φ̂l = arctan2(sin(φl), cos(φl)) (1)

where φdef represents ground deformation motion phase com-
ponents, φtopo means topographic errors (i.e., phase contributed
by DEM height errors) [41], atmosphere phase φatm includes
height-dependent dry atmosphere and long-wavelength wet at-
mosphere. The atmosphere phase is removed by an empirical

model to estimate the vertical structure of the dry phase delay and
an spatial filter to remove the long-wavelength wet atmosphere
signal. φorbit is the phase due to orbit inaccuracies, it behaves
as global phase ramps and can be removed by a linear fitting. It
is usually insignificant in modern satellite datasets because of
precise orbit control. φnoise denotes decorrelation noise that can
be reduced by phase filtering, and the observed phase is φ̂l.

Surface deformation can result from load changes at the sur-
face or ruptures and pressure changes in the subsurface [3], [12].
Domain specialists usually consider ground deformation motion
information to be valuable (a crucial signal in an interferogram)
and difficult to obtain. Simultaneously, the ground deformation
motion has no displacement in the majority of locations (the
value is 0), which is detrimental to the generative network’s
training and convergence due to class imbalance.

For each pixel, the ground deformation motion (mr) phase
component can be modeled as a linear function for each surface
deformation phase as follows:

φk
def = −4π

λ
(dfirst − dsecond)k ·mr

= −4π

λ
Δdaysk ·mr

= convdef ·Δdaysk ·mr (2)

where Δdays is the temporal difference between two acquisi-
tions on distinct days (dfirst, dsecond) used to form the interfero-
gram, and convdef is unit conversion factor [10].

This article will focus on simulating ground deformation rate
imagery. Each pixel value is the linear deformation rate over
a certain observation period. It is estimated by a network of
interferograms with all other signals (such as atmosphere phase,
height-error) removed. The matrix form of fitting the linear rate
for a single point is as follows:

V×D = Φ (3)

where V is the rate, D is a matrix of temporal/time difference
(days), and Φ is phase of a network of interferograms for this
point.

B. Proposed Method

1) Preprocessing of InSAR Signals: InSAR signals are de-
noted by complex floating point arithmetic, including both the
real and imaginary components [42]. According to the latest
article [17], the imaginary component can be introduced with
decorrelation noise before calculating wrap for simulation In-
SAR interferograms. The end-to-end simulation of InSAR sig-
nals is valuable, however, the generation of deformation phases
is much more widely used, and various influencing factors can
be added according to actual applications. For example, without
adding terrain-related/topographic-errors phase [16] and adding
terrain-related/topographic-errors phase [17], there are separate
application scenarios. Therefore, this article only focuses on
the simulation of InSAR real floating point numbers. Unlike
the natural images using natural number arithmetic often in
the range of 0–255, the conventional neural network training
algorithms for image processing do not take into account the real
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floating number processing [42]. Consequently, these algorithms
can cause severe performance deterioration, training divergence,
and undesirable results. We implemented several signal prepro-
cessing methods and redesigned the network structure to adapt
the real floating number data format of InSAR signals to solve
this problem.

In addition, we designed conditional filter algorithms so that
the neural network training algorithms can handle InSAR data.
When the random patches do not meet the conditions in the
data loader phase, they will directly be filtered out and will not
be included in training. For screening the training patches, we
defined a threshold value θ, which denotes the percentage of
pixels within a patch with a motion value in the range [–a, +a]
cm/year, as illustrated in Fig. 4. We observed that when θ =
30% and a = 3 cm/year, the proposed model produces the best
results. For real-world datasets, the proposed model consistently
produces the best visual outputs that are difficult to differentiate
from target data samples. It is argued that this kind of algorithm,
similar to strengthening features, will cause information loss.
First, in a ground deformation application, nonregions of interest
are discarded by the algorithm. Our model is expected to learn
regions with motions that have practical significance. At the
same time, we mainly use this algorithm at the initial stage
of model training to make the model converge faster. When
the generated results are close to convergence, we can turn
OFFthis algorithm or change the constraints in some training
cycles. When the algorithm is used in practical applications or
related fields, the parameters can be changed accordingly to fit
the actual situation. For example, the conditional parameters
can be loosened when the contour features are close to the
real-world image and the texture details start to get close to
the training image before the network model converges after a
certain training period, which was chosen based on the network
model and the training dataset. We can determine this specific
training cycle by manually observing the model’s real-time
generated results and the evaluation criteria score.

Since our study focuses on motion rate, which is used to detect
wide area ground deformation, we would expect a large amount
of zero values, i.e., no deformation. Data distribution analysis
of the real-world motion rate data confirms that most of the
data area is zero (no motion). However, this is unsuitable for
network training. With most areas zero, similar to some large
areas in natural images, which are white (or black), and only
a few areas have other values. It is challenging to learn the
characteristics because the network constantly generates images
with zero values are very close to convergence. In order for
the network to pay attention to the change range of these val-
ues, we implemented a random value offset/shift preprocessing
technique. To perform data preprocessing for training, the data
loader module shifts the entire patch by a nonzero constant
value randomly chosen from the range [–5, 5]. With the help
of the random value offset/shift technique, our method is able to
converge faster and get simulation close to realistic data. In order
to avoid the loss of information or the possibility of changing
the numerical distribution, we only use this algorithm at the
beginning of network training (for example, the first ten epochs)
and then terminate the algorithm.

Fig. 3. Different motion values (cm/year).

Fig. 4. Multiscale sampling.

2) Data Augmentation and Multiscale Sampling: In all
learning methods, model quality depends on diverse and bal-
anced training data. However, in our case, we lack sufficiently
large-scale and diverse datasets. One reason is the huge amount
of human effort and time required to collect ground-truth infor-
mation manually, which is difficult to accomplished. The second
reason is that there is no easy access to certain geolocations,
such as hilly areas and dense forests, to increase data diversity.
We introduce a data augmentation technique to increase the
diversity of training data without collecting new samples. We
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Fig. 5. Typical GAN architecture.

Fig. 6. Proposed network architecture for InSAR signals.

implemented image-level transformations, such as cropping,
flipping, scaling, rotation, and so on [43].

To solve the variable value and spatial scale problem, we de-
signed a multiscale / mixture patch technique for the network to
learn multilevel and multiscale features. In the data loader phase,
original patches with different hybrid-sampled rates represent
real-world data at different scales in the discriminator. For exam-
ple, 2x hybrid-sampled means the original input patch size of the
data loader is doubled from 256 × 256 to 512 × 512 pixels, and
then downsampled to 256×256. This means the hybrid-sampled
step does not affect the data quality (without losing information
and introducing irrelevant information), as illustrated in Fig. 4.
Meanwhile, this technology adapts the motion rate data to the
receptive field of the network structure. The results show that
the model generated results have more dense and small scale
features. Consequently, the model trades off between different
value scales and spatial scales of the signals.

3) Proposed Network Architecture: The typical GAN has
two distinct models: generator and discriminator models, as
illustrated in Fig. 5. The generator model spawns synthetic
images that resemble the training images. The discriminator
model assesses an image and decides whether it is a real-world
training image or a synthetic (fake) image generated by the
generator. During the training phase, the generator continuously
improves the generated images to fool the discriminator, while
the discriminator improves its ability to distinguish between
real and fake images. At the same time, the adversarial game
reaches equilibrium when the data generated by the generator
are indistinguishable from the training data, and the discrim-
inator can only guess whether the generator output is real or
fake with a 50% confidence level. However, the existing GANs
cannot be directly applied to signal generation applications. As
shown in Fig. 6, we have added a data preprocessing module.
We have optimized the backbone network, network modules,
hyperparameter optimization.

Our proposed model is based on UNetGAN model, which
is also based on the BigGAN model. The generators in the
network structure of BigGAN and UNetGAN models are based

Fig. 7. Generator for InSAR signals.

Fig. 8. U-Net discriminator for InSAR signals.

on residual block. Resnet blocks (residual blocks / residual con-
nections) have been successful in deep learning, particularly in
image recognition [44]. Resnet blocks can train deeper networks
and help obtain better results. The generator introduces some
new modules to make the distribution of the generated signals
closer to the real-world data, as illustrated in Fig. 7. The main
contribution of the UNetGAN model, utilizing an alternative
U-Net-based discriminator, can encourage the GAN model to
focus on both the global structure and local detail information
of images using the principle of segmentation [36], as illustrated
in Fig. 8. We made changes in the generator model to adapt
the InSAR signals. The last activation layer was removed to
meet the floating point arithmetic output requirements. The new
U-Net discriminator reuses the original discriminator classifi-
cation architecture as the encoder and its decoder part is built
by the building blocks of the generator network [36], [45], as
illustrated in Fig. 6. It provides detailed per-pixel and global
image responses to the generator while maintaining the local
and global coherence of the generated images. Meanwhile, the
per-pixel feedback of the discriminator, a per-pixel consistency
regularization technique (CutMix data enhancement), was de-
signed to help the U-Net discriminator pay more attention to
the semantic and structural changes [36]. Our proposed model
has the ability to generate synthetic images with simultaneously
balanced object shape and texture, global and local coherence
features, which cannot be distinguished even by domain experts.

4) Hybrid Evaluation Metric: Since there is few GAN re-
lated research in the InSAR literature, we considered the evalua-
tion metrics for generative models [46]. We explored the feasibil-
ity of combining visual assessment with quantitative evaluation.
Our industrial domain experts do not find it practical to use
the common quantitative evaluation methods in the computer
vision domain, i.e., comparing the numerical size of sample
scores generated by multiple models, and they recommend the
visual inspection approach for real-world InSAR applications.
We introduced hybrid evaluation metric, integrating qualitative
and quantitative measures, to evaluate the results. The qualita-
tive evaluation step t-distributed stochastic neighbor embedding
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Fig. 9. Our qualitative evaluation pipeline: the pretrained Inception v3 network
backbone extracts feature maps from images, and then T-SNE visualization
analyzes the images. The pipeline generates the inference using T-SNE.

(T-SNE) [47], [48] allows domain experts to participate more in-
tuitively in evaluating and comparing various models. They then
make the validate their visual assessment with the quantitative
evaluation metric (FID) [49].

Visual/manual inspection [50], [51] can be time-consuming,
subjective (incorporate domain experts’ own biases and opin-
ions) and cannot handle a huge diverse sample. We introduced T-
SNE as a qualitative evaluation method to address this issue [47].
T-SNE is a nonlinear dimensionality reduction technique that
transforms the visualization of high-dimensional data in a low-
dimensional space (2-D or 3-D). Initially, T-SNE constructs a
probability distribution that captures the mutual distance rela-
tionships between points in the initial high-dimensional space.
Subsequently, the algorithm creates a low-dimensional space
with similar relationships between the points. We employ T-SNE
to visualize the embeddings and feature vectors generated by
a pretrained neural network model [48]. The T-SNE analysis
plots (visualization in low-dimensional space) can illustrate the
similarity of each model to the real-world data distribution.
When there is more overlap and a smaller distance between
the real-world data point set and the compared model point set,
this model distribution is more similar to the real-world data
distribution. On the contrary, the other model’s generated images
are less similar to the real-world data’s distribution when there
is less overlap and the distance between class points is greater.
It should be noted that the distance only works within the same
T-SNE analysis plot, and comparing the distances of different
plots does not provide useful information. The T-SNE analysis
method can further investigate and analyze outliers or anomalies.
Since each point is an image patch, we can look at the image
features that the outliers represent point by point and teach the
model to focus on features that are closer to those of domain
experts and real-world application requirements. More details
can be found in Section IV. The limitation is that its similarity
distance is difficult to quantify and is not a numerical evaluation
criterion. Therefore, we have the quantitative measure in our
hybrid evaluation approach.

The Inception v3 model is a convolutional neural network
trained on more than a million images from the ImageNet dataset
to learn rich feature representations for a wide range of images.
A classification network usually has a backbone that pulls out
features from an image and a classifier that uses this information
to make classification predictions. To assess the network’s fea-
ture map data, we executed the network inference up to the layer

right before the classifier layer. To extract the last feature map
before the classifier head, we reimplemented the Inception v3
model by running the inference without the final classifier. This
model lets us load the weights that have already been trained
on ImageNet so that we can get 2048-D feature maps. Then, we
used T-SNE to analyze and visualize the feature maps extracted
by the Inception v3 model. Our qualitative evaluation pipeline
is shown in Fig. 9.

For generative models, the two most popular quantitative
evaluation methods are IS (IS) [52] and FID [49]. Both are
single-value metrics and rely on a pretraining classification
model trained on ImageNet. IS [52] computes the Kullback–
Leibler divergence [53] between the conditional class distribu-
tion (quality) and the marginal class distribution (diversity) for
each synthetic image. A major drawback is that IS does not
capture how synthetic images compared to real-world images.
FID [49] calculates the Fréchet distance (squared Wasserstein
distance) between multivariate Gaussians fitted to the embed-
ding space of generated and real-world images. As the quan-
titative evaluation criterion of the generator, FID can balance
the realism and diversity of generated images. It is consistent
with human inspection and sensitivity to modest changes (such
as small artifacts and slight blurring) in the real distribution.
Furthermore, it is able to detect intraclass mode collapse in the
generative models’ training phase. It is important to note that
FID needs a large sample size (normally above 50 K) to achieve
a reliable FID score. A smaller number of samples can result in
overestimation [54].

The calculation of FID involves computing the Fréchet dis-
tance between two multivariate Gaussian distributions fitted to
the feature representations of the Inception v3 network [49]. The
following formula calculates the FID between two multivariate
Gaussians X1 ∼ N(mu1, C1) and X2 ∼ N(mu2, C2):

d2(X1, X2) = ||mu1 −mu2||2 + Tr(C1

+ C2 − 2 ∗ (C1 ∗ C2)
1/2). (4)

In the activations of the coding layer of the Inception v3 model,
X1 and X2 denote the generated and real-world samples, re-
spectively. mun and Cn represent the mean and covariance of
the coding layer activations for all generated and real-world
samples. To ensure full rank covariance and avoid complex
numbers or the “nans” problem when calculating the square root,
the number of samples used to compute the Gaussian statistics
should exceed the dimension of the coding layer, which was
extracted as 2048-D feature maps by the Inception v3 model
without the final classifier. We deployed a visual assessment and
introduced a hybrid evaluation approach, integrating qualitative
and quantitative measure, to evaluate the outcome for the InSAR
research field. The details of the evaluation criteria comparison
results are presented in Section IV-B.

III. EXPERIMENTS

To establish a ground truth for comparison, we used the
linear deformation rate data from our industrial collaborators,
which are processed based on real-world datasets captured by
TerraSAR-X in StripMap mode [55]. The color scale of each
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pixel in the image represents the ground linear motion rate
(cm/year) of the corresponding Earth location. The real-world
dataset includes nine stacks of motion rates close to clean
reference data as training samples to train a GAN simulator. Each
original stack has a dimension/resolution of 1500× 1500 pixels,
which exceeds the computing power and memory limits of
GPUs and fails previous state-of-the-art GAN models. Even
for good performance complex generative models, which can
run large images, the time performance is not acceptable. To
address this issue, we randomly selected patches with the size
of 256 × 256 pixels from nine real-world motion rate signals.
We trained the model on motion rate signals in order to assess
the model’s learning capacity, and the results are shown in
Section IV Results.

We implemented the network using PyTorch Lightning and
Hydra with PyTorch backend. The implementation was exe-
cuted on an NVIDIA 1080 GPU with 8 GB GPU RAM. We
trained the DGMs by extracting patches with the size of 256
× 256 pixels from nine stacks (1500 × 1500 pixels) real-world
motion rate interferograms, as illustrated in Figs. 16–18. In our
proposed model, we employed the original training parameters
of BigGAN and UnetGAN, utilizing the Adam optimizer [56]
with learning rates of 1e-4 for the Generator and 5e-4 for the
discriminator. The training process extended for 81 epochs. Our
stopping criteria are based on the hybrid evaluation criteria men-
tioned in our article, which involves both qualitative (T-SNE)
and quantitative (FID) evaluations. During training, we observed
a convergence trend starting at 76 epochs, indicating that the
model was stabilizing. However, we noticed that the generated
features were somewhat dense. To address this, we turned OFFthe
preprocessing selection patch condition, and by the end of the
81st epoch, the model was able to generate samples with both
sparse and dense features. The final model, used for evaluating
the proposed model samples in the article, was derived at this
point.

IV. RESULTS

A. Visual Evaluation

This section empirically demonstrates the effectiveness of the
proposed model using real-world ground deformation scenarios
for generating large-scale data in InSAR signal analysis. Fig. 10
shows unwrapped samples, and Fig. 11 shows the samples with
phase wrapping [–π, +π). In the middle columns of Figs. 10
and 11, we use the latest InSAR simulator described in [8], [9],
[10], which is regarded as the state-of-the-art, to generate syn-
thetic ground deformation maps as the baseline for comparison.
The baseline includes various signal geometries: 1) triangle, 2)
Gaussian bubble, 3) rectangle, and 4) ellipse. These geometric
shapes are stochastically created and added together to produce
arbitrary combinations of various irregular spatial features, as
illustrated in the middle columns of Figs. 10 and 11. In the
right columns of Figs. 10 and 11, the features of the motion
signals generated by our proposed network are more similar to
real-world motion signals and resultant interferograms, without
introducing artificial features or features that do not exist in
the real-world motion signals (as highlighted by the dotted

Fig. 10. From left to right, we show samples of the real-world motion signals,
simulated motion signals (baseline [8], [9]), and motion signals generated by
the proposed network. All samples have a value range of [–15, +15] cm/year.

Fig. 11. From left to right, we show samples of the real-world resultant
interferograms, simulated resultant interferograms (baseline work) [8], [9], and
resultant interferograms generated by the proposed network. All samples are the
interferometric of phase wrapping [–π, +π) – (Blue: –π; Red: +π).

circles in Figs. 10 and 11). The following visual inspection and
quantitative evaluation demonstrate that our model is capable of
mimicking the ground motions successfully and can capture the
target signal distribution with adversarial training.
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Fig. 12. T-SNE visualization for comparison of real-world, baseline work [8],
[9], and proposed model (see Section II-B3). The purple and red points overlap
closely, while the blue points are far from the real-world data. Visual analysis
shows that the real-world and proposed model simulations are closer in features
and textures than the current state-of-the-art [8], [9].

B. Hybrid Evaluation Metric

Although several approaches and measures have been intro-
duced to evaluate generative modeling performance, there is
no universally agreed definition or benchmark for generative
models [57]. Visual inspection is time-consuming and sub-
jective and cannot capture distributional characteristics [58].
Distribution characteristics refer to the properties and patterns
of the generated samples in relation to the target distribution.
These characteristics capture the similarity, diversity, and overall
fidelity of the generated samples indicating how well the GAN
model captures and reproduces the underlying data distribution
compared to the real data.

We introduced a hybrid evaluation criterion, integrating qual-
itative and quantitative measures, to assess the performance of
our InSAR simulator. The qualitative evaluation is T-SNE, and
the quantitative evaluation is derived from FID. T-SNE is a
powerful visualization technique to transform data statistics into
lower-dimensional spaces. T-SNE is a nonlinear dimensional-
ity reduction technique. Unlike principal component analysis,
which involves an iterative optimization that takes time to con-
verge and few parameters can be tweaked [59]. T-SNE constructs
a probability distribution that captures the mutual distance re-
lationships between points in the initial high-dimensional space
and then transforms this characteristic into a low-dimensional
space while preserving these relationships. By applying T-SNE
to these features and analyzing the results, we found that the pro-
jection kept the original distance relationships between points
in high- and low-dimensional space. For example, if two points
were close in the high-dimensional space at the start, they stayed
close in the low-dimensional space after the projection. If they
were far apart in high-dimensional space, they remained far
apart in low-dimensional space. We are able to show that the
projections from our model and the real-world representation
are highly overlapped (see Fig. 12), indicating that the proposed

Fig. 13. T-SNE visualization for comparison of real-world, baseline work [8],
[9], and compared work [16], [17]. The purple and gray points are relatively
close, while the blue points are far from the real-world data. Visual analysis
shows that there are some differences in the features between the real world and
the compared work, and the differences between the real world and baseline
work features are even greater.

Fig. 14. T-SNE visualization for comparison of real-world, baseline work [8],
[9], compared work [16], [17], and proposed model (see Section II-B3). The
purple and red points overlap closely, while the blue points and gray points
are far from the real-world data. Visual analysis shows that the real-world and
proposed model simulations are closer in features and textures than the current
state-of-the-art papers of each of the two approaches [8], [9], [16], [17].

model performs better than previous work [8], [9]. The Fig. 13
shows that there are some differences in the features between the
real world and the compared work [16], [17], and the differences
between the real world and baseline work features are even
greater. Fig. 14 shows that the real-world and proposed model
simulations are closer in features and textures than the current
state-of-the-art papers of each of the two approaches [8], [9],
[16], [17].

FID is a commonly used metric for assessing the similarity
between two sets of images, such as those GANs generated
samples. The FID measure has been shown to correlate well with
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TABLE I
FRECHET INCEPTION DISTANCE (FID, LOWER IS BETTER)

Baseline work [9] Compared work [17] Proposed model

human perception of visual quality. The lower the FID score,
the more similar the generated samples are to real-world data.
Table I shows that our proposed model (35.4) is much better
than the previous work (283.27) [8], [9] and compared work
(193.64) [16], [17], and is close to the distribution of real-world
and training data. Our coarse-grained and fine-grained (hybrid)
evaluation metrics are based on the same pretraining network
model. Therefore, in essence, the feature maps of the comparison
between the two evaluation criteria are the same. However,
quantitative scores may or may represent significant differences,
and therefore we introduce a hybrid approach to add visual
analysis (t-SNE) to elaborate numeric score (FID).

To summarize, we propose a hybrid assessment metric, in-
tegrating qualitative and quantitative measures, to evaluate the
outcome for InSAR analysis. It combines the advantages of vi-
sual and quantitative evaluation. We adopt this hybrid approach
as recommended by industrial domain experts.

V. DISCUSSION

In InSAR, high-level fringe frequency indicates regions on
the ground that are moving quickly, which can cause the in-
terferogram to have many phase jumps from –π to +π when
it is wrapped. The ability to preserve structural detail is essen-
tial for effective InSAR simulators [8], [9], and our proposed
GANInSAR demonstrates this capability. Table I shows that the
proposed GANInSAR can generate interferogram maps similar
to the training data structural details, whether unwrapped or
wrapped. Furthermore, it demonstrates that our method can
precisely simulate high-contrast features and clear boundaries in
real-world site interferogram maps. We can clearly find that the
results generated by the proposed model are better than baseline
work [8], [9] and compared work [16], [17], and it is almost im-
possible to distinguish the proposed model generated data from
the real-world data. Previous studies have mainly focused on
generating simulated signals with randomized motion patterns
with basic geometric features. However, these simulators still
cannot capture the full complexity and diversity of real-world
InSAR data. The results of both quantitative and qualitative
evaluations confirm that our trained GANInSAR model can
generalize the multiscale signal features (details can be found in
Section II-B2). The proposed GANInSAR can effectively alle-
viate the inability to use data-hungry deep learning techniques
due to the lack of data.

In general, our InSAR simulator based on the GAN demon-
strates a significant advancement in generating more realistic
synthetic data, in the absence of clean ground truth data of
real-world images. Even the latest simulators can only generate
random composite signals under the handcrafted traditional
simulators based on mathematical models [8], [9], [16], [17], as
illustrated in the Figs. 1 and 2. This objective condition adversely

affects the evaluation of the learning ability and generalization
ability of the deep learning network in this field applied to the
simulated data scenarios. The convolutional neural networks,
being a data-driven technique, need diverse and large-size real-
world training data when trying to solve complex tasks, in partic-
ular, when applying to real-world InSAR data. Existing simula-
tors are designed to randomly generate basic geometric features
as training data. In order to enhance the complexity of primitive
features, some articles add randomly cropped DEM/InSAR in-
terferograms data on the basic geometric features [17]. However,
they still cannot fully simulate real-world scenarios’ complex
features. The GANInSAR framework has the potential to learn
the distribution of simulated data and real-world data, even when
the real-world data is from a small dataset with only nine stacks.
Conversely, the details can be found in Section IV Results, and
Figs. 1 and 2. By learning the data distribution from a limited
dataset, a massive amount of simulation data close to the original
data distribution is generated, thus giving researchers enough
data to apply various deep neural network models to solve
practical application problems.

The data generated by our generative model will help phase
unwrapping and filtering applications, which is also one of the
motivations for our research. Our lab is doing phase unwrapping
and filtering research, and one of the related papers [60] was pub-
lished in October 2023. Traditional approaches, which separate
unwrapping and filtering algorithms, often introduce errors and
changes in signal statistics. To overcome this, the paper [60]
introduces a novel two-stage phase unwrapping deep neural
network framework based on U-Net, enabling joint unwrapping
and denoising of InSAR phase images. Integrating our data
generation model with phase unwrapping and filtering work is
one of our future research areas. We also noticed the relationship
between the topographic phase and the deformation phase. We
are following the common practice in the InSAR field described
in the articles [16], [17]. The author mentioned in the paper [16]
that their deformation part is a randomly generated distorted
2-D Gaussian surface. In order to enhance the complexity of
primitive features, another paper from their lab adds randomly
cropped DEM [17] as the topographic phase. We understand the
reviewer’s concern regarding the clarity of our motivation for
using GANs to generate a deformation phase dataset. We have
provided a new evaluation criterion and compared the generated
samples from the two articles [16], [17]. The experiment showed
that our results exceeded the samples generated by the previous
articles [16], [17]. Nevertheless, we do not want to limit our
technique to this application. We believe that further discussions
on future work can benefit the development of this field and
attract more scholars to participate in the research.

Ablation experiments are essential to validate the benefits
of the modifications introduced to the deep learning model.
These experiments will be designed to systematically analyze
the impact of each modification on the model’s performance,
providing a more robust evaluation. Especially in the more
mature tasks of recognition, classification, detection, segmen-
tation, and tracking. Due to the availability of a large number
of comparison models and a large number of open datasets, any
model alteration ablation experiments have become a mandatory
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Fig. 15. T-SNE visualization for comparison of real-world, proposed model
(see Section II-B3), without control preprocessing and without multiscale sam-
pling. The purple and red points overlap closely, while the green points and
yellow points are far from the real-world data. Visual analysis shows that the
real-world and proposed model simulations are closer in features and textures
than the without control preprocessing and the without multiscale sampling
approaches.

TABLE II
FRECHET INCEPTION DISTANCE (FID, LOWER IS BETTER)

item for experiments. The modifications mentioned in our arti-
cle are mostly unavoidable modifications. If the modifications
mentioned previously are not made, the model cannot converge
and learn any features. We encountered many challenges in
order to conduct ablation experiments. Meanwhile, due to the
lack of reference models and baseline datasets, and almost all
generated models being truly massive public datasets, the data
types and numerical distributions are completely different from
our training data (as mentioned in the preprocessing section).
We overcame the above-mentioned challenges and conducted
these experiments to provide a more thorough evaluation of our
approach. By applying T-SNE to these features and analyzing
the results, Fig. 15 shows that the real-world and proposed model
simulations are closer in features and textures than the without
Control Preprocessing and the without Multi-scale Sampling
approaches.

The lower the FID score, the more similar the generated
samples are to real-world data. Table II shows that our proposed
model (35.4) performs better than ablation experiments without
control preprocessing module variables and turns OFF multiscale
sampling modules. In the ablation experiments, we conducted
the following two subexperiments: First, in the original ex-
periment, we closed the preprocessing module at epoch 76 in
order to produce samples that could contain sparse features. In
this subexperiment, we did not disable the preprocessing and
patch selection conditions to continue training. After loading the
parameters of 76 epochs and continuing to train to 81 epochs,

the FID score obtained was 79.94, which is far worse than
the proposed model’s 35.40. In the second subexperiment, we
trained a multiscale sampling module and retrained 81 epochs,
resulting in an FID score of 71.50, which is also not as good
as the proposed model’s 35.40. The above-mentioned ablation
experiment strengthens the validity of our originally proposed
model solution, and the experimental results demonstrate the
effectiveness of the two modules (preprocessing and multiscale
sampling modules) in the proposed model solution.

Deep learning is a data-hungry technology, providing deep
learning models with more diverse and higher quality data can
improve the stability and robustness of deep learning models
and facilitate the extension of deep learning to various potential
and new application scenarios. ImageNet [61] dataset, which
collected massive data from the Internet, makes the perfor-
mance and accuracy of deep learning algorithms trained on
ImageNet [61] exceed the performance of machine learning
algorithms. However, many deep learning-based algorithms in
the field of remote sensing, especially InSAR-related research,
have failed to perform well due to the lack of this specific type
of data. Two previously published papers [5, 6] from our lab
mentioned that a small amount of real-world captured data is
more effective than simulated data. These two papers [9], [10]
were applied to phase filtering and coherence estimation [9],
ground deformation and DEM error estimation in InSAR time
series data [10], respectively. This is also one of the motivations
that drives us to apply generative models to InSAR. These
two articles use the same simulator for data simulation, and
their simulator is used as the baseline model in this article for
comparison. In future work, we will improve our generative
model to test more different application scenarios.

VI. CONCLUSION

We propose GANInSAR, a GAN-based DGM for large-scale
InSAR motion signal synthesis. This work provides three main
contributions as follows.

1) Designing a DGM architecture suitable for InSAR motion
signal synthesis using only limited training data.

2) Implementing preprocessing and postprocessing modules
for DGM architecture suitable for InSAR motion signal
synthesis.

3) Introducing hybrid evaluation criteria for effective evalu-
ation of synthetic signals.

This work focuses on synthesizing large-size and diverse
samples and keeping the InSAR spatial information to com-
pensate the limited data in this field. Our method was trained
and evaluated on real-world motion signals. In both cases, the
model successfully generated synthetic InSAR motion signals
that are difficult to distinguish from target training signals. Visual
comparisons in real-world scenarios reveal that our method
outperforms the handcrafted traditional simulators based on
mathematical models [3], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. In addition, our innovation introduced a hy-
brid evaluation criterion, integrating qualitative and quantitative
measures, to assess our InSAR simulator. The qualitative step is
based on T-SNE, and the quantitative step is based on FID. The
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evaluation shows that the proposed model is able to generate re-
alistic new features that have not been seen before. In conclusion,
this study demonstrates that our proposed framework success-
fully mitigates the research gap of lacking or limited-collected
ground-truth data in the InSAR signal applications. Moreover,
our model can generate large-size and diverse samples with
multispatial features, making it difficult for domain experts to
distinguish our results from the original data. These illustrate
the capability of our DGM for InSAR motion signal synthesis.
At the same time, our model can be seamlessly integrated with
traditional methods, allowing for the addition of atmospheric
phases, topographic phases, orbital phases, decorrelation phases,
and more. The adversarial DGM architectures are effective
for generating a large amount of diversity simulation data for
InSAR signal analysis. We demonstrate that it can generate
deformation data and should also be able to generate other
InSAR phase components. In future work, we will extend our
model to generate the diversity of InSAR phase components,
such as atmospheric, topographic, orbital, and decorrelation.
Meanwhile, recent research on transformer neural networks [62]
instead of convolutional neural networks show that they may
become the next generation models of computer vision tasks,
such as classification, detection, and segmentation. We also
plan to investigate an InSAR simulator that combines GAN and
transformer networks [63] with the goal to generate more diverse
and sophisticated synthetic for other applications.
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APPENDIX

NINE STACKS OF REAL-WORLD MOTION DATA

Fig. 16. All samples have a value range of [–15, +15] cm/year.

Fig. 17. All samples have a value range of [–25, +25] cm/year.

Fig. 18. All samples are the interferometric of phase wrapping [–π, +π) -
(Blue: –π; Red: +π).
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