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Uncertainty-Guided Segmentation Network for
Geospatial Object Segmentation

Hongyu Jia , Wenwu Yang , Lin Wang , and Haolin Li

Abstract—Geospatial objects pose significant challenges, includ-
ing dense distribution, substantial interclass variations, and mini-
mal intraclass variations. These complexities make achieving pre-
cise foreground object segmentation in high-resolution remote sens-
ing images highly challenging. Current segmentation approaches
often rely on the standard encoder–decoder architecture to extract
object-related information, but overlook the inherent uncertainty
issues that arise during the process. In this article, we aim to en-
hance segmentation by introducing an uncertainty-guided decod-
ing mechanism and propose the uncertainty-guided segmentation
network (UGSNet). Specifically, building upon the conventional
encoder–decoder architecture, we initially employ the pyramid vi-
sion transformer to extract multilevel features containing extensive
long-range information. We then introduce an uncertainty-guided
decoding mechanism, addressing both epistemic and aleatoric
uncertainties, to progressively refine segmentation with higher
certainty at each level. With this uncertainty-guided decoding
mechanism, our UGSNet achieves accurate geospatial object seg-
mentation. To validate the effectiveness of UGSNet, we conduct
extensive experiments on the large-scale ISAID dataset, and the
results unequivocally demonstrate the superiority of our method
over other state-of-the-art segmentation methods.

Index Terms—Geospatial object segmentation, remote sensing
(RS), semantic segmentation, uncertainty decoding mechanism.

I. INTRODUCTION

G EOSPATIAL object segmentation aims to delineate fore-
ground objects in high-resolution remote sensing (RS)

images and assign a semantic label to each pixel. Given its
capacity to extract diverse objects of interest, this technique finds
extensive applications in various domains, including disaster as-
sessment [1], building extraction [2], and urban monitoring [3].

In the early stages of geospatial object segmentation, a com-
mon approach involved combining handcrafted features such
as texture [4], shape [5], color [6], etc., with machine learn-
ing algorithms like SVM [7], Random Forest [8], KNN [9],
K-means [10], etc., to determine the location and classification
of ground objects. However, manually designing discriminative
features presented significant challenges, and the utilization of
machine learning algorithms often resulted in substantial com-
putational overhead and limited generalization performance.
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In recent years, the rapid advancement of deep learning
technology has triggered a revolution across various domains,
including geospatial object segmentation. Deep learning meth-
ods, particularly convolutional neural networks (CNNs), have
outperformed traditional approaches in terms of accuracy and
speed, thanks to their potent feature representation capabilities
and robust generalization performance. One prevalent paradigm
in this domain is the fully convolutional network (FCN) [11],
which divides the segmentation framework into two key com-
ponents: the encoder and the decoder.

Typically, encoders are directly adapted from existing back-
bone networks that have been pretrained on large-scale datasets
like ImageNet [12], examples being ResNet [13], VGG [14],
among others. Consequently, the focus of current segmentation-
related research primarily lies in the strategies implemented
within the decoders.

Drawing from the multilevel features obtained by the encoder,
general decoding strategies aim to aggregate foreground-related
information through three key steps. These strategies initially
construct a multibranch structure [15], [16] to gather compre-
hensive contextual information from encoded features. Sub-
sequently, they incorporate attention modules [17], [18], [19]
to establish global dependencies, and finally introduce various
multilevel fusion techniques [20], [21] to merge the multilevel
features and produce precise segmentation results.

In RS images, foreground objects often exhibit dense dis-
tribution, significant interclass variations, and minimal intra-
class differences, introducing inherent ambiguity for general
decoding strategies. In this article, we tackle these challenges by
delving into the uncertainty issues present in RS segmentation
and introduce a novel uncertainty-guided segmentation network,
referred to as UGSNet.

To address these challenges, we begin with the conventional
encoder–decoder architecture [11]. We employ the pyramid
vision transformer (PVT) [22] to extract multilevel features
rich in long-range information. Subsequently, we introduce
an uncertainty-guided decoding mechanism, considering both
epistemic and aleatoric uncertainty, to refine segmentation pro-
gressively. Within this uncertainty-guided decoding mechanism,
we introduce two modules, the aleatoric uncertainty-quantify
module (AUQM) and the epistemic uncertainty-quantify module
(EUQM), to quantify these two types of uncertainty. These quan-
tified uncertainties guide the model in minimizing ambiguity.

As illustrated in Fig. 1, we visualize the two types of un-
certainty, demonstrating their complementary nature, which
leads to finer segmentation results. With this uncertainty-guided
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Fig. 1. Visualizations of the prediction of our proposed UGSNet, the epistemic
uncertainty measured by AUQM, and the epistemic uncertainty output from
EUQM. (a) Image. (b) Prediction. (c) Epistemic. (d) Aleatoric

decoding mechanism, our proposed UGSNet achieves precise
geospatial object.

The main contributions of our UGSNet are as follows.
1) We address the uncertain segmentation problems resulted

from dense distribution, large interclass variances, and
small intraclass variances.

2) We establish an uncertainty-guided decoding mechanism
from two perspectives, namely epistemic uncertainty and
aleatoric uncertainty.

3) We conduct extensive experiments to prove that our
UGSNet is fruitful and can achieve state-of-the-art
(SOTA) performance over other segmentation networks.

The rest of this article is organized as follows. In Section II, we
introduce the related work, and we give a detailed description
of our proposed UGSNet in Section III. The experiments and
corresponding ablation study are presented in Sections IV and
V, respectively. Finally, Section VI concludes this article.

II. RELATED WORK

In this section, we will review the related work and illustrate
the differences between our proposed UGSNet and them.

A. Early Deep Learning-Based Segmentation

Since the inception of AlexNet [12] for image classification
tasks, deep learning technology has witnessed significant and
rapid evolution. Before the advent of the FCN [11] for semantic
segmentation, deep learning algorithms often relied on relatively
simple CNNs. For instance, in [23], a network comprising only
three convolutional layers and two fully connected layers was
used to assign semantic categories to all pixels. In [24], fully
connected layers were replaced with global average pooling
(GAP) to achieve patch-based segmentation. However, these
early deep-learning-based segmentation networks imposed sub-
stantial computational demands and necessitated fixed input
sizes during both training and inference stages.

B. FCN-Based Segmentation

Considering the limitations of early deep-learning methods,
which lacked flexibility in segmentation tasks, Long et al. [11]
introduced one of the pioneering deep learning solutions for
semantic image segmentation: the FCN. The FCN comprises a
sequence of convolutional layers, allowing it to process images
of varying sizes and generate segmentation maps of equiva-
lent dimensions. Notably, the FCN is structured around two

fundamental components: the encoder and the decoder, estab-
lishing a foundational paradigm in the field of segmentation.

1) Encoder Network: In essence, the features extracted by
the encoder play a pivotal role in determining the ultimate de-
coding outcome. As a downstream task of image classification,
researchers traditionally opted for robust backbone networks
like ResNet [13], VGG [14], GoogleNet [25], MobileNet [26],
and others. These networks had been pretrained on large-scale
classification datasets like ImageNet [27], with the final fully
connected layers removed to obtain the encoded features. How-
ever, it is worth noting that CNNs inherently capture relatively
local information due to the nature of convolution operations,
which can result in incomplete feature interaction, particularly
in RS images. To tackle these challenges, transformer-based
backbone networks emerged as a solution. These networks,
such as the PVT [22] and Swin Transformer [28], offer an
effective alternative. Leveraging the self-attention mechanism
in the spatial domain, transformer-based backbone networks
excel at establishing long-range dependencies from a global
perspective, addressing the limitations of traditional CNNs in
capturing broader context information, especially for RS. Re-
cently, some RS-related encoder networks trained on large-scale
RS datasets have emerged. Among them, the typical encoders
such as RingMo [29] and plain vision transformer [30] have
achieved huge success, which can be directly applied to the
downstream tasks.

In this article, because PVT can not only model the local
continuity information, which is essential for geospatial object
segmentation, but also reduce the high computational cost in-
troduced by attention manipulation, we use it as the encoder of
our proposed network.

2) Decoding Strategies: Following the processing of input
images by the encoder network to obtain multilevel features,
various decoding strategies have been developed. Initially, re-
searchers introduced the feature pyramid network (FPN) [20],
which employed up-sampling operations and concatenation to
construct the final feature representation. Simultaneously, some
scholars ventured into constructing multiscale structures to
aggregate contextual information across different scales. For
instance, Zhao et al. [16] introduced the pyramid scene pars-
ing network (PSPNet), which aimed to enhance the global
context representation of a scene. Zheng et al. [31] invented
a foreground-aware relation network to capture the complex
relationship between the foreground objects and the background
in the RS images. Chen et al. [15] combined dilated convolutions
with multiscale architectures to augment the contextual repre-
sentation of high-level features. Wang et al. [32] adopted a multi-
stage strategy to combine the texture and morphological features
of images to guide feature learning, and Zhang et al. [33] utilized
the spatial morphological differences to search for the boundary
of fine-grained classes. Subsequently, researchers recognized
the need to capture more global information, as dilated con-
volutions and multibranch approaches were still biased toward
local context. In response, Fu et al. [17] designed a dual attention
mechanism that models global dependencies through matrix op-
erations in both spatial and channel dimensions. This approach
inspired the development of numerous attention modules aimed
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Fig. 2. Structure of our proposed UGSNet.

at capturing global information. For instance, Wang et al. [19]
introduced the Non-local block, while He et al. [18] innovated
the attention mechanism, using coarse segmentation results to
guide the enhancement of higher level features. Furthermore,
researchers explored coarse-to-fine decoding strategies, where
an initial coarse segmentation result guided the refinement pro-
cess to produce a more detailed segmentation. RefineNet [34]
adopted this strategy to refine the details of the coarse segmenta-
tion, and DAD [21] mimicked the human eye’s focusing process
to achieve accurate segmentation from coarse to fine.

C. Uncertainty Strategy

The concept of uncertainty was initially introduced to aid deep
learning model decision making, as outlined in [35], where it
distinguishes two types of uncertainty: aleatoric and epistemic.
Building upon this concept, some researchers have integrated
uncertainty to enhance segmentation accuracy. For example,
Czolbe et al. [36] introduced a probabilistic segmentation net-
work to estimate the well-defined binary segmentation. DeVries
et al. [37] utilized the maximum Softmax probability to estimate
the uncertainty. However, previous approaches for estimating
uncertainty often relied on Bayesian deep learning networks [35]
or other tools [38], [39], which can be complex and challenging
to implement.

In contrast to conventional decoding strategies, our approach
is inspired by [35] and builds upon the concept introduced
in [18]. He et al. [18] proposed a simple uncertainty rank

algorithm to measure the uncertainty level of both the buildings
and the background, respectively. However, such an uncertainty
strategy was just designed for building extraction, which only
modeled the epistemic uncertainty and cannot be applied to
multiclass segmentation tasks. Different from it, we innovatively
integrate an AUQM and an EUQM to address the uncertainties
arising from both aleatoric and epistemic sources, as discussed
in [35].

III. METHODOLOGY

A. Overview

As illustrated in Fig. 2, our innovative UGSNet utilizes the
pretrained transformer-based backbone PVT-V2-B2 [22] as the
encoder to obtain four levels of encoded features (Pi, {i =
1, 2, 3, 4}). These four-level encoded features possess varying
resolutions and exhibit distinct semantic information. To max-
imize the utility of these features, we introduce a multiscale
atrous spatial pyramid pooling (ASPP) mechanism, ensuring
an ample receptive field for the highest level features, P4.
Subsequently, we employ a convolution operation to directly
generate a segmentation result, S4. Nevertheless, due to the
lower resolution of the highest level features, P4, S4 represents
a coarse segmentation lacking intricate details. Diverging from
prior methods that sequentially fuse adjacent features without
addressing the associated uncertainty generated during feature
interactions, we introduce two pivotal modules: the AUQM
and the EUQM. In the following sections, we will provide an
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Fig. 3. Structure of the MSPM.

in-depth explanation of our proposed multiscale ASPP, AUQM,
and EUQM, respectively.

B. Multiscene Perception Module (MSPM)

For RS images, the contained geographical information is
exceedingly complex. To distinguish distinctive features of
different objects within this intricate context, it is crucial to
incorporate multiscale capabilities and a broad receptive field. To
address this, we introduce an MSPM to achieve this objective. As
previously emphasized, the capture of multiscale information is
vital for acquiring detailed data, and dilated convolutions prove
effective in enlarging the receptive field to encompass global
information. Therefore, as depicted in Fig. 3, our approach initi-
ates with a 1 × 1 convolution to reduce the channel dimensions
of the input features, denoted as P4. Subsequently, we employ
a 3 × 3 dilated convolution (with a dilation rate of 3) to further
enhance these features. Simultaneously, to retain the original
information, we utilize a concatenation operation to merge these
outcomes, resulting in the formation of P 3

4 .

P 3
4 = Concat

(
P4,Convd=3

3×3 (Conv1×1(P4))
)

(1)

where d represents the dilation rate of the 3 × 3 dilated convo-
lution.

Furthermore, we follow such a process, adjust the dilation
rates to 6, 12, 18, and 24, and get the corresponding features
P 6
4 , P 12

4 , P 18
4 , and P 24

4 as follows:

P 6
4 = Concat

(
P 3
4 ,Convd=6

3×3 (Conv1×1(P 3
4 )
)
)

P 12
4 = Concat

(
P 6
4 ,Convd=12

3×3 (Conv1×1(P 6
4 )
)
)

P 18
4 = Concat

(
P 12
4 ,Convd=18

3×3 (Conv1×1(P 12
4 ))

)
P 24
4 = Concat

(
P 18
4 ,Convd=24

3×3 (Conv1×1(P 18
4 ))

)
. (2)

Fig. 4. Structure of the EUQM.

Finally, we use a 1 × 1 convolution to recover the number of
channels of P4.

C. Epistemic Uncertainty-Quantify Module (EUQM)

In RS images, the objects are always presented in various
scales and distinct appearances, which causes high degree of the
uncertainty. Inspired by [18], we attributes epistemic uncertainty
to the insufficient attention given to challenging-to-segment
samples. Specifically, due to the extremely complex information
of ground objects in RS images, it is extremely difficult to
directly model the epistemic uncertainty, and we try to use the
coarse segmentation to measure the epistemic uncertainty and
achieve the quantification of degree of the epistemic uncertainty.
Building upon these considerations, we introduce the EUQM.

As illustrated in Fig. 4, we employ the coarse segmentation
result S4 ∈ RC×H×W generated by M4 to quantify epistemic
uncertainty, where C represents the total number of classes
within the dataset. Initially, we apply the Softmax function to
obtain the class-specific probabilities (CAP4 ∈ RC×H×W ) for
all potential categories

CAP4 = Softmax(S4). (3)

Subsequently, we introduce the topk (k = 2) algorithm to
calculate the two most likely classes and get the corresponding
two probability maps Prob1st

4 and Prob2nd
4 as follows:

Prob1st
4 ,Prob2nd

4 = Top2(CAP4). (4)

It is noteworthy that the difference in probability between Prob1st
4

and Prob2nd
4 signifies the extent of epistemic uncertainty. When

this gap is not distinctly apparent, it suggests that the model
struggles to differentiate between the two categories, indicating
a high level of uncertainty. Consequently, it becomes essential
to pinpoint uncertain samples and guide the model’s focus
toward these ambiguous pixels. In more detail, we compute the
difference by subtracting Prob2nd

4 from Prob1st
4 , and then, apply

the function ψ to normalize the resulting subtraction, denoted
as EU4, into the range from 0 to 1, yielding EUnorm

4 ,

EU4 = Prob1st
4 − Prob2nd

4

EUnorm
4 =

1

eEU4 − 1
. (5)
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Fig. 5. Structure of the AUQM.

Following the quantification of epistemic uncertainty, we pro-
ceed to utilize the quantified uncertainty map, denoted as EUnorm

4 ,
to emphasize uncertain pixels in the neighboring encoded layers.
Specifically, we treat the uncertainty map as weights allocated
to the encoded features. Consequently, we directly multiply
the input features M4 and P3 by EUnorm

4 and the upsampled
EUnorm

4 , respectively. Finally, we concatenate these modified
features together, resulting in the final features denoted as MEU

3

as follows:

MEU
3 = Concat(EUnorm

4 ×M4,Up(EUnorm
4 (×P3) (6)

where Up represents the Upsample operation.

D. Aleatoric Uncertainty-Quantify Module (AUQM)

In RS images, there will be differences in the RS imaging
of the same geospatial object at different angles, at different
heights, and at different times, which will result in huge un-
certainty in feature interaction. However, previous decoding
strategies tend to overlook this uncertainty generated during
feature interaction, which can, to some extent, impact the final
segmentation results. In this study, we realize that the dispar-
ity in feature information across different levels contributes to
uncertainty, known as aleatoric uncertainty, in geospatial object
segmentation. To address this, we introduce the AUQM for the
measurement and elimination of aleatoric uncertainty.

Traditionally, prior research has often employed Bayesian
neural networks to compute the posterior probability over the
weights, denoted as P (W |D), where W represents the learned
parameters, andD signifies the corresponding dataset. However,
as previously mentioned, this implementation can be quite in-
tricate and challenging to integrate into the training process.
Therefore, we opt to introduce the Monte Carlo dropout al-
gorithm [40] to estimate the aleatoric uncertainty arising from
feature interaction.

As depicted in Fig. 5, concerning the input features MEU
3 ,

we perform direct sampling of these features for a total of n
iterations. During each iteration, we apply random channel-wise
masking (with a mask ratio of q) to the sampled features.
Following this process, we compute the variance among all the
randomly masked sampled features. This variance estimation
enables us to model the aleatoric uncertainty, resulting in MAU

3 ,

as follows:

MAU
3 =

1

n

n∑
t=1

(Mi−1,t)
2 −

(
1

n

n∑
t=1

(Mi−1,t)
2 . (7)

To address this aleatoric uncertainty, we simply choose the
mean value among all the randomly masked sampled features,
resulting in the creation of a more certain set of features denoted
as

M3 =
1

n

n∑
t=1

(Mi−1,t). (8)

We employ a progressive strategy to systematically merge
the features within the ith level, where i ranges from 2 to
4, ultimately yielding the refined features M1. These refined
features can be directly employed to generate the enhanced
segmentation map S1, as illustrated in Fig. 2.

E. Loss Function

In Fig. 2, we observe the presence of four output segmentation
maps: S1, S2, S3, and S4. These maps serve as the foundation
for constructing the loss function in conjunction with the ground
truth (GT). In this context, we exclusively employ the cross-
entropy loss as our loss function, denoted as L. Consequently,
the comprehensive loss function lossall is as follows:

lossall =
4∑

i=1

L(Si,GT). (9)

IV. EXPERIMENT

To evaluate the performance of our UGSNet, we conducted
a comprehensive series of experiments. In this section, we will
provide a rich set of experimental results along with in-depth
analysis.

A. Dataset

The iSAID dataset [41] comprises 2 806 high-resolution
RS images sourced from various sensors and platforms, each
with varying resolutions. This original dataset encompasses a
diverse range of image sizes, spanning from 800 × 800 pixels to
4000 × 13000 pixels. It includes a total of 655 451 instance an-
notations across 16 categories, including the background class.
The official iSAID dataset conveniently provides a predivided
training dataset consisting of 1411 images and a validation
dataset with 458 images.

Following the precedent set by previous research, we em-
ployed the training dataset to train our model and conducted
our evaluation on the validation dataset. To facilitate our experi-
ments, we uniformly cropped images from both the training and
validation datasets into 512 × 512 pixels, ensuring no overlap
between the cropped regions.

B. Implementation Details

During the training phase, we utilized the Adam optimizer
with an initial learning rate set to 10−4. In addition, we applied a
learning rate decay, reducing it by a factor of 10 every 50 epochs.
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TABLE I
PERFORMANCE COMPARISON WITH BASELINES ON BENCHMARK DATASET

TABLE II
PERFORMANCE COMPARISON WITH BASELINES ON BENCHMARK DATASET

TABLE III
PERFORMANCE COMPARISON WITH BASELINES ON BENCHMARK DATASET
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Fig. 6. Visual results of our method and the compared methods. (a) Image. (b) GT. (c) UNet. (d) Deeplab v3+. (e) HRNet. (f) SFNet. (g) Farseg. (h) Ours.

Our chosen batch size was 8, and we standardized the input
image sizes to dimensions of 512 × 512 × 3. It is noteworthy
that all experiments were executed on the NVIDIA GeForce
RTX 3090Ti, which boasts a substantial 24 GB.

C. Evaluation Metrics

In line with established conventions [31], we selected the
mean intersection over union (mIoU) as the primary metric
for evaluating multiclass object segmentation. In addition, we
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Fig. 7. Visualizations of the epistemic uncertainty and aleatoric uncertainty in the last three decoding layer. The upper represents the aleatoric uncertainty, and
the lower represents the epistemic uncertainty. (a) Image/GT. (b) 2nd decoding layer. (c) 3rd decoding layer. (d) 4th decoding layer.

assessed the IoU for each individual class to gain a more detailed
understanding of the model’s performance.

D. Compared Methods

To verify our proposed USGNet, we select several SOTA
semantic segmentation methods to compare with ours: FCN-
8s [11], SPGNet [42], Dense Aspp [43], NonLocalNet [19],
Semantic FPN [20], DANet [17], RefienNet [34], PSPNet [16],
UNet [44], CCNet [45], DNLNet [46], GCNet [47], OC-
Net [48], EMANet [49], Attention UNet [50], Deeplab v3+
[15], HRNet [51], UperNet [52], SFNet [53], FarSeg [31],
UNetFormer [54], RSSFormer [55], and MCCANet [56].

E. Visual Results

As illustrated in Fig. 6, we present four illustrative examples to
facilitate a comprehensive comparison between our pioneering
UGSNet and the compared methodologies. In order to show
certainty key areas in details, we highlight these areas in red
rectangles. In the first scenario, we can discern the dense distri-
bution of storage tanks, leading to less precise segmentations by
UNet, SFNet, and FarSeg. Even though Deeplab v3+ and HRNet
manage to capture the primary segments, they still lag behind
our approach in terms of accuracy. In the second scenario, the
challenge lies in accurately delineating small ships. Notably,
among all the methods, the segmentation results produced by
our UGSNet come closest to the GT, showcasing its prowess
in handling intricate details. The third scenario poses a sub-
stantial challenge in detecting small vehicles at the image’s
bottom, where other methods exhibit prominent missed detec-
tions. In contrast, our UGSNet outperforms the competition,
showcasing its robustness in challenging scenarios. The final
scenario features the coexistence of harbors and small vehicles

in the image, confounding competing methods in effectively
distinguishing between the two. In addition, Deeplab v3+ and
SFNet erroneously categorize certain harbor sections. Evidently,
our UGSNet consistently delivers superior segmentation results.
These visual outcomes unequivocally underscore the remarkable
advantages of our strategies for mitigating uncertainty from dual
perspectives, solidifying its position as a pioneering solution in
the field.

F. Quantitative Comparison With SOTAs

As depicted in Table I, we conducted comprehensive experi-
ments on the iSAID dataset. Notably, our UGSNet has demon-
strated superior quantitative performance when compared to
all SOTA methods. To delve into the specifics, UGSNet sur-
passes the leading SOTA method, MCCANet, by an impressive
0.5 percentage points in terms of the mIoU metric. Upon closer
examination of individual categories, our proposed UGSNet
excels in the segmentation of baseball diamond (BD), tennis
court (TC), large vehicle (LV), small vehicle (SV), swimming
pool (SP), roundabout (RA), and harbor (Harbor). In addition,
it secures the second-best performance in segments such as
ship, bridge, and helicopter (HC). This comparative analysis
unequivocally underscores the significant effectiveness of our
strategy for modeling uncertainty in both types, leading to highly
accurate segmentation.

V. DISCUSSION

In this section, we mainly focus on discussing the effective-
ness of each module in our proposed USGNet on the iSAID
benchmark dataset.
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A. Effectiveness of MSPM

As previously discussed, the synergy between multiscale con-
textual and global information provides complementary cues,
motivating us to introduce the MSPM technique for aggregat-
ing valuable information within the highest level features. As
demonstrated in Table II, it becomes evident that the incor-
poration of the MSPM leads to a substantial enhancement in
segmentation performance. Notably, the term “Base” refers to
the UNet-shaped decoder, while “EUQM” and “AUQM” denote
the utilization of our proposed EUQM and AUQM, respectively.

B. Uncertainty Strategies

In this article, our aim is to address the challenges posed
by uncertainty stemming from dense distribution, significant
interclass variations, and subtle intraclass differences, approach-
ing them from two distinct angles: epistemic uncertainty and
aleatoric uncertainty. As depicted in Table II, it becomes ap-
parent that harnessing these two forms of uncertainty yields
substantial benefits in terms of segmentation effectiveness. To
investigate the stability of uncertainty reduction during feature
interaction, we present visualizations of epistemic and aleatoric
uncertainties in the last three decoding layers, as showcased in
Fig. 7. Examining Fig. 7, a clear trend emerges—both epistemic
and aleatoric uncertainties progressively diminish, conclusively
validating the efficacy of our uncertainty mitigation strategy.

Furthermore, we extend our analysis to include the output
of three additional levels and evaluate the results on the test
dataset. As presented in Table III, a noticeable trend emerges—
segmentation accuracy consistently improves with the grad-
ual elimination of uncertainty. This tangible improvement
underscores the significant advantages inherent in our proposed
strategy. Meanwhile, it is easy to find that our proposed uncer-
tainty strategy has different improvements for different types
of objects. In detail, the use of the EUQM leads to a decrease
in the accuracy of segmentation on categories such as ST,
TC, BC, LV, SV, SP, and Harbor, but using AUQM basically
improves the segmentation accuracy of each category. We think
EUQM relies highly on the coarse segmentation result, when the
deviation of the coarse segmentation is serious, EUQM cannot
correctly measure the yielded epistemic uncertainty. However,
the combination of EUQM and AUQM can constrain the coarse
segmentation, and hugely improving some hard-to-segment cat-
egories, such as Ship, ST, BD, BC, GTF, HC, and SBF.

VI. CONCLUSION

In this article, we recognize that foreground objects often
exhibit characteristics such as dense distribution, significant
interclass variability, and subtle intraclass distinctions, resulting
in inherent ambiguity for conventional decoding strategies. To
address these uncertainty challenges, we introduce the UGSNet.
In this approach, we begin by leveraging the PVT to extract
multilevel features, rich in long-range information, within the
framework of a typical encoder–decoder architecture. Subse-
quently, we introduce an uncertainty-guided decoding mecha-
nism, considering both epistemic and aleatoric uncertainty, to

progressively refine the segmentation at each level. Employing
this uncertainty-guided decoding strategy, our UGSNet excels
in achieving precise geospatial object segmentation. To vali-
date the effectiveness of our UGSNet, we conducted extensive
experiments on the comprehensive ISAID dataset. The results
unequivocally highlight the superiority of our method over other
SOTA segmentation techniques.

Although our proposed UGSNet outperforms current SOTA
RS segmentation methods, there are still some drawbacks in the
segmentation results. We attribute the flawed segmentation to the
complex environment presented in the RS images. In detail, an
RS image consist of various ground objects, which inevitably
results in complex contextual information. Our uncertainty-
guided strategy can solve such a problem to some extent, but
it still cannot deal with the very high-uncertainty situation.
We think an ideal solution is to introduce other-modal image
data, which can reflect more comprehensive class-related in-
formation. Therefore, in the future, we intend to extend our
uncertainty strategies to diverse domains, including cross-modal
segmentation, medical diagnosis, change detection, and so on.

REFERENCES

[1] S. Dotel, A. Shrestha, A. Bhusal, R. Pathak, A. Shakya, and S. P. Panday,
“Disaster assessment from satellite imagery by analysing topographical
features using deep learning,” in Proc. 2nd Int. Conf. Image Video Signal
Process., 2020, pp. 86–92.

[2] L. Wang, S. Fang, X. Meng, and R. Li, “Building extraction with vision
transformer,” IEEE Trans. Geosci. Remote Sens., vol. 60, Jun. 27, 2022,
Art. no. 5625711.

[3] N. Audebert et al., “Deep learning for urban remote sensing,” in Proc.
Joint Urban Remote Sens. Event, 2017, pp. 1–4.

[4] M. Awrangjeb, C. Zhang, and C. S. Fraser, “Improved building detec-
tion using texture information,” Int. Arch. Photogrammetry Remote Sens.
Spatial Inf. Sci., vol. 38, pp. 143–148, 2011.

[5] Y. Song and J. Shan, “Building extraction from high resolution
color imagery based on edge flow driven active contour and JSEG,”
Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci., vol. 37,
pp. 185–190, 2008.

[6] M. Cote and P. Saeedi, “Automatic rooftop extraction in nadir aerial im-
agery of suburban regions using corners and variational level set evolution,”
IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 313–328, Jan. 2013.

[7] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28,
Jul./Aug. 1998.

[8] S. J. Rigatti, “Random forest,” J. Insurance Med., vol. 47, no. 1, pp. 31–39,
2017.

[9] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, 2009,
Art. no. 1883.

[10] G. Hamerly and C. Elkan, “Learning the k in k-means,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2003, pp. 281–288.

[11] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1106–1114.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[15] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

[16] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881–2890.



JIA et al.: UGSNet FOR GEOSPATIAL OBJECT SEGMENTATION 5833

[17] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3146–3154.

[18] J. Li, W. He, W. Cao, L. Zhang, and H. Zhang, “UANet: An uncertainty-Aw
extraction from remote sensing images,” IEEE Trans. Geosci., vol. 62,
2024, Art. no. 5608513, doi: 10.1109/TGRS.2024.3361211.

[19] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7794–7803.

[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117–2125.

[21] J. Li, W. He, and H. Zhang, “Towards complex backgrounds: A
unified difference-aware decoder for binary segmentation,” 2022,
arXiv:2210.15156.

[22] W. Wang et al., “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 568–578.

[23] S. Saito, T. Yamashita, and Y. Aoki, “Multiple object extraction from aerial
imagery with convolutional neural networks,” Electron. Imag., vol. 2016,
no. 10, pp. 1–9, 2016.

[24] R. Alshehhi, P. R. Marpu, W. L. Woon, and M. Dalla Mura, “Simulta-
neous extraction of roads and buildings in remote sensing imagery with
convolutional neural networks,” ISPRS J. Photogrammetry Remote Sens.,
vol. 130, pp. 139–149, 2017.

[25] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[26] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[28] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10012–10022.

[29] X. Sun et al., “RingMo: A remote sensing foundation model with masked
image modeling,” IEEE Trans. Geosci. Remote Sens., vol. 61, Jul. 28, 2022,
Art. no. 5612822.

[30] D. Wang et al., “Advancing plain vision transformer toward remote sensing
foundation model,” IEEE Trans. Geosci. Remote Sens., vol. 61, Nov.
21, 2022, Art. no. 5607315.

[31] Z. Zheng, Y. Zhong, J. Wang, and A. Ma, “Foreground-aware relation
network for geospatial object segmentation in high spatial resolution
remote sensing imagery,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 4096–4105.

[32] J. Wang, W. Li, M. Zhang, R. Tao, and J. Chanussot, “Remote sensing
scene classification via multi-stage self-guided separation network,” IEEE
Trans. Geosci. Remote Sens., vol. 61, Jul. 17, 2023, Art. no. 5615312.

[33] M. Zhang, W. Li, X. Zhao, H. Liu, R. Tao, and Q. Du, “Morphological
transformation and spatial-logical aggregation for tree species classifica-
tion using hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, Jan. 3, 2023, Art. no. 5501212.

[34] G. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-path refinement
networks for high-resolution semantic segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 1925–1934.

[35] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 5580–5590.

[36] S. Czolbe, K. Arnavaz, O. Krause, and A. Feragen, “Is segmentation
uncertainty useful?,” in Proc. 27th Int. Conf. Inf. Process. Med. Imag.,
Jun. 2021, pp. 715–726.

[37] T. DeVries and G. W. Taylor, “Leveraging uncertainty estimates for
predicting segmentation quality,” 2018, arXiv:1807.00502.

[38] Y. Fang, H. Zhang, J. Yan, W. Jiang, and Y. Liu, “UDNet: Uncertainty-
aware deep network for salient object detection,” Pattern Recognit.,
vol. 134, 2023, Art. no. 109099.

[39] F. Yang et al., “Uncertainty-guided transformer reasoning for camouflaged
object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 4146–4155.

[40] F. James, “Monte Carlo theory and practice,” Rep. Prog. Phys., vol. 43,
no. 9, 1980, Art. no. 1145.

[41] S. W. Zamir et al., “iSAID: A large-scale dataset for instance segmentation
in aerial images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, 2019, pp. 28–37.

[42] B. Cheng et al., “SPGNet: Semantic prediction guidance for scene pars-
ing,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 5218–5228.

[43] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “DenseASPP for semantic
segmentation in street scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 3684–3692.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., Munich, Germany, 2015, pp. 234–241.

[45] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “CCNet:
Criss-cross attention for semantic segmentation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 603–612.

[46] M. Yin et al., “Disentangled non-local neural networks,” in Proc. 16th Eur.
Conf. Comput. Vis., Glasgow, U.K., 2020, pp. 191–207.

[47] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “Global context networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 6881–6895,
Jun. 2023.

[48] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for
semantic segmentation,” in Proc. 16th Eur. Conf. Comput. Vis., 2020,
pp. 173–190.

[49] X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, “Expectation-
maximization attention networks for semantic segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 9167–9176.

[50] O. Oktay et al., “Attention U-Net: Learning where to look for the pancreas,”
2018, arXiv:1804.03999.

[51] J. Wang et al., “Deep high-resolution representation learning for visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10,
pp. 3349–3364, Oct. 2021.

[52] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 418–434.

[53] X. Li et al., “Semantic flow for fast and accurate scene parsing,” in Proc.
16th Eur. Conf. Comput. Vis., 2020, pp. 775–793.

[54] L. Wang et al., “UNetFormer: A UNet-like transformer for efficient
semantic segmentation of remote sensing urban scene imagery,” ISPRS
J. Photogrammetry Remote Sens., vol. 190, pp. 196–214, 2022.

[55] R. Xu, C. Wang, J. Zhang, S. Xu, W. Meng, and X. Zhang, “RSSFormer:
Foreground saliency enhancement for remote sensing land-cover segmen-
tation,” IEEE Trans. Image Process., vol. 32, pp. 1052–1064, Jan. 26, 2023.

[56] J. Zheng, A. Shao, Y. Yan, J. Wu, and M. Zhang, “Remote sensing semantic
segmentation via boundary supervision aided multi-scale channel-wise
cross attention network,” IEEE Trans. Geosci. Remote Sens., vol. 61, Jul.
4, 2023, Art. no. 4405814.

Hongyu Jia received the graduated degree from Dalian Maritime University,
Dalian, China, in 2008 with a PI engineering.

He is a Professor with the School of Maritime Economics and Management,
Dalian Maritime University, Dalian, China. His main research interests include
the application of deep learning machine vision to decision-making evaluation.

Wenwu Yang received the master’s degree in indus-
trial engineering and management from the School
of Maritime Economics and Management, Dalian
Maritime University, Dalian, China.

His main research interests include deep learning
machine vision.

Lin Wang received the master’s degree in management science and engineering
from the School of Maritime Economics and Management, Dalian Maritime
University, Dalian, China.

Her main research interests include deep learning natural language processing.

Haolin Li received the master’s degree in management science and engineering
from the School of Maritime Economics and Management, Dalian Maritime
University, Dalian, China.

His main research interests include convolutional neural network prediction.

https://dx.doi.org/10.1109/TGRS.2024.3361211


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


