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Abstract—In this study, we examine the potential of leverag-
ing self-supervised learning (SSL) and transfer learning method-
ologies for forest disturbance mapping using Earth Observa-
tion (EO) data. Our focus is on natural disturbances caused by
windthrow and snowload damages. Particularly, we investigate the
potential of knowledge-distillation-based contrastive learning ap-
proaches to obtain comprehensive representations of forest struc-
ture changes using Copernicus Sentinel-1 and Sentinel-2 satellite
imagery. Leveraging pretrained backbone models from knowledge
distillation, we employ transfer learning based on deep change
vector analysis to delineate forest changes. We demonstrate de-
veloped approaches on two use cases, namely, mapping windthown
forest using bitemporal Sentinel-1 and Sentinel-2 images, and map-
ping forest areas damaged by excessive snowload using bitemporal
Sentinel-1 images. Developed self-supervised models were com-
pared in a benchmarking exercise. The best results were provided
by pixel-level contrastive learning for Sentinel-1-based snowload
damage mapping with an overall accuracy of 84% and an F1 score
of 0.567, and for Sentinel-2-based forest windthrow mapping with
an overall accuracy of 76.5% and an F1 score of 0.692. We expect
that developed methodologies can be useful for mapping also other
types of forest disturbances using Copernicus Sentinel images or
similar EO data. Our findings underscore the potential of SSL
and transfer learning for enhancing forest disturbance detection
using EO.

Index Terms—Boreal forest, change detection, Sentinel-1,
Sentinel-2, windthrown forest, snowload damage, deep learning,
self-supervised learning, transfer learning, contrastive learning.
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I. INTRODUCTION

THE sustainable management of forests requires timely and
precise detection, mapping, and quantification of distur-

bances that impact forest ecosystems [1], [2], [3], [4]. These
disturbances can arise from various sources, including nat-
ural events such as wildfires, insect outbreaks, and extreme
weather conditions like windthrow and snowload damages [5].
Human activities, such as clear-cutting, selective logging, and
land conversion, also contribute to these disruptions. Through
careful analysis of these disturbances, forest managers and
researchers can conduct timely updates in forest inventories,
evaluate the health and resilience of forest ecosystems, pin-
point areas requiring intervention, and develop appropriate
conservation strategies.

In this study, we concentrate on two types of natural distur-
bance resulting in the alteration of forest structure, specifically
forest windthrow and forest snowload damages. These distur-
bances can be harder to detect compared to, e.g., forest clear-
cutting, when homogeneous chunks of forest are completely
removed, as, depending on the damage severity, the forest still
remains in place, but the forest integrity and structure can be
strongly disturbed. A key challenge in the assessment of forest
disturbances is accurately quantifying the extent of the distur-
bances. Severe storms cause rapid and extensive damage within
short time frames. Timely and accurate delineation of affected
areas is needed for quickly guiding intervention activities.

The adoption of earth observation (EO) imagery into forest
monitoring enabled timely assessment of the extent and sever-
ity of forest disturbances over wide areas [2]. Both synthetic
aperture radar (SAR) and optical images were used for mapping
forest windthrows, monitoring forest clear-cutting, and selective
logging [6], [7], [8], [9]. Use case studies featured Landsat
satellites, RADARSAT-2, Advanced Land Observing Satellite
Phased-Array-type L-band Synthetic Aperture Radar (ALOS
PALSAR), and many other sensors. Since the start of the Coper-
nicus program and the launch of the first Sentinel-1 satellite in
2014 [10] and the first Sentinel-2 satellite in 2015 [11], these
image sources were readily adopted by the research community
and into operational processing chains as these images are
provided at no cost to users.

Traditional approaches for identifying and quantifying for-
est disturbances have been largely guided by change detection
methods. These techniques leverage the temporal dimension of
remote sensing data, using radiometric or spectral differences
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in multidate EO imagery to uncover disturbances. However,
when applying these methods, particularly to bitemporal data,
inherent challenges arise. Environmental factors, such as vari-
ations in forest transmissivity due to freezing conditions or
moisture content changes, manifest themselves through apparent
spectral/radiometric changes and can disrupt the results, thereby
compromising the accuracy of these techniques.

Another important problem with traditional statistical or
machine-learning-based change detection methods is the lack
of extensive reference data to guide the change detection or
classification models. Besides, these methods often rely on
hand-engineered image features (such as image ratios, image
differences, and gray-level co-occurrence features), which are
frequently nontrivial to formulate, select, and accordingly justify
their application. Presently, with the advent of deep learning
(DL), actively used for semantic segmentation and change detec-
tion in remote sensing imagery (as detailed in Section II-B), such
hand-engineered features may no longer be necessary. We ex-
pect that DL, in particular transfer learning and self-supervised
learning (SSL), will be instrumental in avoiding conventional
problems with image feature formulation, selection, and classi-
fication or change detection models.

In this study, we adopt a self-supervised strategy incorporating
contrastive learning that utilizes knowledge distillation [12], and
deep change vector analysis (DCVA) [13], a transfer learning
framework specialized for bitemporal change detection. Our
method employs the pretrained model obtained from contrastive
learning into the DCVA to provide a robust approach for detect-
ing areas of forest disturbances. Thus, this technique permits
rapid analysis of forest disturbances without the explicit need
for labeled data. To the best of our knowledge, this is the
first demonstration of SSL and particular contrastive learning
methods in EO-based mapping of forest disturbances caused by
natural hazards such as windstorms or excessive snowload.

The rest of this article is organized as follows. Section II
provides an overview of the relevant literature. Section III de-
scribes study areas, EO, and reference data used in the study.
Section IV delineates our methodology. Section V summarizes
the experimental framework. Section VI presents and discusses
the obtained results. Finally, Section VII concludes this article.

II. LITERATURE OVERVIEW

Here, we first briefly describe prior research in forest distur-
bance mapping using EO data in the context of mapping for-
est windthrow- and snowload-damaged areas. Furthermore, we
elaborate on DL literature related to EO-based change mapping,
particularly recent developments in semi- and self-supervised
DL methodologies, and their potential for forest mapping appli-
cations.

A. Forest Disturbance Mapping Using EO Data

To date, both optical and SAR satellite images have been used
in mapping the extent of forest disturbances in connection with
such natural hazards as windstorm and snowfall. Multispectral
very high resolution (VHR) optical imagery has been used over
boreal [14] and temperate forests [15] to map windthrown forests

with high accuracy. However, such data are usually proprietary.
Several forest damage assessments were conducted using freely
available high-resolution multispectral data, such as, e.g., Land-
sat images with 30-m pixel size. Combining Landsat images
and forest statistics allowed to achieve up to 65% accuracy
in detecting various forest disturbances over American conif-
erous and mixed deciduous forest in Utah [16], with a wide
range of methods suitable for automated forest change detection
utilizing Landsat time-series data [17]. Other examples using
optical satellite data include assessment of forest areas disturbed
by harvesting and strong windthrows in Western Siberia [18],
wide area windthrow disturbance over temperate forest zone
of European Russia, and the southern boreal forest zone of
the United States with up to 75% accuracy [19], as well as
pan-European mapping of forest windthrows [20] that included
both natural and human-induced forest disturbance with overall
accuracy of 92.5 ± 2.1% and omission error of 32.8%. Overall,
subject to image availability over the area of interest, Landsat im-
ages [4], Sentinel-2 images [21], [22], or their combination [23]
demonstrate a good potential in mapping forest-disturbed areas,
the main difficulties being discerning between anthropogenic
and natural disturbed forests during forest change detection,
relatively modest accuracy with traditional change detection
methods, and general image latency due to the cloud-obscured
weather and partly absence of illumination during winter at high
latitudes.

As a quick reaction to forest disturbances helps guide inter-
vention activities and estimate the volume of economic losses,
the potential of SAR imagery (not dependent on cloud situation
unlike optical) was also explored. Historically, SAR-based forest
disturbance mapping was largely utilizing bitemporal change
detection techniques [24], [25], [26], [27], [28], [29], [30], [31]
and time-series analysis [7], [32], [33]. These studies, mostly
focused on detecting and mapping fire and logging-induced
disturbances in forests, show that X-, C-, and L-bands are
the most sensitive SAR wavelengths for detecting disturbances
in forested landscapes and that sensitivity does not change
across environments, but depends more on resolution and SAR
imaging mode. In contrast, wind-induced disturbance has been
less considered, with only a few studies utilizing SAR imagery
reported [6], [34], [35]. Suitable sensors were ALOS PALSAR,
RADARSAT-2, TerraSAR-X, and Sentinel-1.

Overall, prior research indicates that forest change detection is
mostly performed through techniques relying on representative
training data and using hand-engineered EO image features,
which is a limitation when reference data are scarcely available.
Also, spatial context is not fully taken into account, while
primarily spectral or radiometric indices are used.

B. DL for EO-Based Change Detection

DL methods are widely adopted for various image classi-
fication and semantic segmentation tasks [36], [37], [38]. To
date, several fully convolutional and recurrent neural networks
have been demonstrated in forest remote sensing [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50]. These
models often provide improved accuracy in the classification
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or prediction of forest variables, as well as in forest change
mapping. Recently, a modified U-Net model has been developed
to detect windthrow damage in Bavarian forests [51]. Similarly,
various U-Net models, including Siamese U-Nets, were tested
in processing pairs of consecutive images for differentiating
change events in temperate forest ecosystems of Ukraine [52]
using supervised learning. Furthermore, vanilla U-Net was en-
hanced with residual and batch normalization layers to segment
forest disturbances from windthrows and bark beetles in VHR
satellite imagery, highlighting U-Nets’ superiority over classical
machine learning methods like random forests, support vector
machines, and AdaBoost [53].

However, training of DL models often requires a fully seg-
mented reference label, such as, e.g., airborne-laser-scanner-
based forest attribute maps that are costly and not available over
wide areas. In addition, reference data represented by external
sources, expert annotations, or third-party reports cannot be
always reliable and/or spatially sporadic or discontinuous. In
this situation, earlier demonstrations of forest change detection
are not fully relevant [14], [51], [54]. Instead, semisupervised,
weakly supervised, transfer learning, or self-supervised method-
ologies are of key interest for easing the reliance on labeled data
constraints, as successful approaches on semantic classifica-
tion [55] and forest variable prediction [39], [49] demonstrated.

In the context of self-supervised EO-based change detection,
one of the pioneering steps was pretraining a convolutional
neural network (CNN)-based SSL model with pretext tasks on
unlabeled data, followed by fine-tuning the model on a limited
annotated dataset via supervised learning, and a change vector
analysis to extract changed regions in urban landscapes [56].
Another study [57] utilized a pixelwise contrastive learning
approach to improve the precision of flood change detection
over benchmark methods that operate on a patch level. This
was achieved using a pseudo-Siamese network for pixelwise
representation alignment coupled with a loss function based on
superpixel features. The threshold operator was used to generate
a binary change map by evaluating the cosine similarity of fea-
ture vectors in bitemporal images. In a similar manner, Siamese-
style contrastive learning for change detection combines image
and domain knowledge contrastive losses during training and
uses self-knowledge distillation from the teacher network during
inference to enhance change detection accuracy [58]. Other
noteworthy studies in the domain of EO-imagery-based land-
cover change detection using self-supervised and unsupervised
learning include using Siamese networks with local and global
contrastive losses [59], introducing task-specific Siamese-style
contrastive learning with hard sampling and smoothing [60], and
extracting features from pretrained CNNs to generate change
maps via clustering [61].

In another study [62], an autoencoder network was utilized,
interpreting a high reconstruction loss in unsupervised learning
as an indicator of forest disturbance, and a threshold was used
for detecting disturbances using Tukey’s method. Similarly,
multiresolution deep feature maps derived by convolutional
autoencoders can be used for detecting deforestation [63]. Other
reported studies on the use of unsupervised approaches confirm
that they can produce results comparable to or exceeding the

Fig. 1. Location of the Taivalkoski study site for forest windthrow mapping,
and the Kainuu study site for snowload damage mapping in Finland.

supervised ones, e.g., [64] in forest fire damaged area mapping,
or improve over traditional techniques when contrastive learning
is added in the framework of semisupervised approaches, e.g.,
in forest height mapping [65].

As evident from the literature above, there has been a dis-
cernible trend in mapping of forests and forest disturbances from
traditional machine learning methods toward DL, particularly
focusing on U-Net variations. Nevertheless, U-Nets, or similar
supervised models, typically require substantial amounts of
labeled reference data that are either sparse or uncertain. In
this situation, SSL and transfer learning represent an attractive
way to overcome these limitations by leveraging unlabeled
samples [12]. Inspired by recent advancements in land-cover
change detection, which emphasize the need to reduce reliance
on extensive training data and annotations, and building upon
the promising outcomes of our initial efforts in forest distur-
bance mapping using DCVA [66], our study aims to explore
the potential of various knowledge distillation techniques with
transfer learning. Incorporating problem-agnostic SSL model
weights enables swift response and analysis of postdisturbance
scenarios, regardless of the forest disturbance type, reducing the
need for customization.

III. DATA

Here, we describe our study areas, EO, and reference data
available for both use cases: 1) mapping forest windthrow using
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Fig. 2. Forest windthrow site: Sentinel-2 image (natural color composite)
acquired on June 28, 2021 shortly after the windstorm.

Sentinel-1 and Sentinel-2 images and 2) mapping forest areas
damaged due to excessive snowload using Sentinel-1 images.
The study sites are shown schematically in Fig. 1.

A. Windstorm Damage Mapping

1) Study Site and Damage Event Description: The wind-
storm damage site was located in the vicinity of Taivalkoski mu-
nicipality and Tyräjärvi lake, in the North Ostrobothnia province
in northern Finland. The forests in the study site typically consist
of a mix of coniferous and deciduous trees. Coniferous trees,
such as pine, spruce, and fir, are prevalent in the region. On
June 21, 2021, a major storm occurred in the area leading to
major forest disturbances and forest windthrow. In this use case,
we evaluated the potential of both Sentinel-2 and Sentinel-1
for accurately delineating the areas of the damaged forest using
bi-temporal change detection scenarios.

2) EO and Ground Reference Data: European Space Agency
(ESA) Sentinel-2 images were acquired both before the wind-
storm event, on June 4, 2021, and June 28, 2021, shortly after
the forest windthrow. The postdisturbance Sentinel-2 image is
shown in Fig. 2. The Level 2A surface reflectance product sys-
tematically generated by the ESA and distributed in tiles of 110
× 110 km2 was used in the data processing. The multispectral
instrument on board Sentinel-2 satellites has 13 spectral bands
with 10-m (four bands), 20-m (six bands), and 60-m (three
bands) spatial resolutions. In our further analysis, we used RGB
and NIR channels that were found most useful for monitoring
boreal forests in prior studies [67] and were also available in
pretrained backbone models [66], [68].

ESA Sentinel-1 images used in mapping forest windthrow
were acquired on June 1, 2021, and July 7, 2021. The original
dual-polarization Sentinel-1A images available as ground range
detected (GRD) products were downloaded from the ESA Open
Hub. GRD products were radiometrically terrain-flattened and

Fig. 3. Forest snowload damage site: Sentinel-1 image (VV in red, VH in
green, and VV/VH in blue) after the snowload damages.

orthorectified with VTT in-house software using a local digital
elevation model available from the National Land Survey of
Finland [69]. Final preprocessed images were in gamma-naught
format [70].

Information from the Finnish Forest Centre based on forest
owner reporting was used as ground reference data for dam-
aged stands. Reporting of forest owners was done on a forest
compartment level, with reference data that can be considered
as classic weak labels. Intact stands were derived using visual
interpretation of optical images acquired after the event, as well
as the latest update of multisource National Forest Inventory [71]
systematically produced by the Natural Resource Institute of
Finland.

B. Snowload Damage Mapping

1) Study Site and Damage Event Description: The study site
was located in the Kainuu province of Finland and is also
shown in Fig. 3. The study site represents a typical mixed
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Fig. 4. General overview of contrastive learning (left). The specific contrastive
learning methods based on knowledge distillation applied in this study (right).

boreal forestland. During the winter 2017–2018 season, severe
damages were inflicted to the forests located within the study
area by excessive snowload. The damage varied by extent and
severity, with certain tree trunks either snapped or bent in an arc.
Across broader areas, the damage manifested as broken branches
and bent or crooked trees [7].

2) EO and Ground Reference Data: ESA Sentinel-1 images
used in the study were acquired on November 12, 2017 (before
any reported disturbances) and on March 24, 2018 (after all
damages were inflicted) were used. Sentinel-1 images were
preprocessed in the same fashion as described in Section III-A.
No suitable Sentinel-2 data were available because of the
illuminating conditions in the winter season.

Reference data were represented by sanitary cutting reports
available from the Finnish Forest Centre. Reporting here is also
performed on the forest compartment level. Importantly, some of
the cut areas were not actually damaged but cut as a partly dam-
aged compartment, representing another kind of weak labels.

IV. METHODOLOGY

Here, we outline the overall methodology in Section IV-A,
describe in detail contrastive learning methodologies utilized
within our training framework in Section IV-B, and elaborate on
the DCVA approach implemented during the inference process
in Section IV-C.

A. Overview of the Proposed Approach

Our approach, illustrated in Fig. 4, begins by training a
contrastive learning model on the Forest Dense Area dataset,
described in detail further in Section IV-A1. We employ a
ResNet-18 [72] encoder as a backbone model for this purpose.
Subsequently, we transfer the pretrained model weights obtained
through contrastive learning to the DCVA. This transfer enables
DCVA to utilize these weights for deriving deep feature vectors
for both the pre-event (before the disturbance) and post-event
(after the disturbance) views. By comparing these features, we
generate a change magnitude vector. Applying a suitable thresh-
old allows us to create a binary change map, clearly delineating
disturbance and nondisturbance areas within our study area.

To conduct a comparative evaluation of the effectiveness of
contrastive learning versus supervised learning, we additionally
utilize the SEN12MS [68] pretrained weights of ResNet-18. In
this scenario, we bypass the SSL training phase and directly
introduce the supervised benchmark weights into DCVA in the
inference phase. This also allows us to produce a change map
using transfer learning.

1) Training: In this subsection, we outline our training pro-
cess, emphasizing key steps such as dataset preparation, feature
extraction, maintaining the encoder consistency, and encoder
optimization for downstream tasks.

1) Data acquisition: We have curated separate training data
referred to as the Forest Dense Area dataset as illustrated in
Fig. 4, assembled from Sentinel-1 and Sentinel-2 patches
accumulated over Austria and Switzerland, comprising
3417 and 1722 patches of size 256 × 256, respectively,
from the year 2018. Employing this dataset as input for
contrastive learning allows for preventing potential bias as
features are learned from a dataset completely independent
of our study area.

2) Augmentation: In this phase, image patches are first du-
plicated to form two distinct views—view 1 and view 2.
Furthermore, a series of transformations is applied upon
them, including random cropping, color distortion, and
Gaussian blur with the purpose of dataset augmentation,
to increase its diversity and enforce the model to learn
invariant and robust features.

3) Feature learning: After augmentation, each view is inde-
pendently channeled into two encoders, with each encoder
featuring a ResNet-18 base encoder, a projection head,
and optionally followed by a predictor or propagator. The
outputs from these encoders undergo L2 normalization,
and a contrastive loss function is implemented based on the
learning methodologies described in Section IV-B. This
strategy encourages the model to minimize the distance
between representations of identical augmented image
patches (positive pairs) while simultaneously maximizing
the distance between different image patches (negative
pairs) within the embedding space.

4) Consistency Maintenance Among Encoders: To maintain
consistency between the two encoders, a momentum up-
date rule is employed, as illustrated in Fig. 5. This involves
updating the weights of the key network with a moving
average of the weights of the query network. This moving
average is typically retained with a momentum value, aid-
ing in stabilizing the learning and mitigating risks of mode
collapse as observed in methods like BYOL [73], Pix-
Contrast, or PixPro [74]. Alternatively, consistency can
be preserved by keeping identical weights across the two
encoders throughout the training process, as performed in
Simple Siamese Representation Learning (SimSiam) [75].

5) Post-Training Adjustments: At the end of the training
phase, all additional modules aside from the base encoder
are removed. This refined base encoder is then deployed
for downstream tasks such as forest disturbance delin-
eation. As an independent feature extractor, the encoder
can either function directly or undergo further fine-tuning
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Fig. 5. General overview of contrastive learning (left). The specific contrastive learning methods based on knowledge distillation applied in this study (right).

for different tasks. Further insights on the application
of this feature extractor in our DCVA methodology are
elaborated in the next section.

2) Inference: In this subsection, we explore the inference
phase of our process, where the trained encoder, tailored during
the training phase, is utilized to execute downstream tasks. This
includes the application of the DCVA approach, using the feature
representations learned by the encoder to effectively identify and
interpret forest disturbances, as detailed below.

1) Data preprocessing: At this stage, pre-event and post-
event images are subjected to radiometric normalization
to counteract the distortions caused by the atmosphere and
other physical occurrences [76]. Moreover, the images
are further processed to correct geometric inconsisten-
cies due to varying satellite sensor viewing angles and
any misalignments arising from terrain impact. Following
these adjustments, images can undergo orthorectification,
pansharpening, and coregistration [77], [78].

2) Deep feature extraction and comparison: Here, bitempo-
ral deep features are derived by feeding the preprocessed
images individually into a pretrained model and then
extracting features from certain model layers. Initial layers
of the model capture basic visual concepts, while deeper
layers apprehend more complex concepts by integrating
lower level features. A key challenge here is to balance the
choice of layers from which features are extracted [13].
Finally, the deep feature hypervector is constructed by
pooling features from multiple layers of the model, thereby
creating a multiscale representation, as elaborated in Sec-
tion IV-C.

3) Binary change detection: This stage seeks to differentiate
between unchanged and altered pixels on the premise that
unchanged pixels produce similar deep features, whereas
altered pixels generate dissimilar deep features. To ensure
a thorough comparison, a deep magnitude is computed for
each pixel. Pixels are then categorized into two groups us-
ing a decision boundary or cutoff value to produce two sets
for altered and unchanged pixels. By the conclusion of this
phase, we possess the change map that illustrates regions
of forest disturbance and nondisturbance, as represented
in Fig. 4.

TABLE I
COMPARISON OF KEY CHARACTERISTICS IN THE CONTRASTIVE LEARNING

METHODS UTILIZED

B. Contrastive Learning Approaches Employed in Training

In our empirical studies, we assessed four distinct con-
trastive learning methods, namely Bootstrap Your Own Latent
(BYOL) [73], SimSiam [75], Pixel-level Contrastive Learning
(PixContrast), and Pixel-to-Propagation Consistency Learning
(PixPro) [74]. The selection was intended to examine the po-
tential effects of instance-level approaches (e.g., BYOL and
SimSiam) compared to pixel-level ones (e.g., PixPro and Pix-
Contrast) on disturbance mapping. This aim stems from recent
contrastive learning research indicating that pixel-level methods
can enhance feature discrimination and understanding [79],
proving useful for tasks like object detection and semantic seg-
mentation [80]. Besides, it can provide robust learning against
diverse contexts and inconsistencies, crucial for accuracy in
difficult conditions. Furthermore, it seems particularly effective
for complex aerial and satellite imagery, addressing challenges
like large footprints and variable acquisition conditions [81].
An additional objective of this examination was to ascertain
potential improvements that might be gained by using model
weights that have been extracted from these contrastive learning
methods, as opposed to those derived from supervised learning.

Table I provides an overview of the main characteristics of the
contrastive learning methods used in this study, with subsequent
detailed explanations for each method given as follows.

1) Bootstrap Your Own Latent: In BYOL [73], an image
and its augmented view are considered a positive pair, and it
optimizes the similarity between the representations of this pair
without the need for negative pairs. Let us denote an image as
x and two augmented versions of this image as v and v′. Also,
let us denote the query (online) network as Q with parameters θ
and the key (target) network as K with parameters ξ. The online
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network Q generates a query from v and the target network K
generates a key from v′ as

q = Q(v; θ), k = K(v′; ξ). (1)

During training, the parameters ξ of the key network are updated
using a moving average (momentum) of the parameters θ of the
query network, as also illustrated in Fig. 5. The objective of
BYOL is to minimize the mean squared difference between the
normalized query and key vectors. The loss function of BYOL
is, therefore, given by

LBYOL(θ, ξ) = D(q,k), where D(q,k) = − q · k
‖q‖2 · ‖k‖2

.

(2)
This loss function encourages the online network to learn rep-
resentations that maximize the similarity between the query and
key vectors, thus enabling the model to learn robust and invariant
features from the input data.

2) Simple Siamese Representation Learning: SimSiam [75]
is designed to overcome the necessity of negative samples by
utilizing two identical networks that maximize the similarity
between two differently augmented views of the same image.
This is achieved by encoding the images into feature vectors
and then transforming them into query (prediction) and key
(target) vectors, which are then made similar to each other.
Given an image x, we create two augmented views, denoted as
v and v′. These views are then fed into two identical networks,
fθ (the backbone encoder and the projection head), and hθ

(the predictor), with parameters θ. These networks generate the
following query and key vectors:

q = hθ(fθ(v)), k=fθ(v), q′= hθ (fθ(v
′)) , k′= fθ(v

′).
(3)

In this configuration, the backbone encoder and the projection
head of the key network are identical to those of query network
but with their parameters θ detached from the computational
graph to prevent gradients from flowing back, as illustrated in
Fig. 5. Thus, SimSiam is aimed at maximizing the similarity of
the query and key vectors, which is achieved by minimizing the
following contrastive loss:

LSimSiam(θ) =
1

2
(D(q,k′) +D (q′,k)) . (4)

In other words, the goal of this function is to minimize the
distance between the prediction and target vectors, thereby
encouraging the encoder to derive significant representations.

3) Pixel-Level Contrastive Learning: PixContrast [74] pos-
tulates that pixel-level discrimination can yield powerful visual
representations that are applicable to a wide range of down-
stream tasks. Similar to conventional contrastive learning ap-
proaches, PixContrast initiates the process by generating two
augmented views from the same image. These views are resized
to a fixed resolution and processed through a query network
Q and a key network K to compute image features. These
networks comprise a backbone network and a projection head
network. The latter includes two sequential 1× 1 convolution
layers that produce feature maps of a specific spatial resolution
and use the learned backbone representations for feature transfer.

PixContrast, in contrast to conventional approaches, generates
a feature map rather than a single image feature vector for
each view, thereby enabling tasks at the pixel level. In this
approach, each pixel in the feature map is first mapped back
to the original image space, and the distances between all pixel
pairs from the two feature maps are computed and normalized,
thus forming positive and negative pairs based on a set threshold.
Consequently, the contrastive loss function for PixContrast is
articulated as

LPixContrast = − log

∑
j∈Ωi

p
eD(qi,kj)/τ∑

j∈Ωi
p
eD(qi,kj)/τ +

∑
k∈Ωi

n
eD(qi,kk)/τ

.

(5)
Here,qi andk′

i denote the pixel feature vectors in the two views,
andΩp

i andΩn
i signify the sets of pixels identified as positive and

negative, respectively, in relation to pixel i from the two views.
The parameter τ is a scalar temperature hyperparameter. This
loss is then averaged over all pixels on the first view that overlaps
with the second view. A comparable calculation is performed for
a pixel j on the second view, and the result is averaged.

4) Pixel-to-Propagation Consistency Learning: PixPro [74]
combines spatial sensitivity and smoothness, in contrast to Pix-
Contrast, which concentrates solely on spatial sensitivity, with
the goal of improving transfer performance in tasks that require
dense prediction. Spatial sensitivity facilitates the differentiation
of nearby pixels, essential for precise predictions in boundary
regions where labels vary. Meanwhile, smoothness promotes
similarity among adjacent pixels, assisting predictions within
same-label areas. In PixPro, the pretext task consists of two
key components: The first is a pixel propagation module that
filters a pixel’s features by propagating similar pixel features,
thus offering a denoising/smoothing effect and more coherent
pixel-level predictions. The second part is an asymmetric query
and key architectures; one branch produces a standard feature
map, while the other includes the pixel propagation module, as
seen in Fig. 5. The task aims for feature consistency across both
branches, ignoring negative pairs. For each pixel feature qi, the
pixel propagation module calculates its smoothed transform q̂i

by propagating features from all pixelsqj within the same image
Ω as follows:

q̂i = Σj∈Ω max (D (qi,qj) , 0)
γ · G(qj) (6)

where γ serves as an exponent to fine-tune the sharpness of
the similarity function and G represents a transform function,
which can be implemented using linear layers with batch nor-
malization and ReLU activation in between consecutive layers.
Consequently, the loss function is expressed as

LPixPro = −D (q̂i,kj)−D (q̂j ,ki) (7)

where i and j stand for corresponding pixel pairs across two
augmented views, and q̂i and ki represent pixel feature vectors
yielded by the query Q and key K networks, respectively.
Finally, the loss is computed by averaging across all the positive
pairs in every image.
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Fig. 6. Visual flow for change map generation from bitemporal observations.

C. DCVA Employed in Inference

In conducting inference for the identification of forest dis-
turbances, we utilize DCVA, a method devised for recogniz-
ing alterations in imagery captured before and after a specific
event [13]. Essentially, DCVA utilizes a backbone encoder to
extract deep features from the images without training the
encoder (an instance of transfer learning) and then contrasts
these features to ascertain changes, segregating pixels into either
changed or unchanged categories.

Aligned with this methodology, our contrastive learning
scheme, elucidated in Section IV-B and depicted in Fig. 5,
provides a pretrained encoder backbone (denoted asf ) to DCVA.
Consequently, after preprocessing, bitemporal images Xpre and
Xpost are channeled through f . Features from designated layers
L are harvested, denoted as flpre and flpost for each layer l ∈ L.
The difference vector for each layer is computed as

δl = flpost − flpre . (8)

A deep change vectorG is synthesized by concatenating selected
features from each layer

G = (δ′1, . . ., δ
′
l, . . .δ

′
L) (9)

where δ′l is a subset of δl chosen based on variance indicating
sensitivity to change information. Thus, the deep magnitude ρ
for each pixel (r, c) is computed as

ρ(r, c) =

√∑D

d=1
(gd)2 (10)

where D represents the total dimension of vector G and gd is the
dth component of G. Finally, a threshold T is employed on ρ to
classify pixels into changed (ωc) and unchanged (ωnc) classes

ρ(r, c) ∈
{
ωnc, if ρ(r, c) < T
ωc, otherwise.

(11)

Fig. 6 also summarizes the steps for generating the distur-
bance (change) map for forests via transfer learning using the
pretrained weights of the encoder obtained after contrastive
learning.

V. EXPERIMENTAL FRAMEWORK

This part of the document outlines the methods used to ex-
periment with various learning techniques and measurements to
confirm the effectiveness of our approach.

A. Model Configuration and Pretraining

In this research, the DCVA employs ResNet-18 [72] for its
baseline encoder architecture. In addition, the initial weights of
our baseline model were derived from supervised pretraining on
the SEN12MS dataset [68], encompassing 541 986 patches each
of dimensions 256 × 256.

Given that ResNet-18 comprises four principal convolutional
blocks (fl, where 1 ≤ l ≤ 4) prior to the fully connected layers,
our approach focused on deriving the change vector G from
one of these blocks. Consequently, our experimental design was
divided into two key objectives.

1) Layer suitability for disturbance types: The task involved
pinpointing the ideal fl to extract the change vector G.
Given that the preliminary layers of a CNN predominantly
identify basic attributes like lines and curves, and the sub-
sequent layers apprehend complex patterns and textures,
a crucial aspect was to gauge the relevance of using these
layers concerning distinct forest disturbance scenarios.

2) Comparative analysis of SSL encoders: Following the
determination of the optimal fl, a comparison was made
between the baseline DCVA encoder and those integrating
pretrained SSL models, with the objective of identifying
the most efficient SSL methodology for the creation of
disturbance change maps.

B. Network Initialization and Optimization

In this study, SSL frameworks were constructed using
ResNet-18 [72] as the encoder backbone. The AdamW opti-
mizer [82] was utilized, with its coefficients β1 and β2 set to 0.9
and 0.98, respectively, for calculating running averages. The ini-
tial learning rate was defined within the range [0.0005− 0.01].
When a plateau was detected in the training process, the learning
rate was halved. Simultaneously, the weight decay parameter λ

was fixed at 5e − 6. Training was carried out in batches of 32,
with a cap of 15 epochs. Hyperparameter tuning was performed
using a Bayesian optimization methodology.

C. Software Specifications

The research experiments were conducted using the PYTORCH

framework, version 1.10 [83]. Computational processing was
facilitated by Python libraries such as NUMPY, SCIPY, PAN-
DAS, and SCIKIT-LEARN. For Bayesian hyperparameter tuning,
OPTUNA was employed. To guarantee consistent replication of
the machine learning workflow, all software dependencies were
encapsulated within a DOCKER container, the details of which
are available in the project’s source code repository.
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D. Evaluation Metrics

To evaluate the efficacy of our approach in mapping forest
disturbances, we employed the criteria outlined as follows. In
this context, disturbed areas (D) are considered the positive
class, while intact areas (I) are deemed the negative class. The
accuracy for each class is calculated as follows:

AccD =
TP

TP + FN
( also known as Sensitivity) (12)

AccI =
TN

TN + FP
( also known as Specificity). (13)

Here, TP and TN represent the correctly classified disturbed
and intact areas, respectively. FN denotes disturbed areas mis-
takenly labeled as intact, while FP signifies intact areas in-
correctly classified as disturbed. The overall accuracy is then
expressed as

AccO =
TP + TN

TP + TN + FP + FN
. (14)

Furthermore, the F1 score is computed as

F1 = 2× P ×R

P +R
, P =

TP

TP + FP
, R =

TP

TP + FN
(15)

where P and R stand for precision and recall, respectively. For
the area under the curve (AUC), the formula is

AUC =
1

2

n−1∑
i=1

(
AccDi

+ AccDi+1

)
×
((
1− AccIi+1

)
− (1− AccIi)

)
(16)

where n denotes the number of data points utilized in construct-
ing the receiver operating characteristic (ROC) curve, with the
threshold T being increased in equal increments.

We also utilized Cohen’s kappa κ statistic as a metric to gauge
the level of agreement beyond what might occur randomly [84].
Given a k × k confusion matrix with elements represented as
fij , we compute

ri =

k∑
j=1

fij ∀i, and cj =

k∑
i=1

fij ∀j (17)

Pe =
1

N2

k∑
i=1

rici (18)

Po =
1

N

k∑
j=1

fjj (19)

where the variables ri and cj represent the totals of rows and
columns for classes i and j, respectively. Pe indicates the ex-
pected agreement that would occur by chance, while Po depicts
the observed agreement (effectively the overall accuracy). Thus,
the κ metric is given by

κ =
Po − Pe

1− Pe
. (20)

TABLE II
LAYERWISE PERFORMANCE OF THE BASELINE ENCODER IN EXTRACTING THE

SNOWLOAD DAMAGE MAP USING SENTINEL-1

TABLE III
LAYERWISE PERFORMANCE OF THE BASELINE ENCODER IN EXTRACTING THE

WINDTHROW DAMAGE MAP USING SENTINEL-1

κ falls in the range [0, 1], providing insights into the level of
agreement: poor (0.0 ≤ κ < 0.2), fair (0.2 ≤ κ < 0.4), moder-
ate (0.4 ≤ κ < 0.6), good (0.6 ≤ κ < 0.8), or very good (0.8 ≤
κ ≤ 1.0).

VI. RESULTS AND DISCUSSION

Here, we start the presentation of our results with an ab-
lation analysis of the proposed methodology, as detailed in
Section VI-A. A comparative evaluation between the baseline
and the experimented SSL schemes is presented in Section VI-B.
A qualitative assessment is conducted in Section VI-C. Findings
drawn from our results are compared to earlier reported scholarly
contributions in Section VI-D.

A. Ablation Study for the Baseline Approach

In this section, we analyze the impact of the backbone at-
tributes and type of imaging sensor on the forest disturbance
mapping over our study areas.

Table II presents the layerwise performance of the baseline
encoder for detecting snowload damages using Sentinel-1. It is
evident that as we progress from f1 to f4, there is a notice-
able improvement in the majority of accuracy metrics. Notably,
Layer-4 (f4) exhibits the best disturbance detection performance
according to most of the criteria.

Table III details the layerwise performance of the baseline
encoder in discerning windthrow damages using Sentinel-1.
Similar to the snowload case, there is a clear trend of improved
performance from the initial layers to the final layer, with f4
standing out as the most effective. On the other hand, Table IV
highlights the baseline encoder’s layerwise performance for
windthrow damages using Sentinel-2 data. Unlike prior cases,
the third layer (f3) outperforms across metrics, potentially due
to the transition from Sentinel-1 to Sentinel-2.

Nevertheless, when only considering windthrow mapping,
Sentinel-1 exhibits superior performance, achieving an F1 score
of 0.647 as opposed to 0.609 for Sentinel-2 as highlighted at the
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Fig. 7. ROCs showing layerwise performance of the baseline encoder for different forest disturbance maps and sensors. (a) Snowload damage map using
Sentinel-1. (b) Windthrow damage map using Sentinel-1. (c) Windthrow damage map using Sentinel-2.

TABLE IV
LAYERWISE PERFORMANCE OF THE BASELINE ENCODER IN EXTRACTING THE

WINDTHROW DAMAGE MAP USING SENTINEL-2

suitable operating points where AccD (sensitivity) and AccI
(specificity) meet on the ROC curves, as illustrated in Fig. 7.

Upon examining the baseline DCVA encoder’s ability to de-
tect windthrow and snowload disturbances using Sentinel-1, as
presented in Tables II and III, our method demonstrates a higher
performance for windthrow mapping. This is underscored by the
notable κ and F1 scores, primarily due to the better precision of
the baseline in pinpointing windthrow.

B. Benchmark Comparisons

Our proposed method leverages the transfer of pretrained
model weights into the DCVA encoder to produce forest distur-
bance maps. To compare the detection accuracy of SSL-based
backbone encoders versus the baseline approach, we addition-
ally conducted a benchmarking testing using a range of SSL
methodologies described in Section IV-B, including PixPro,
PixContrast, SimSiam, and BYOL.

In the context of Sentinel-1-based snowload and windthrow
mapping, as summarized in Tables V and VI, DCVA encoders
employing pixel-level SSL techniques demonstrate greater de-
tection accuracy compared to those utilizing instance-level SSL
techniques. Specifically, PixContrast demonstrates superior per-
formance in snowload disturbance mapping, while PixPro ap-
pears more suitable in delineating forest areas damaged by wind-
storm. The corresponding ROC curves shown in Fig. 8(a) and
(b), underscore their potential in discerning forest disturbances,

TABLE V
COMPARING THE BASELINE WITH SSL-BASED DCVA ENCODERS IN

EXTRACTING THE SNOWLOAD DAMAGE MAP USING SENTINEL-1

TABLE VI
COMPARING THE BASELINE WITH SSL-BASED DCVA ENCODERS IN

EXTRACTING THE WINDTHROW DAMAGE MAP USING SENTINEL-1

TABLE VII
COMPARING THE BASELINE WITH SSL-BASED DCVA ENCODERS IN

EXTRACTING THE WINDTHROW DAMAGE MAP USING SENTINEL-2

clearly surpassing the classification accuracy of baseline DCVA
encoder.

Delving into a comparative study between Sentinel-1 and
Sentinel-2 for windthrow damage mapping, pixel-level SSL
algorithms consistently outpace their counterparts, as visualized
in Fig. 8(b) and (c). Nevertheless, while Sentinel-1 surpasses
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Fig. 8. ROCs in comparing the baseline with SSL-based DCVA encoders for different forest disturbance maps and sensors. (a) Snowload damage map using
Sentinel-1. (b) Windthrow damage map using Sentinel-1. (c) Windthrow damage map using Sentinel-2.

Sentinel-2 in the baseline DCVA with accuracy scores of 0.741
and 0.722, respectively, SSL integration in DCVA realizes a
more pronounced enhancement with Sentinel-2, evidenced by an
accuracy increment of 0.042, in contrast to a 0.022 enhancement
in Sentinel-1, as compared in Table VI and VII.

It is worth mentioning that the observed disparities in per-
formance for disturbance detection when using Sentinel-1 and
Sentinel-2 data arise from different imaging nature of these sen-
sors and the consequent modifications in the model architecture.
Sentinel-1, utilizing SAR, is particularly effective at identifying
structural changes in forests due to its sensitivity to volumetric
structure and moisture content. On the other hand, Sentinel-2,
through multispectral imaging, excels at discerning changes in
vegetation health by capturing comprehensive spectral data from
the Earth’s surface. The requirement to tailor the input layers
of our DCVA model to suit the different channel counts of
these sensors also influences the model weights, resulting in
varied interpretations and reflections of forest disturbances in
the data. Recognizing these sensor-specific strengths is crucial
for the precise analysis of forest disturbances, highlighting the
importance of using SAR and multispectral data interchangeably
in environmental monitoring.

In summary, using SSLs for DCVA generally provides an
improvement in terms of detection accuracy over the baseline
DCVA even within a limited training duration (restricted to
a maximum of 15 epochs in our assessments). Given the in-
herent nature of DCVA to discern pixel-level alterations, it is
evident that pixel-level contrastive learning frameworks yield
more significant enhancements than instance-level contrastive
learning strategies, in line with recent findings in the literature
of contrastive learning [79], [80], [81].

C. Qualitative Evaluation of Detected Changes

Figs. 9 and 10 demonstrate the generated forest damage maps
along with Sentinel-1 and Sentinel-2 image signatures before
and after the forest disturbance. Both figures show selected
patches of satellite images from several areas prior to disturbance

and after the disturbance, as well as generated disturbance maps
along with their accuracy assessment versus ground reference
data. Visual analysis and interpretation of Sentinel-2 images
are comparatively easier due to the distinct changes in spec-
tral signatures. Fully destroyed forests are captured with high
precision. The performance in partially disturbed forest areas is
also commendable. The relatively modest accuracy figures can
be attributed to the extensive removal of forested areas, leading
to overreporting, where the entire forest compartment is cleared
despite only partial damage to specific stands. This is a normal
and understandable forest management practice. However, it is
noteworthy that the proportion of false positives is relatively
low, indicating the suitability of the developed approach for
operational applications with a minimal number of false alarms.

The visual assessment of snowload-induced damages using
image patches cropped from Sentinel-1 images proves to be
quite complex. In these cases, the forest remains intact, but
its structural integrity is significantly altered. Moreover, sea-
sonal changes are clearly visible between Sentinel-1 images of
November and March. While general land cover distinctions are
relatively apparent, distinguishing damaged areas within forests
visually presents a considerable challenge. The complexity of
visually analyzing changes in Sentinel-1 images underscores
the necessity of developing and adapting approaches that go
beyond simple image ratios and other basic hand-engineered
features. Such approaches should take both radiometric and
spatial context into account, given the intricate nature of the
alterations observed.

D. Comparison to Prior Studies

Our results compare favorably to earlier studies focusing
on bitemporal EO-imagery-based mapping of windstorm dis-
turbances [18], [19]. The detailed comparison can be difficult
as reporting practices in papers are different; no-disturbance
class is sometimes missing or dominates overall accuracy if
its proportion is too big. Then, the analysis should be focused
on the probability of successful detection of change class, that
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Fig. 9. Sentinel-1 image signatures (VV—red, VH—green, and VV/VH—blue) over the Kainuu study area before and after a snowload damage, with the
corresponding disturbance mapping generated via DCVA.

is, evaluation of how well the detection method works, and
if the user’s accuracy (related to commission error) is high.
Omission errors can be relatively high [20]. Typical reported
accuracy for forest windstorm mapping is normally on the level
of 60–80% with both optical and SAR data similar in resolution
to Sentinel-2 and Sentinel-1 sensors and is often aimed to be a
preliminary estimate to guide forest intervention activity [8] or
to perform a retrospective study using images acquired long
after the disturbance [22]. However, when images collected
long after the windstorm are used to assess forest-damaged
areas, it is possible that forest intervention activities, such as
felling damaged trees and removing fallen logs, have already
taken place. In such cases, detection algorithms might capture
signs of human intervention. Human-induced disturbances such
as clear-cutting are easier to spot, and differentiating between
anthropogenic and natural disturbances can be problematic. On
the other hand, accuracy figures can be influenced by the time
lag between the occurrence of the windthrow event and the
satellite image acquisition, as vegetation regrowth can affect
the detectability of the disturbance.

Importantly, our study concentrates on bitemporal change
detection. In line with several other studies, we expect that
further improvement can be gained by leveraging EO image

time series, particularly before the disturbance in connection
with snowload accumulation [7], and after the disturbance
for both windstorm-induced and snowload damages [9]. This
improvement, however, can occur at the cost of timeliness
in damage assessment and reporting, as accumulating images
requires time.

E. Strengths and Limitations of the Proposed Methodology

To begin with, the domain-agnostic design of the proposed
method offers broad applicability for mapping various types of
forest disturbances and detecting other land changes. Then, the
methodology is proven to be efficient and swift, particularly
crucial in urgent situations where ground measurements are
unavailable or the observed disturbance is uncommon. Finally,
it achieves remarkable accuracy in disturbance mapping, estab-
lishing itself as a reliable alternative to conventional methods.

Despite its strengths, our approach faces some bottlenecks.
A key limitation is the dependence on the quality of pretrained
models, which significantly influences its success. In scenarios
lacking readily available SSL models, initiating training from
scratch can be resource intensive. In addition, the methodology
currently does not account for the multitemporality of gradual
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Fig. 10. Sentinel-2 image signatures (natural color coded) over the Taivalkoski study area before and after windthrow damage, with the corresponding disturbance
mapping generated via DCVA.

changes [85], focusing instead on bitemporal inputs. Future
efforts aim to address this gap. Another critical challenge is the
method’s sensitivity to all surface changes, without distinguish-
ing specific disturbance types, unless supplemented by expert
domain knowledge.

F. Adaptability and Generalization of the Proposed Method

The methodologies adopted in this study, SSL with DCVA
applied to EO data for detecting forest disturbances, have broad
applicability to other study areas and similar applications as
detailed below.

1) Geographical adaptability: The SSL and DCVA are not
inherently restricted by geographic boundaries. They can
be applied to any location where sufficient EO data
are available, making them suitable for various types of
forests, agricultural lands, urban areas, and other land-
scapes across the globe. This versatility is also evident
from the EO literature, where applications of SSL [12] and
those of DCVA [13] have been independently documented
for change detection, as detailed in Section II-B.

2) Flexibility with disturbance types: While our study pri-
marily focuses on natural disturbances such as windthrow
and snowload, the presented methodology is potentially
suitable for detecting other types of disturbances.
Notably, we have run successful preliminary tests on also

on clear-cutting, a typical human-induced disturbance.
However, these experiments were not included in this work
since our main emphasis is on natural disturbances, and
will be reported separately in future communications. In
essence, the demonstrated capability to handle different
disturbance types (both natural and human-induced)
extends the applicability of our methodology to a wide
range of environmental monitoring tasks.

3) Applicability to various EO data and sensors: Even
though our approach is novel in terms of combining SSL
and DCVA into a forest disturbance mapping pipeline, and
our analysis primarily relied on Sentinel-1 and Sentinel-2
data, independent literature on SSL [12] and DCVA [13]
demonstrates that both apply to multiple use cases and
sensor types, including hyperspectral imagery and high-
resolution airborne imagery.

In summary, the wide applicability of these methods, along
with their proven effectiveness in various scenarios, highlights
their potential as valuable tools in EO data analysis and change
detection across diverse domains and settings.

VII. CONCLUSION AND OUTLOOK

In this study, we demonstrated the potential of SSL and
transfer learning methods in the framework of DCVA for
assessing forest disturbances using EO images. Studied cases



4764 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

included forest disturbances induced by a strong windstorm
and heavy snowload. Various SSL backbone encoders were
tested, including PixPro, PixContrast, SimSiam, and BYOL.
In the context of DCVA, we found that pixel-level contrastive
learning yielded better differentiation of disturbed and nondis-
turbed forest areas. The most notable outcomes were observed
when integrating pixel-level contrastive learning with DCVA.
This approach yielded accuracies of 0.840 and 0.765 and F1

scores of 0.567 and 0.692 for snowload and windthrow map-
pings using Sentinel-1 and Sentinel-2 images, respectively. Our
results demonstrated the efficiency of the developed approach
and indicated its superiority over previously reported methods in
forest windthrow and snowload disturbance mapping. Our fur-
ther research will concentrate on incorporating and testing other
possible EO data sources, as well as adapting methodologies to
time-series processing, especially in the context of SAR-based
mapping of forest disturbances.
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