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Abstract—Water-body type problems classification plays a vital
role in ecological conservation, water resource management, and
urban planning. Accurate classification can aid decision-makers in
understanding the functions of different water-body types, provid-
ing key information for urban planning and promoting harmony
between human activities and the natural environment. Despite
extensive research in the field of water-body segmentation, ex-
ploration in the water-body type classification community is not
as widespread. Therefore, this article proposes a novel water-
body type classification method based on a two-step deep-learning
model, decomposing water-body type classification into water-body
segmentation and water-body type identification. Especially, this
method constructs a unique data strategy by organically integrat-
ing backscatter features, polarimetric features, and DEM features,
providing the model with rich and comprehensive information.
In the first step, the segmentation network uses the fused feature
to extract all water-body from synthetic aperture radar images.
Subsequently, the extracted water-body are combined with the
input data, forming a multifeature input for the identification
network to distinguish between natural and artificial water-body.
During this process, a swarm intelligence optimization algorithm is
employed to explore the optimal hyperparameters of the network,
including those of the segmentation and identification networks. Fi-
nally, the proposed method is assessed using extensive experiments
on water-body segmentation tasks, water-body type identification
tasks, and joint water-body type classification tasks. This article
not only provides a new perspective in the field of water-body
type classification but also demonstrates the immense potential of
deep-learning network hyperparameter optimization and feature
fusion in solving such.
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I. INTRODUCTION

WATER, as the source of life and the carrier of civilization,
plays a vital role in human life and societal development

[1], [2], [3]. Natural and artificial water-body, as the two primary
forms of water resources, each bear unique responsibilities [4].
Typical examples of natural and artificial water-body are shown
in Fig. 1. Natural water-body, such as pristine rivers and lakes,
serve as essential habitats for biodiversity [5]. Their existence
provides irreplaceable value in maintaining ecological balance,
mitigating climate change, and offering recreational areas for
humans [6]. In contrast, artificial water-body, like man-made
lakes and reservoirs, primarily function to store and transport
water resources, ensuring basic water needs for human living and
agricultural production during drought periods [7]. In addition,
they play a crucial role in flood control and power generation [8].
However, with population growth, accelerated urbanization, and
environmental degradation, global water scarcity is becoming
increasingly severe [9]. Given these conditions, accurate classifi-
cation of natural and artificial water-body not only contributes to
a comprehensive grasp of the distribution and status of water re-
sources but also provides robust information for decision-makers
in the field of water management. This support assists in the more
effective management and utilization of water resources, and
optimization of water use strategies, and, as a result, it addresses
the increasingly severe issue of water scarcity.

Natural water-body is primarily located in ecological reserves
and rural areas, while artificial water-body is predominantly
found in urban settings. This distribution characteristics present
challenges to traditional methods of water-body type classifi-
cation, such as field surveys, which are often limited by their
time-consuming nature and small spatial coverage. With the
advancement of remote sensing technology, remote sensing im-
ages, possessing advantages, such as spatial continuity, temporal
dynamics, and extensive coverage, serve as vital data sources
for water-body segmentation and water-body type classification
fields [9], [10], [11], [12]. Optical remote sensing images, with
their rich spectral information and shorter revisit periods, are
commonly used in the fields of land use and land cover [13].
However, optical remote sensing images are easily affected by
clouds and fog, which can obstruct the complete coverage of the
target ground object at specific times [14]. In contrast, synthetic
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Fig. 1. Typical examples of natural and artificial water-body. On the left is an artificial water-body, characterized by its relatively regular shape and clear contrast
with the surrounding environment. Conversely, on the right is a natural water-body, which exhibits a relatively irregular shape and transitions naturally into the
surrounding environment.

aperture radar (SAR) can perceive targets all day and in all
weather conditions, thus it is widely used in fields, such as
agricultural management, target detection, and disaster monitor-
ing [15]. Meanwhile, by applying polarization decomposition
methods to PolSAR images, the polarization feature can be
extracted. This polarization feature information serves to reveal
the physical properties of water-body, thus facilitating more
accurate water-body type classification.

In the community of water-body segmentation, scholars have
proposed a large number of methods, which are mainly cat-
egorized into traditional machine-learning methods and deep-
learning methods. Typical traditional machine-learning methods
include Markov random fields (MRF) [16], fuzzy C-means
clustering (FCM) [17], support vector machines (SVM) [18],
and edge detection [19]. These methods show high accuracy
and efficiency in processing small-scale images [20]. However,
when dealing with SAR images that contain more geometric and
radiometric details, the performance of water-body segmenta-
tion will significantly decrease [11]. This is mainly due to the
amplitude variations caused by the various types of water-body
and complex backgrounds, as well as the inability to fully utilize
the contextual information. In response to these challenges, in
recent years, deep-learning models have demonstrated excep-
tional performance in the field of water-body segmentation due
to their powerful ability to extract features and learn contextual
information from images [21].

Although research on water-body extraction has become more
in-depth, the field of classifying natural and artificial water-body
has not been extensive. However, accurately identifying these
two types of water-body is crucial for the entire water resource
management system. Precise classification not only optimizes
the allocation of water resources and enhances the efficiency
of agricultural irrigation, but also plays a key role in urban
planning. Yet, in the past, water-body type classification tasks
primarily relied on traditional machine-learning methods [22],
[23]. While these methods have achieved certain research results

in this field, there are still many problems that need to be
addressed. For instance, these methods often struggle to find an
appropriate threshold and are significantly affected by speckle
noise [23]. In addition, they have difficulty fully utilizing the
multifeature information of the images. Therefore, leveraging
the powerful feature extraction and context learning capabilities
of deep learning to enhance the accuracy of water-body type
classification represents a challenge that needs to be addressed
[25].

Deep-learning models have shown great promise in handling
complex tasks, yet their full potential has not yet been realized.
Particularly in the field of model optimization, much of the
scholarly work in recent years has been devoted to increasing the
complexity of the model structure [26]. However, the fine-tuning
and optimization of model hyperparameters, which can con-
tribute to the stable improvement of model performance, have
not been given enough attention [27]. Moreover, it is observed
that the effective fusion of different features, such as polarimetric
features, backscatter features, and DEM features, also serves as
an effective means to improve classification accuracy [28].

In summary, there are three main challenges in the water-
body type classification task. First, how to effectively apply the
deep-learning model for the classification of diverse water-body
types. Second, how to optimize the model to enhance its perfor-
mance without amplifying the model complexity and learnable
parameters. Finally, how to improve water-body type classifica-
tion accuracy through diversifying the input data. For the first
challenge, the type classification of water-body is approached
in two stages: segmentation and identification. To begin with,
DeepLabV3+ is employed to segment all water-body from SAR
images. Following this, ResNet50 is applied to identify them as
either natural or artificial. For the second challenge, the hyper-
parameters of the segmentation network and the identification
network are optimized by utilizing the global search of the DBO
algorithm and the iterative calculation of the fitness function.
For the third challenge, the fusion of backscatter features and
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polarimetric features of SAR images, and DEM features is used
as input data. The major contributions of this article are indicated
as follows.

1) The proposed two-step method effectively leverages the
strengths of both deep-learning models. DeepLabV3+ is
used for water-body segmentation and ResNet50 is used
for water-body type identification. The DeepLabV3+ net-
work can fully extract the semantic features and produce
accurate probability maps. ResNet50 solves the problems
of gradient vanishing and explosion by allowing gradients
to be directly backpropagated through cross-layer connec-
tions.

2) The DBO algorithm is utilized to optimize the hyperpa-
rameters of the segmentation and identification network.
As a heuristic optimization algorithm, the DBO algorithm
can automatically find the optimal hyperparameter com-
bination through global search and iterative calculation of
the fitness function, thereby improving the generalization
ability and performance of the model.

3) In terms of input data, the fusion of backscatter features
and polarimetric features of SAR images, and DEM fea-
tures is used as the input data of the model. This strat-
egy effectively fuses the abundant information embedded
within each feature. Specifically, the backscatter feature
can provide backscatter intensity information, while the
polarimetric features can reveal the disparity among scat-
tering components of different ground objects, and the
DEM features can improve the generalization ability and
robustness of the model for complex terrain.

The rest of this article is organized as follows. In Section II,
related work is discussed in depth and research progress is
reviewed. In Section III, the study area and dataset are presented
in detail. In Section IV, the proposed method is introduced. In
Section V, the experiment and result are analyzed. In Section VI,
an assessment and discussion of the proposed method are pro-
vided. Finally, Section VII concludes this article.

II. RELATED WORK

The water-body types classification can be considered as a
fine-grained task of water-body segmentation, which involves
extracting all water-body from images and then identifying the
extracted water-body into natural water-body or artificial water-
body. Given the complexity and the high-resolution nature of
this task, traditional machine-learning methods often fall short
of providing accurate and efficient results. In recent years, with
the rise of deep learning, convolutional neural networks (CNNs)
have first achieved great success in optical and hyperspectral
remote sensing image classification.

Marmanis et al. [29] trained the CNN using ImageNet per-
tained networks. Maggiori et al. [30] first proposed an end-to-end
full convolutional network (FCN) for the classification of large-
scale remote sensing images. Lyu et al. [31] employ a multiscale
successive attention fusion network, which uses a combination
of modules to efficiently aggregate multiscale features, extract
fine-grained water-body features, and mine semantic informa-
tion for improved segmentation of various water-body. Shi et al.

[32] established a water segmentation dataset based on GF-2
images, applied the U-Net model which has a channel-spatial
attention module for enhanced feature fusion efficiency, leading
to improvements across various evaluation indicators in water-
body segmentation accuracy, and demonstrated the method’s
generalizability on multiple datasets including GF-1, GF-6,
Landsat-8, and EO-1. Compared to the classification methods
applied to optical or hyperspectral images, the application of
CNNs to SAR image classification is restricted due to the
scarcity of annotated datasets. Zhang et al. [15] proposed the
cascaded fully convolutional network for high-resolution SAR
images, combining upsampling pyramid networks and fully-
convolutional conditional random fields to improve pixelwise
water-body detection and boundary accuracy, while introducing
a variable focal loss function to address training inefficiency
caused by imbalanced data distribution. Yuan et al. [33] pro-
posed a feature-fused encoder–decoder network that integrates
backscatter features and polarimetric features from SAR images
to improve accuracy and precision in water stream extraction.

To the best of our knowledge, most studies concentrate on
water-body segmentation, with comparatively less research fo-
cusing on the classification of water-body types. Huang et al.
[22] applied a two-level machine-learning framework for water-
body types identification in urban areas, validated on high-
resolution GeoEye-1 and WorldView-2 images over Wuhan
and Shenzhen, two megacities in China. Xie et al. [23] pro-
posed a novel method based on traditional machine learning
for supervised water-body extraction and classification from
Radarsat-2 fully polarimetric SAR data, validated over Suzhou
and Dongguan cities in China. However, scholarly studies on
dam reservoir extraction have provided water-body type clas-
sification with a new perspective and unique considerations
[34], [35], [36], [37]. Fang et al. [34] introduced a framework
based on ResNet50 for identifying global artificial reservoirs
from Landsat-8 satellite images. Malerba et al. [36] trained a
ResNet34 to detect farm dams using high-resolution satellite
images.

Intuitively, it may seem feasible to convert the binary seg-
mentation problem of water-body segmentation directly into
a multiclass segmentation problem. However, such a transfor-
mation often yields unsatisfactory results due to the negligible
pixel-level differences between natural and artificial water-body.
Therefore, delving deeper into the exploration and utilization of
multifeatures, along with the application of more robust models,
is crucial for amplifying the advantages of multifeatures and
accurately distinguishing between types of water-body.

III. STUDY AREA AND DATA

A. Study Area

China, grappling with a severe shortage of freshwater re-
sources, is identified as one of the thirteen most water-deficient
countries in the world. The per capita water resource in China
is a mere 2200 cubic meters, which is a quarter of the global
average. Within this macroscopic context, this article narrows
its focus to the provinces of Henan and Hunan in China as a
study area. The water resource conditions in these two provinces
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Fig. 2. Location of study area.

exemplify the contrasting situations of scarcity and abundance
in China. This renders two provinces indispensable case studies
for comprehending and addressing the water resource issues
prevalent in China. The location of the study area is shown in
Fig. 2.

Henan Province, located in the central part of China (lon-
gitude 110°21′ to 116°39′ E, latitude 31°23′ to 36°22′ N), is
a major agricultural province. Despite spanning the basins of
the Yangtze River, Yellow River, Huai River, and Hai River,
its water resources are not abundant, with per capita water
resource allocation only one-sixth of the national average. In the
South-to-North Water Diversion Middle Route Project, Henan
Province has the longest project canal and the largest water
allocation. Furthermore, Henan Province has several water ir-
rigation projects, such as the Yellow River Diversion Project
and the Huai River Diversion Project. However, these projects
cannot fully resolve Henan’s water shortage issue, but instead, to
some extent, reflect the tense water resource situation in Henan
Province.

In contrast, Hunan Province (longitude 108°47′ to 114°15′ E,
latitude 24°38′ to 30°08′ N) is located in the subtropical humid
monsoon climate zone and boasts abundant water resources.
The province has an average annual precipitation of 1427 mm,
an average total water resource volume of 163 billion cubic
meters, and a per capita water resource allocation of 2500

cubic meters. These figures rank 7th, 6th, and 13th in China,
respectively. However, despite Hunan Province’s natural water
abundance, the large amount of transboundary water and the
small amount of controllable water lead to long-term issues of
resource and structural water shortages, posing challenges to
Hunan Province’s water use guarantee.

These two provinces present a stark contrast in water resource
conditions: one is resource-rich, and the other is resource-scarce.
At the same time, the water resource issues of both provinces are
representative, reflecting the diversity and complexity of China’s
water resource issues. By studying the water resource conditions
in these two provinces, a deeper understanding of China’s water
resource issues can be achieved, providing references for future
water resource management and allocation.

B. Satellites

The Sentinel-1 mission, an integral part of the European Space
Agency’s Copernicus Programme, is committed to delivering
precise, timely, and readily accessible data to enhance envi-
ronmental management, as well as to comprehend and allevi-
ate the impacts of climate change. The mission comprises a
two-satellite constellation, Sentinel-1A (S-1A) and Sentinel-1B
(S-1B), launched in 2014 and 2016, respectively, with the pri-
mary objective of monitoring both land and oceanic regions.
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TABLE I
DETAILED PARAMETERS OF THE S-1A SATELLITES

Notably, the introduction of the S-1A satellite signifies the
inaugural deployment of the Copernicus project’s C-band SAR
satellites, which offer their data products at no cost with a revisit
interval of 12 days. The S-1A is equipped to operate in the
interferometric wide (IW) mode, providing either single (VV
or HH) or dual polarizations (VV/VH or HH/HV) single look
complex (SLC) data. This model yields a nominal resolution of
5× 20 m (in range and azimuth) and encompasses a swath width
of approximately 185 km. This represents the highest resolution
that is freely accessible for remote sensing imagery. The detailed
parameters of the S-1A satellites are given in Table I.

C. Satellites Dataset

The SAR dataset utilized comprises seven images captured
by the S-1A satellite, with four images from the Henan province
and the remaining three from the Hunan province. These SLC
images are procured in VV/VH polarization under the IW mode.
SLC images, encompassing both amplitude and phase informa-
tion, furnish us with abundant polarization details. The SAR
imagery of Henan province is obtained in March, while that of
Hunan province is captured in August. Detailed parameters are
delineated in Table II.

D. S-1A Data Preprocessing

Fig. 3 meticulously illustrates the preprocessing workflow
necessary for the extraction of backscatter features and polari-
metric matrix from the SLC image. These procedures encompass
the application of the orbit file, the removal of thermal noise,
calibration, deburst, generated of polarimetric matrix, multi-
looking, speckle filtering, and the application of range-Doppler
terrain correction. Differences in the generation of backscatter
features and the polarimetric matrix arise from the selection
of varied outputs during calibration. At the same time, the
polarimetric matrix is generated during the deburst procedure.
It is important to underscore that during the multilooking phase,
the number of range looks and azimuth looks are set to four and
one, respectively. Furthermore, the approach delineated in [38]
can effectively mitigate thermal noise. For precise geographi-
cal information extraction, the range-Doppler terrain correction
employs Shuttle Radar Topography Mission (SRTM) data with

Fig. 3. Preprocessing of the S1-A SLC image.

a 30-m resolution. Through the operation of deburst, each burst,
containing effective signal parts, is successfully merged. The
processes of multilooking and filtering serve to minimize the
impact of coherent speckle noise.

1) Acquisition of backscatter feature: Upon completion of
the aforementioned preprocessing steps, the backscatter
feature of the VV and VH polarization can be obtained.

2) Acquisition of polarimetric feature: After completing the
step of generating the polarimetric matrix, each pixel of
the SLC data is represented as a C2×2 covariance matrix.
Then, the covariance matrix of C2×2 is transformed into a
Stokes vector as follows:

C2×2 =

[
c11 c12
c∗12 c22

]
→ S− =

⎡
⎢⎢⎣
s1
s2
s3
s4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
c11 + c22
c11 − c22
2Re(c12)
2Im(c12)

⎤
⎥⎥⎦ (1)

where Re(c12) and Im(c12) denote the real part and the
imaginary part of C2×2, respectively. The c11, c12, c∗12,
and c22 represent 〈|SVH|2〉, 〈SVHS

∗
VV〉, 〈SVVS

∗
VH〉, and

〈|SVV|2〉, respectively, where <> is multilook and/or
speckle filtering.

Within the context of the model-based decomposition method
in [39], the Stokes vector undergoes decomposition into a vol-
ume model and a polarized wave as follows:

S− = mvsv +mssp = mv

⎡
⎢⎢⎣

1
±0.5
0
0

⎤
⎥⎥⎦+ms

⎡
⎢⎢⎣

1
cos2θ

sin2θcosδ
sin2θsinδ

⎤
⎥⎥⎦ (2)

where sv and sp denote the partially polarized portion and
the polarized portion, respectively, with mv and ms being the
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TABLE II
PARAMETERS OF THE S-1A SAR DATASET

corresponding power. The angle θ serves to assess the propor-
tion between wave components, while δ represents the cross-
polarized phase. It merits attention that the volume model is
constructed based on the random dipole cloud model [39].

So far, (1) yields four known parameters, while (2) determines
four unknown parameters. It is shown in [39] that the parameter
mv can be obtained by solving the quadratic equation.

Then, obviously, the ms can be calculated as

ms = s1 −mv. (3)

The mdif can be calculated as

mdif = mv −ms. (4)

Ultimately, three extracted polarimetric feature components
are obtained through polarization decomposition.

E. DEM Feature

In addition to considering the backscatter features and po-
larimetric features of SAR images, DEM features are further
introduced. The introduction of DEM feature aims to enhance
the model’s robustness and generalization ability to more com-
plex terrain features. Especially in alpine regions, DEM feature
can provide unique and critical information about the height
of the terrain. The usefulness of DEM feature may be limited
in urban areas because water-body and other ground objects
in the city often exhibit similar characteristics on the DEM
feature, challenging feature extraction in the model. All DEM
feature used in this article are from SRTM data, which has a
resolution of 30 m. SRTM data not only has a wide coverage,
but also has a good performance in elevation accuracy and terrain
representation, making it an ideal data source to be considered.

F. Feature Combination

The input data fuses the backscatter and polarimetric features
of the SAR image, and the DEM features to form five com-
binations as shown in Table III. These combinations are sepa-
rately applied to water-body segmentation tasks and water-body
type identification tasks, aiming to select the optimal feature
combination. In previous articles, water-body segmentation is
largely based on backscatter features, whereas water-body type

TABLE III
FIVE CANDIDATE FEATURE COMBINATIONS

identification more heavily relied on texture features and shape
features. Given this context, this article focuses on exploring pos-
sibilities beyond single backscatter, texture, and shape features.
Specifically, the potential of polarimetric and DEM features
is introduced, and delves into the comprehensive performance
when fusing backscatter, polarimetric, and DEM features. In
order to effectively validate the performance of the model upon
the addition of polarimetric features and DEM features, Com-
bination A (Com. A) includes only both backscatter features
and DEM features. In Com. B–E, the introduction of various
polarimetric features forms diverse combinations, enabling a
deeper investigation into the specific impact of these features on
water-body segmentation and identification tasks.

IV. METHOD

This article aims to segment water-body in SAR images and
classify them based on the formation of natural or artificial.
First, the water-body is finely extracted by a segmentation model
to obtain a probability map with accurate water-body location.
Then, the probability map is added to the channel of the input
data. Finally, the identification model is utilized to learn all
channel features in order to identify the water-body as either
a natural or artificial water-body. The proposed method pipeline
is shown in Fig. 4.

A. Water-Body Segmentation

1) Base Model: DeepLabV3+ is used as the base model
for the water-body segmentation task [40]. It is comprised
of an encoder that amalgamates the atrous spatial pyramid
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Fig. 4. Overview of the proposed water-body type classification. The fusion
of backscatter features, polarimetric features, and DEM features is input into
the segmentor to obtain a probability map with accurate water-body locations.
Subsequently, the probability map is combined with the input features and fed
into the classifier to identify the extracted water-body into natural and artificial
water-body.

pooling network and the Xception network, coupled with a
straightforward yet efficacious decoder. The encoder starts with
an Xception network for mining features of water-body. The
Xception network uses depthwise separable convolutions, which
decompose standard convolutions into depthwise convolutions
and point convolutions, thereby greatly reducing computational
complexity. Specifically, depthwise convolution operates spatial
convolutions independently across each input channel, whereas
pointwise convolutions serve to amalgamate the outputs of
depthwise convolutions. Moreover, to excavate multiscale con-
textual information, atrous convolutions and the ASPP are in-
corporated based on the Xception network, aiming to handle
multiscale information within the images. The ASPP module
is comprised of three parallel atrous convolutional layers, a 1
× 1 convolutional layer, and a global average pooling layer,
enabling the capture of information at varying scales to procure
richer contextual details. Finally, the features at different scales
are concatenated into a new high-dimensional feature represen-
tation, with an additional 1 × 1 convolutional layer employed to
generate the final feature representation. The decoder structure
of DeepLabV3+ is ingeniously simplistic but extremely potent.
It first upsamples the output of the encoder by a factor of four,
and then fuses the upsampled feature map with low-dimensional
features which are the features extracted by the Xception feature
extraction network. The fused features are passed through a 3
× 3 convolutional layer and upsampled to the original size of
the input image to produce the final water-body segementation
result. Architecture of proposed segmentation model is shown
in Fig. 5.

2) Network Loss: Given the influence of speckle noise and
considerable disparity in the water-body distribution in SAR
imagery, ensuring a balanced or nearly balanced pixel count
across various classes is a significant challenge. As a result, the
pixel quantity among categories in SAR image datasets often
displays a notable imbalance. This imbalance can detrimentally

affect the stability of network training, potentially leading to an
overemphasis on classes with abundant pixels, while neglecting
those with fewer. Such a situation could negatively impact the
final classification performance. To mitigate these issues, the ap-
plication of focal loss function is incorporated for segmentation
model [41]. For each pixel i, the loss is defined as

Lfocal(Pi, Xi) =

{
−α(1− Pi)

γ log(Pi), Xi = 1

−(1− α)P γ
i log(1− Pi), Xi = 0

(5)

where Xi is the ground truth category label of the ith pixel, 1
denotes the water-body category, and 0 denotes the nonwater-
body category.Pi is the model’s prediction probability for the
true category. When the prediction is correct (i.e., Pi is close
to 1), (1− Pi) is close to 0, which reduces the loss. When the
prediction is wrong (i.e., Pi is close to 0), (1− Pi) is close
to 1, which increases the loss. α is an adjustable weighting
parameter to balance the importance of different categories. In
the water-body segmentation problem, by setting α, the impor-
tance of water-body can be increased and the importance of
nonwater-body can be decreased, so as to alleviate the problem of
an imbalance in the number of pixel points between water-body
and nonwater-body. γ is an adjustable focus parameter used
to control the contribution of difficult and easy samples to the
loss. When γ > 0, the loss of difficult-to-categorize samples in-
creases, while the loss of easy-to-categorize samples decreases.
Consider an illustrative example where γ is set to 3. For a
pixel from water-body that is highly likely to be predicted as
water-body ( Pi = 0.8), the modulating factor is calculated as
(1− Pi)

γ , which is 0.008. This pixel, showing a high prediction
confidence, falls under the category of easy-to-predict pixels.
Accordingly, its loss value diminishes significantly, by a factor of
125. On the other hand, when a water-body pixel shows low pre-
dictive probability (Pi = 0.2), the modulating factor (1− Pi)

γ

will increase to 0.512. Being a hard-to-predict pixel, the loss
value only contracts by a factor of 0.512, thus receiving a larger
weight in the loss function compared to an easy-to-predict pixel.

B. Water-Body Types Identification

1) Base Model: ResNet50 is employed as the base model
for water-body type identification tasks [42]. ResNet is intro-
duced to address the issue of accuracy degradation due to layer
saturation during the training of CNNs. ResNet’s architecture
incorporates distinct groups of residual blocks to learn the
residuals between the inputs and outputs of each network layer.
Architecture of proposed identification model is shown in Fig. 6.
The loss function of the network can be denoted as (6). When
extended to a multilayer network, the output of each layer of the
network as show in (7). According to the principle of the chain
rule, the gradient of the ith layer can be deduced as represented
in (8)

L = Loss(Xn, Y ) (6)

where L is the loss value, Loss is the loss function, Xn is the
model output, and Y is the label

Xn = Fn−1(Xn−1,Wn−1),
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Fig. 5. Architecture of the proposed segmentation model.

Fig. 6. Architecture of the proposed identification model.

Xn−2 = Fn−2(Xn−2,Wn−2), · · · ,
X2 = F1(X1,W1) (7)

where F represents model and W denotes parameter of model

∂L

∂Xi
=

∂L

∂Xn

∂Xn

∂Xn−1
× · · · × ∂Xi+1

∂Xi
. (8)

From this deduction, it is observable that, with the backpropa-
gation of error, the gradient of the preceding layer in the network
progressively diminishes.

To solve this problem, the residual block is introduced, as
shown in the Conv block and Identity block on the right side of
Fig. 6. In essence, the transformation modifies the output layer
from H(x) = F (x) to H(x) = F (x) + x, the forward prop-
agation transitioning from (7) to (9), and the backpropagation
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transitioning from (8) to (10). Therefore, despite the increasing
depth of the network, the issue of vanishing gradients is avoided

Xn = Fn−1(Xn−1,Wn−1) +Xn−1, · · · ,
X1 = F1(X0,W0) +X0 (9)

∂L

∂Xi
=

∂L

∂Xn
× · · · × ∂Xi+1

∂Xi

=
∂L

∂Xn

[
1 +

∂

∂Xi

n−1∑
L=i

F (XL,WL)

]
. (10)

The residual module also contributes to the reduction in pa-
rameter count. This design initially employs a 1× 1 convolution
to decrease the channel dimensions from 256 to 64, before
subsequently reinstating the original dimensionality via another
1 × 1 convolution. This configuration results in a significant
reduction in the total number of parameters as compared to
conventional residual modules. Simultaneously, as the depth of
the network increases, the count of ReLU activation functions
escalates correspondingly, thereby enhancing the model’s non-
linear expressive power and generalization capability.

2) Network Loss: Cross-entropy (CE) loss is used for water-
body type identification [43]. For the water-body types iden-
tification task, the true label of a sample is represented as
a one-hot encoded vector Y = [ynatural, yartificial, ybackground].
The output of the model is a predicted probability distribution
P = [pnatural, partificial, pbackground], corresponding to the three
classes respectively. The CE loss can be calculated as

CE(Pi, Yi) = − [ynatural log(pnatural)

+ yartifical log(partifical)

+ybackgroundlog (pbackground)] . (11)

This equation sums over all classes. The term Yi log(Pi) only
remains for the true class because Yi for the true class is 1
and 0 for the others. For instance, if the true label of pixel m
is artificial water-body, it is represented as Ym = [0 1 0]. The
model prediction for this pixel is Pm = [0.1 0.8 0.1]. The loss
value for this pixel is thus calculated through

CEm(Pm, Ym) = − [0× log(0.1) + 1× log(0.8)

+0× log(0.1)] = 0.22. (12)

The logarithmic function in the CE loss ensures a small loss
when the model’s prediction is close to the true class, approach-
ing zero for perfect accuracy. Conversely, if the predictions are
entirely inconsistent with the true labels, the loss will tend toward
infinity.

C. DBO

Despite the exceptional performance and irreplaceable ca-
pabilities demonstrated by deep-learning networks, such as
DeepLabV3+ and ResNet, across a variety of tasks, presenting
broad application prospects when addressing diverse challenges,
it is observed that their performance is often contingent upon the
meticulous selection of hyperparameters. The configuration of
these hyperparameters is commonly dictated by human expertise

or refined through exhaustive manual tuning. This method is
not only labor-intensive but also may not necessarily yield the
optimal model performance. To tackle this issue, the proposed
method employs the DBO algorithm to optimize the hyperpa-
rameters of segmentation and identification networks.

The DBO algorithm is a heuristic optimization algorithm,
inspired by the behavioral patterns of dung beetles in nature
[44]. These behavioral patterns are translated into five distinct
update rules within the algorithm, serving to pinpoint the op-
timal solution in the hyperparameter space. After defining the
hyperparameter space, the dung beetle’s ball-rolling behavior is
simulated to conduct a global search. This behavior enables the
search process to cover the entire hyperparameter space, thereby
avoiding premature convergence to local optima. Specifically,
a group of boll-rolling dung beetles is initially established,
with each assigned a random search direction. Then, each dung
beetle starts to roll according to its search direction, updating its
position according to (13). This process continues until a certain
number of iterations are reached

xi(t+ 1) = xi(t) + α× k × xi(t− 1) + b×Δx

Δx = |xi(t)−Xω| (13)

where in the context of the current iteration denoted by t, the
position of the ith dung beetle is represented by xi(t). The
constant k signifies the deflection coefficient, while α is a
coefficient that takes values of either −1 or 1. The term Xω

corresponds to the globally least favorable position.
Subsequently, the dancing behavior of dung beetles is sim-

ulated to optimize the search process. When a dung beetle
encounters impediments or finds progression halted, it executes
a sequence of rotations and pauses, utilizing this “dance” to
recalibrate its position. The following equation is employed to
simulate this behavior, adjusting the dance angle to modify the
dung beetle’s search direction:

xi(t+ 1) = xi(t) + tan (θ) |xi(t)− xi(t− 1)| (14)

where θ represents the angle of deviation.
In addition, inspired by the behavior of female dung beetles

choosing locations for egg-laying, a boundary selection strategy
is proposed, defined as follows:

Lb∗ = max (X∗ × (1−R),Lb)

Ub∗ = min (X∗ × (1 +R) ,Ub) (15)

where X∗ represents the current local best position, while Lb∗

and Ub∗ denote the lower and upper bounds of the spawning
region, respectively. During the iteration process, the position
of the brood ball is dynamically adjusted according to

Bi (t+ 1) = X∗ + b1 × (Bi(t)− Lb∗)

+ b2 × (Bi(t)−Ub∗) (16)

where Bi(t) conveys the spatial data of the brood ball, while b1
and b2 are vectors of dimension 1×D, generated randomly.

What is more, the simulation of small dung beetle’s foraging
behaviors is conducted to enhance search accuracy. Specifically,



YUAN et al.: WATER-BODY TYPE CLASSIFICATION IN DUAL POLSAR IMAGERY USING A TWO-STEP DEEP-LEARNING METHOD 4975

the optimal foraging area is defined in as

L bb = max
(
Xb × (1−R) ,Lb

)
U bb = min

(
Xb × (1 +R) ,Ub

)
(17)

whereXb is indicative of the universally optimal position. Then,
each small dung beetle’s position is updated according to

xi (t+ 1) = xi (t) + C1 ×
(
xi(t)− Lbb

)
+ C2 ×

(
xi(t)−Ubb

)
(18)

where C1 signifies a random number that adheres to a normal
distribution, while C2 represents a random vector confined to
the interval (0,1).

At the same time, a simulation of the dung beetle’s pilfering
behavior was conducted. Assuming that there are more food
resources near the global optimal position Xb, stealing dung
beetles are more inclined to move in this direction. This process
is simulated through

xi(t+ 1) = Xb + S × g × (∣∣xi(t)−X∗ |+|xi(t)−Xb
∣∣)
(19)

where g is defined as a random vector adhering to a normal
distribution, while S represents a fixed constant.

By simulating the behavior of dung beetles, effective op-
timization of hyperparameters in deep-learning networks is
achieved. The global search strategy of the DBO algorithm, par-
ticularly the simulation of dung beetles’ ball-rolling and dancing
behaviors, allows for a comprehensive exploration of the hyper-
parameter space, thereby avoiding premature convergence to
local optima. This approach overcomes the labor-intensive and
inefficient issues of traditional manual adjustment of hyperpa-
rameters, thereby enhancing the performance and stability of
deep-learning networks.

V. EXPERIMENT AND RESULT

A. Dataset

With the data samples introduced in Section III, these data
samples are cropped into the nonoverlapping patches of 512 ×
512 pixels, because large-scale images would cause a huge com-
putational burden. A total of 694 image patches with water-body
are obtained. Among them, there are 291 image patches from
Henan Province and 403 image patches from Hunan Province.
In this article, they are divided into two subsets, which are used
for water-body segmentation and water-body type identification
tasks, respectively. To keep the data balanced, the segmentation
and identification datasets each have 347 images. In the segmen-
tation set, each sample is associated with a ground truth label
with a pixel value of 1 for water-body and 0 for background. In
the identification set, label 0 is assigned to natural water-body,
label 1 is assigned to artificial water-body, and label 2 is assigned
to background. For the water-body type identification task, it is
performed on the segmentation set, but the goal is to segment
water-body and classify them as natural water-body or artificial
water-body. In the segmentation dataset, there are a total of
683 water-body, with an average of 1.96 per image. A total of 278
images serves as the training set, while another 69 images form

the testing set. The training set for the identification network
consists of 300 images, containing a total of 205 natural water-
body and 197 artificial water-body. The test set is composed of
47 images, which include 32 natural water-body and 29 artificial
water-body.

B. Experimental Setup

1) Implementation Details: The segmentation model uses
DeepLabV3+ as the backbone. Use an input image patch of
512 × 512 pixels. The learning rate, batch-size, and epoch of
the segmentation model are all obtained by DBO iterative search,
and they are 0.0003, 4, and 150, respectively. During training,
data augmentation methods of horizontal and vertical flipping,
and random channel offset are used. The identification model
uses ResNet50 as the backbone. Also, use an input image with
patches of 512 × 512 pixels. The learning rate, batch-size, and
epoch of the identification model are also iteratively calculated
by the DBO algorithm, which are 0.006, 8, and 500, respectively.
The experiments are all carried out in the MATLAB environ-
ment using NVIDIA TITAN GPU. The operating system is
Windows 10.

2) Evaluation Protocol: For the water-body type identifica-
tion, a classification task, accuracy is computed as the proportion
of images correctly predicted relative to the total number of im-
ages. The tasks of water-body segmentation and water-body type
classification are regarded as a multiclass segmentation problem.
For water-body segmentation, it is divided into two categories:
water-body and background. For the latter, it is divided into
three categories: in the segmentation task, regions not predicted
as water-body are the class labels of the background; for each
extracted water-body, if it is identified as a natural water-body or
an artificial water-body, all pixels have the same class label in this
area. The widely utilized intersection over union (IoU) indicator
is employed to assess segmentation outcomes, calculating the
ratio of the intersection to the union of predicted regions and
ground truth regions for a specific category. The mean IoU
(mIoU) of all classes in each image is determined, with this
value subsequently averaged over the entire set.

In the context of water-body segmentation and water-body
type classification, the background category typically occupies
a larger proportion in the image patches, thereby influencing
a dominant mIoU value. Therefore, in some works, it is re-
moved from mIoU. Furthermore, in the case of water-body type
classification, the IoU of natural and artificial water-body are
averaged with equal weight, while the primary objective of this
article is the classification of natural and artificial water-body.
To tackle these issues, the experiments perform a comprehensive
evaluation. For water-body segmentation, the IoU of the water-
body is computed, along with the mIoU of the water-body and
the background. In the water-body type classification, the IoU
for natural water-body, denoted as IoUn, and that for artificial
water-body, denoted as IoUa, are calculated and reported. In
addition, the mIoU for both natural and artificial water-body,
denoted as mIoUna, as well as the mIoU for natural water-body,
artificial water-body, and backgrounds, denoted as mIoUnab, are
also computed and presented.
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TABLE IV
QUANTITATIVE EVALUATION OF THE SEGMENTATION TASK BY DIFFERENT

COMBINATIONS

TABLE V
QUANTITATIVE EVALUATION OF THE IDENTIFICATION TASK BY DIFFERENT

COMBINATIONS

C. Optimal Combination Selection

Table IV demonstrates the effect on the accuracy of water-
body segmentation when different combinations are used as
input data to DBO+DeepLabV3+. It is obvious from the results
that different features combinations of input have significant dif-
ferences in the performance of the model. When solely utilizing
backscatter features and DEM features as inputs, namely Com.
A, the resulting IoU and mIoU values are the least desirable, with
indicator values of 63.90% and 65.08%, respectively. This may
be due to the fact that these two features do not fully characterize
the water-body, leading to errors in the model during prediction.
Conversely, in Com. B–D, the indicator values are higher than
in Com. A and Com. C proves to be the most effective, with the
highest IoU, and mIoU indicator values, which are 86.22% and
88.24%, respectively. This indicates that the water-body in the
SAR image is still mainly dominated by the surface scattering
mechanism, while mv and mdif represent nonsurface scattering
components, which may introduce noise in water-body segmen-
tation and lead to the performance degradation of the model.
It should be noted that even when all polarimetric features are
included in the model input data, that is, when Com. E is used as
input, its indicator values do not surpass those of Com. C. The
values of IoU and mIoU are lower than that of Com. C by 8.67%
and 8.65%, respectively. This may be due to the redundancy
between some polarimetric features or the negative impact of
some features on the performance of the model.

Furthermore, Table V illustrates the performance of different
feature combinations in the task of water-body type identifica-
tion. These results bear a significant resemblance to those from
the water-body segmentation task. When utilizing Com. A as
inputs, the resulting accuracy is the lowest, with indicator values
of 85.85%. Among Com. B–E, Com. C also demonstrates the

best performance, with indicator values of 93.63%, again prov-
ing its importance in water-body studies. This finding further
strengthens our understanding of the dominance of the surface
scattering mechanism in SAR images of water-body, and also
suggests that components like mv and mdif, which represent
nonsurface scattering, may introduce noise in water-body type
identification, leading to a decrease in model performance.
Therefore, in the following experiments, only the Com. C is
chosen as an input to the model.

D. Water-Body Segmentation

1) Comparison to Traditional Machine Learning and State-
of-the-Art Methods: Compare our method DBO + DeepLabV3
+ with the following methods.

1) K-means clustering [45] posits that the proximity in “dis-
tance” between two targets correlates positively with their
similarity.

2) SVM [18] aims to find an optimal hyperplane that seg-
regates all pixels in the image to the maximum extent
possible, while adhering to classification constraints, and
positioning pixels at the greatest distance from the hyper-
plane.

3) Random forest [46], predicated on a classification and
regression decision tree, possesses the capacity to analyze
the significance of thousands of input features.

4) MRF [16] models the image as a grid, constituted by
random variables, where the grayscale value of each pixel
is contingent upon adjacent groups.

5) FCN [43] supplants all the fully connected layers of tra-
ditional CNNs with convolutional layers, addressing the
issue of diminished image size, a consequence of convolu-
tion and pooling, by employing transposed convolutional
layers.

6) U-Net [47] features a U-shaped architecture, ingeniously
linking the encoder with the decoder within the network
structure, thereby integrating more contextual and low-
dimensional information.

7) SegNet [48] possesses a structure in which encoders and
decoders align in a one-to-one correspondence. The de-
coder in SegNet conducts nonlinear upsampling by di-
rectly employing the pooling index generated during the
encoder’s max pooling operation.

8) DeepLabV3+ [40] enhances the architecture of DeepLab
V3 through the addition of a decoder module, aiming to
optimize the network’s segmentation outcomes, particu-
larly the delineation between individual objects.

DeepLabV3+ serves as the default backbone of the pro-
posed methodology, yielding superior performance when jux-
taposed with traditional machine-learning and deep-learning
approaches as presented in Table VI. Upon utilizing DBO for
the optimization of DeepLabV3+’s hyperparameters, the model
demonstrates substantial performance enhancements over other
methods in the task of water-body segmentation. Specifically,
it exhibits an improvement of +1.45% over DeepLabV3+ in
terms of IoU metric. Therefore, it is observable that DBO not
only enhances the robustness and accuracy of the model, but
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Fig. 7. Visualization results of comparative methods for water-body segmentation tasks. We also provide some failure cases.

TABLE VI
ACCURACY COMPARISON OF DIFFERENT METHODS ON WATER-BODY

SEGMENTATION TASK

also demonstrates its unique strengths and potential for future
development in the application of deep learning. The results
for the mIoU are also delineated in Table VI. As indicated in
the evaluation protocol, the values of mIoU register commonly
higher compared to the values of IoU. Fig. 7 presents some qual-
itative outcomes of the proposed method and other comparative
methods, demonstrating that the prediction results generated by
the proposed method are very close to the ground truth.

2) Ablation Study: DeepLabV3+ optimizes the hyperpa-
rameters of learning rate, batch-size, and training epoch through
the DBO algorithm. If the DBO algorithm is removed, it would
revert to the conventional DeepLabV3+ method, accompanied
by a decrease of 1.45% relative to 86.22%. Subsequent sections
will investigate the influence of these three hyperparameters on
network robustness and the precision of water-body segmenta-
tion.

a) Learning rate: The selection of the learning rate is a
crucial factor influencing the training of deep-learning mod-
els. In the context of the water-body segmentation model, the
learning rate directly impacts the pace and extent of network
weight updates. Theoretically, an excessively small learning rate
may result in a protracted network training process, potentially
causing the model to become trapped in local optima and fail to
discover the global optimal solution. Conversely, an overly large
learning rate, although capable of accelerating network weight
updates, may induce oscillations during the training phase. This
could prevent the model from converging to a stable optimal
solution, or even lead to a complete failure of convergence.

Nevertheless, the conventional determination of the learning
rate is often reliant on experience, with typical values being
0.01, 0.001, or 0.0001. While this way is straightforward, it lacks
adaptability to specific tasks and data. In the conducted exper-
iment, Fig. 8(a) displays a comparison of model performance
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Fig. 8. Parameter variation on water-body segmentation. (a) Learning rate of segmentation model. (b) Batch-size of segmentation model. (c) Training epoch of
segmentation model.

using conventional empirical values and the optimal learning
rate calculated by DBO iteration. To maintain a fair comparison,
other hyperparameters (batch-size and training epoch) are held
constant. When the learning rate is set to 0.01, the IoU value
is at its lowest, at 76.94%. This suggests that the step size for
updating network weights may be too large, potentially causing
the model to overlook crucial local optima during the search for
the optimal solution, thereby compromising model performance.
Furthermore, a decrease in the learning rate to 0.001 results in a
slight improvement in IoU, but this metric still falls short of the
desired level. This could be attributed to the continued large step
size for updating network weights, which may cause gradients
to oscillate around the global optimum, preventing accurate con-
vergence to the optimal solution. Moreover, a further reduction
in the learning rate to 0.0001 leads to a decrease in IoU, reaching
78.30%. Finally, when the learning rate is adjusted to 0.0003,
IoU reaches its peak value of 86.22%. This might be because
a learning rate of 0.0003 offers an effective balance, ensuring
stable updates of network weights without the slow training
speed associated with a too-small learning rate. As such, at a
learning rate of 0.0003, the model can effectively strike a balance
between exploring the parameter space and avoiding overfitting,
thereby achieving optimal model performance.

b) Batch-size: Batch-size is another crucial hyperparam-
eter, directly influencing the efficiency and stability of model
learning. Primarily, the batch-size determines the quantity of
samples used in each model weight update. An excessively small
batch-size could induce instability in the model during training,
as each update utilizes a very limited number of samples, poten-
tially leading to high variance in gradient estimation. Moreover,
smaller batch-size imply a higher number of update iterations,
which could extend training time. However, an overly large
batch-size presents its own potential issues. While it can reduce
training time and provide more accurate gradient estimates, an
excessively large batch-size might also limit the model’s ability
to explore the parameter space, as each update utilizes a large
number of samples, potentially causing the model to become
trapped in local optima too.

The influence of different batch-size on model performance
is studied through an ablation experiment. The experimental

results, as shown in Fig. 8(b), further substantiate that optimizing
the batch-size allows DeepLabV3+ to achieve optimal perfor-
mance in water-body segmentation tasks. When the batch-size
is set to 1, the IoU value is at its lowest, at 76.91%. This could be
due to the fact that a smaller batch-size lead to unstable gradient
updates. As the batch-size increases to 2, there is an improvement
in the IoU value, reaching 83.94%. When the batch-size is further
increased to 4, the IoU value is at its highest. This suggests that
a batch-size of 4 achieves an effective balance between com-
putational efficiency and the accuracy of gradient estimation,
thereby leading to optimal model performance. However, further
increasing the batch-size to 6 and 8 results in a significant de-
crease in the IoU value. This could be because larger batch-sizes,
while providing more accurate gradient estimates, may also lead
to a decrease in the model’s generalization ability, as the larger
batch-size reduces the model’s exposure to the diversity of the
training data.

c) Training epoch: The training epoch is another key hy-
perparameter that needs to be carefully considered. Each training
epoch represents one complete forward and backward propaga-
tion of the model over the entire training set. Thus, the training
epoch determines how many times the model learns from the
training data. Too few training epoch may result in the model not
having enough opportunities to learn advanced features of the
data, and as a result, the model will perform poorly. However, too
many training epochs may cause the model to overfit on the train-
ing set, resulting in poor performance on new, unseen data. When
determining the optimal number of training epochs, factors, such
as training duration, model complexity, and the model’s capacity,
to generalize on unseen data must be carefully balanced.

In the ablation experiments, again, the effect on model perfor-
mance is observed by setting multiple general iteration numbers.
As shown in Fig. 8(c), the epoch computed by the iterations of the
DBO algorithm has the highest performance metrics. Too many
or too few training epochs lead to performance degradation.
When the training epoch is set to 50, the IoU value is lowest,
at 73.78%. This could be due to the insufficient number of
epochs, which may not provide the model ample opportunity to
learn advanced features from the data, resulting in suboptimal
performance. As the training epoch increases to 100, the IoU
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Fig. 9. Visualization results of comparative methods for water-body type identification tasks. Ground truth is also provided. Red pixel denotes artificial water-body,
while green pixel denotes natural water-body.

value improves to 84.09%. However, it is when the training
epoch is further increased to 150 that the IoU value reaches
its highest, at 86.22%. This suggests that at 150 epochs, an
effective balance between computational efficiency and training
duration is achieved. A further increase in the training epochs
to 200 and 250 results in a decline in the IoU value, to 78.50%
and 76.97%, respectively. This decline could be attributed to
overfitting, leading to poor performance on new data.

E. Water-Body Types Identification

1) Comparison to State-of-the-Art Methods: The proposed
model, namely DBO + ResNet50, is contrasted with the fol-
lowing classification models for comparative analysis.

1) AlexNet [49], a deep CNN, comprises five convolutional
layers along with three fully connected layers. This net-
work is notable for its introduction of ReLU activation,
overlapping pooling, and dropout techniques.

2) VGG16 [49] is structured with 13 convolutional layers and
3 fully connected layers. Noteworthy is its utilization of 3
× 3 small filters and 2 × 2 maximum pooling layers.

3) InceptionV3 [50] incorporates batch normalization and
factorization into its inception architecture. This inte-
gration enhances both computational efficiency and the
accuracy of the network.

4) Xception [51], an extension of the inception architecture,
supplants the standard inception block with depthwise
separable convolutions.

5) EfficientNet [52] introduces a unique scaling method de-
signed to optimize the balance between network depth,
width, and resolution.

6) GoogleNet [53] successfully enhances the width and depth
of the network by parallelizing convolution and pooling
operations across different scales.

TABLE VII
ACCURACY COMPARISON OF DIFFERENT METHODS ON WATER-BODY TYPE

IDENTIFICATION TASK

7) MobileNetV2 [54], in comparison to its predecessor Mo-
bileNet, introduces a linear bottleneck alongside a reverse
residual structure.

8) ResNet50 [42] incorporates a residual module designed
to address the challenges of gradient vanishing and repre-
sentation bottlenecks in deep networks, achieved through
the application of a short-circuit mechanism.

The visualization results of water-body type identification
for the contrasting methods are shown in Fig. 9. In Table VII,
it is evident that ResNet50, serving as the backbone net-
work, outperforms other comparative methods, ACC is 92.97%,
which demonstrates superior efficacy. Upon optimization of
ResNet50’s hyperparameters utilizing DBO, a notable enhance-
ment in performance is observed, the ACC is 95.71%, which
achieves the highest accuracy. Moreover, the ACC of ResNet18
and ResNet101 is 89.17% and 90.85%, respectively. This not
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Fig. 10. Parameter variation on water-body type identification. (a) Learning rate of identification model. (b) Batch-size of the identification model. (c) Training
epoch of identification model.

TABLE VIII
PERFORMANCE ON OVERALL WATER-BODY TYPE CLASSIFICATION

only attests to the appropriateness of selecting ResNet50 as
the backbone network, but also underscores the effectiveness
of DBO once again. In addition, the enumeration of learnable
parameters inherent to each network is documented in Table VII
too. It should be emphasized that since DBO only optimizes
hyperparameters, it does not add any additional learnable pa-
rameters to the network.

2) Ablation Study: When using the ResNet50 network for
water-body type identification tasks, ablation experiments sim-
ilar to water-body segmentation are still performed. This is
because of the fact that ResNet50, too, optimizes the three
hyperparameters, learning rate, batch-size, and training epoch,
through the application of the DBO algorithm. The role and
influence of the learning rate, batch-size, and training epoch have
already been delineated in the context of utilizing DeepLabV3+
for water-body segmentation tasks, thus rendering a repetition
of these details unnecessary here. The performance changes
of the model caused by the ablation experiments of the three
hyperparameters are shown in Fig. 10.

1) Learning rate: As shown in Fig. 10(a), when the learning
rate is set to 0.01, 0.001, 0.006, and 0.0001, the model’s
accuracy is 85.78%, 95.71%, 87.16%, and 85.91%, re-
spectively. Due to the substantial depth of the ResNet50
network, subtle changes in the learning rate can signifi-
cantly affect the network’s convergence rate and ultimate
performance. Results demonstrate that the model’s accu-
racy reaches its highest when the learning rate is 0.006.
The optimized learning rate, while ensuring the depth of
the network, effectively avoids overfitting, thereby achiev-
ing the best performance in the task of water-body type
identification.

2) Batch-size: As shown in Fig. 10(b), when the batch-size
is set to 2, 4, 6, 8, and 10, the model’s accuracy is 78.44%,
84.30%, 88.87%, 95.71%, and 89.54%, respectively. The
adjustment of batch-size influences the network’s ability
to capture water-body type features to a certain extent.
Results show that when the batch-size is 8, the model’s
accuracy reaches its peak. The optimized batch-size allows
the ResNet50 network to better balance memory usage and
model performance when training on large-scale water-
body type identification tasks, thereby achieving a higher
accuracy rate in water-body type identification.

3) Training epoch: As shown in Fig. 10(c), when the training
epoch is set to 200, 300, 400, 500, and 600, the model’s ac-
curacy is 85.43%, 88.37%, 90.81%, 95.71%, and 90.54%,
respectively. The length of the training epoch somewhat
reflects the model’s depth of understanding of water-body
type features. Results show that when the training epoch is
500, the model’s accuracy reaches its peak. The optimized
training epoch allows the ResNet50 network to ensure
learning efficiency while fully extracting and learning the
complex features of water-body types, thereby achieving
the best performance in the task of water-body type iden-
tification.

F. Water-Body Types Classification

In reference to Section V-B, the IoUn, IoUa, mIoUna, and
mIoUnab of the entire water-body type classification pipeline
are reported in Table VIII. mIoUna is conducted equal mea-
surements on the segmentation accuracy of natural and artifi-
cial water-body, resulting in a value of 86.09%. This value is
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marginally lower than the IoU value of DBO + DeepLabV3+
in Table VI, underscoring the robustness of the water-body
classifier. Ablation studies furnished in Table VIII substanti-
ate the effectiveness of DBO optimization, too. For instance,
when DBO is not utilized, the pipeline is downgraded to a
combination of DeepLabV3+ and ResNet50. The mIoUna and
mIoUnab generated in this scenario are lower by 2.24% and
6.7%, respectively, compared to the full version (i.e., 86.09% and
92.98%). The proposed method addresses the water-body type
classification task in two stages: the acquisition of water-body
in the first stage, followed by their identification as natural
or artificial water-body in the subsequent stage. To validate
this design, comparative experiments are provided. The pro-
posed method will be compared with a single-stage end-to-
end multiclass semantic segmentation network. A multiclass
DeepLabV3+ network (multiclass-DeepLabV3+) is employed
to forecast pixel-level labels directly, namely predicted as ei-
ther natural water-body, artificial water-body, and backgrounds.
The performance of muticlass-DeepLabV3+, as showcased in
Table VIII, is markedly inferior to that of the two-stage pipeline.
As delineated in Section I, a single-stage multiclass segmenta-
tion network experiences suboptimal performance due to the
minimal pixel-level distinction between natural and artificial
water-body. Fig. 11 presents qualitative results from the two-
step pipeline and multiclass-DeepLabV3+. When juxtaposed
with the ground truth, the results derived from the two-stage
pipeline exhibit a considerable performance enhancement over
multiclass-DeepLabV3+.

VI. DISCUSSION

In this section, the effectiveness and performance of the pro-
posed method are extensively discussed, along with the impact of
key parameter variations on model performance. Initially, com-
parative experiments are conducted to reveal the significance
of DEM feature on outcomes. Subsequently, adjustments are
made to several key parameters within DBO, aiming to analyze
their influence on the loss value of the fitness function. Finally,
a detailed analysis is carried out regarding the strengths and
weaknesses of the proposed method, followed by a projection
of potential directions for future improvements.

A. Influence of DEM Features on Model Performance

To further substantiate the efficacy of the proposed method,
comparative experiments are carried out. The DEM feature
is removed from the input data to observe its influence on
the results. As depicted in Fig. 12, the model’s performance
in identifying water-body is notably superior in mountain-
ous regions compared to flat terrain. This could be due to
the complex terrain in mountainous regions, where the large
variations in DEM features aid the model in more accurately
extracting and conducting contextual learning. Moreover, the
overlay shadow of mountainous regions in SAR data could
potentially influence the results. Without the DEM features, the
model might erroneously recognize the shadow as a water-body.
However, the addition of DEM features reduces the impact
of shadows on the model. Therefore, the integration of DEM

Fig. 11. Visualization of water-body type classification results using our pro-
posed method and multiclass-DeepLabV3+. Ground truth is also provided. Red
pixel denotes artificial water-body, while green pixel denotes natural water-body.

features allows the model to distinguish more accurately be-
tween water-body and shadows, further enhancing the model’s
capability to identify water-body types in mountainous terrain.
However, in urban areas, the improvement in the model’s perfor-
mance for water-body type identification is not as pronounced.
This could be attributed to the relatively flat terrain in urban
areas, where the changes in DEM features are minimal, thus
having a smaller impact on the model’s recognition accuracy.
The significant advantage of DEM features in water-body types
identification in mountainous regions further corroborates the
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Fig. 12. Visualization of water-body type classification results using our proposed method and lack of DEM feature. The SAR image and ground truth is also
provided. Red pixel denotes artificial water-body, while green pixel denotes natural water-body.

superiority of the proposed method, namely, the enhancement
of water-body type classification accuracy in different terrains
through the fusion of multisource data.

B. Influence of Changes in Parameters in DBO

In addition, some key parameters of DBO are altered sepa-
rately in the segmentation and identification networks. This is
done to observe their impact on the loss value of the fitness
function. These parameters include the number of populations,
the maximum number of iterations, and the proportion of ball-
rolling dung beetles. First, the number of populations in the
segmentation network changes from the original setting of 30 to
20 and 40, which is to explore the effect of a number of popula-
tion changes on the loss value. As shown in Fig. 13(a), when the
number of population is 20, the loss value increases. However,
when the number of population is 40, the loss value decreases,
but the computation time also increases. This result indicates that
increasing the number of population can improve the model’s
performance but also increase the computation time. The same
experiment is validated in the identification network. As shown
in Fig. 13(b), the trend of the loss value of the identification
network is similar to that of the segmentation network. Next,
the maximum number of iterations changes from the original
setting of 200 to 100 and 300. This is done to reveal its impact
on the model’s performance. As illustrated in Fig. 13(c) and (d),
whether in the segmentation network or identification network,
when the maximum number of iterations is 100, the loss value
tends to increase. However, when the maximum number of
iterations is 300, the loss value decreases, but the computation
time also increases. Finally, the percentage of ball-rolling dung
beetles is adjusted from the original setting of 20% to 10% and
30% to explore its effect on the model performance. As shown in
Fig. 13(e) and (f), regardless of the segmentation network or the

identification network, the loss value tends to rise. This suggests
that maintaining an appropriate proportion of ball-rolling dung
beetles is crucial for the robustness of the model. Based on these
experiments, it becomes apparent that by properly adjusting the
key parameters of DBO, an ideal balance can be found between
model performance and computational burden.

C. Advantages, Disadvantages, and Future Prospects

The main advantage of the proposed method is that it uses a
combination of deep learning and optimization algorithms, as
well as the fusion of multisource data. And innovatively divide
the water-body type classification task into two stages to solve
the problem. First, two deep-learning models, DeepLabV3+
and ResNet50, are adopted, both demonstrating superior perfor-
mance in image segmentation and classification tasks. Second,
DBO is introduced for hyperparameter optimization, a step that
notably enhanced the performance and generalization ability of
the model. Furthermore, backscatter features, polarimetric fea-
tures, and DEM features are also fused. The fusion of these fea-
tures enables the model to comprehensively understand the char-
acteristics of water-body from multiple perspectives, thereby
improving the accuracy of water-body type classification.

Although this article has achieved certain results, there are
still some limitations. First, the ambiguity of the boundary
between water-body and land, and the pixel-level similarity
between natural water-body and artificial water-body are still
relatively large obstacles. Second, proposed method may face
the problem of excessive computational burden when dealing
with large-scale image data.

In view of the above deficiencies, the following directions
for future improvement are considered. First, the exploration
of additional feature fusion and optimization techniques can en-
hance the model’s ability to identify specific types of water-body.
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Fig. 13. Parameter variation on DBO. (a) Number of populations in water-body segmentation model. (b) Number of populations in water-body type identification
model. (c) Maximum number of iterations in water-body segmentation model. (d) Maximum number of iterations in water-body type identification model.
(e) Percentage of ball-rolling dung beetles in water-body segmentation model. (f) Percentage of ball-rolling dung beetles in water-body type identification model.

Second, the investigation of more efficient computational meth-
ods and model structures can reduce the model’s computational
burden and enable it to handle larger scale image data.

Overall, the method proposed in this article shows superior
performance on the task of water-body type classification, but
there is still room for improvement. Anticipation is held for
further enhancement of the model’s performance and provision
of more effective solutions for water-body type identification
through the introduction of advanced techniques and methods
in future article.

VII. CONCLUSION

This article presents a novel approach to water-body types
identification based on two-step deep-learning model, supple-
mented by DBO for network hyperparameter optimization. In
this article, the effectiveness of the proposed method in classi-
fying between natural and artificial water-body is investigated.
The results underscore the potential of deep learning combined
with DBO optimization to address challenges in this community.
In the first step, the DeepLabV3+ network is used for feature
extraction and accomplished precise water-body segmentation.
In the second step, the ResNet50 network is employed for
classifying the segmented water-body into natural or artificial.

Furthermore, the DBO is employed to optimize hyperpa-
rameters within the deep-learning network models. Through
the tuning of parameters, such as learning rate, batch-size, and
training epochs, the goal is to improve the model’s performance

and its ability to generalize. In addition, a strategy is proposed
for fusing backscatter features, polarimetric features of SAR
images, and DEM feature for input.

The results of the experiment confirmed the effectiveness of
our proposed method. In particular, the DBO optimization and
the fusion of backscatter, polarimetric, and DEM features signif-
icantly improved the accuracy of water-body type classification,
especially in complex terrain conditions. This article not only
contributes to the field of water-body type classification but also
demonstrates the value of deep learning and DBO in advancing
remote sensing technology.

This article sets a foundation for future article in this com-
munity. As water resources become increasingly crucial in the
face of climate change and urban development, it is believed
that the techniques developed in this article will have broad
and significant implications for water resource management,
ecological protection, and urban planning.
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