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Multiview Hypergraph Fusion Network for Change
Detection in High-Resolution Remote

Sensing Images
Xue Zhao, Kai Zhang , Member, IEEE, Feng Zhang , Jiande Sun , Wenbo Wan , and Huaxiang Zhang

Abstract—Currently, convolutional neural networks and trans-
formers have been the dominant paradigms for change detection
(CD) thanks to their powerful local and global feature extraction
capabilities. However, with the improvement of resolution, spatial,
spectral, and temporal relationships among objects in remote sens-
ing images are becoming more complicated and cannot be modeled
efficiently by the existing methods. To capture the high-order com-
plex relationships in images, we propose a multiview hypergraph
fusion network (MVHFNet) for CD, in which the high-order rela-
tionships along spatial, spectral, and temporal views are extracted
by hypergraph learning. Specifically, this network is composed of
three branches, including the spectral hypergraph learning branch,
the spatial hypergraph learning branch, and the temporal hyper-
graph learning branch. In these branches, multiview features are
extracted by different attention modules, and hypergraph learning
consisting of hypergraph construction and hypergraph convolution
is imposed on these features to model the high-order relationships.
Then, to integrate the multiview features from different branches, a
multiview feature fusion module is designed, in which the multiview
features are fused and condensed for the following prediction.
Finally, the change map is produced by a prediction head. We
conduct extensive experiments on three datasets, such as LEVIR-
CD, SYSU-CD, and CLCD. The experimental results demonstrate
that the proposed MVHFNet achieves better CD performance
compared to some state-of-the-art methods.

Index Terms—Change detection (CD), hypergraph network,
multiview fusion, remote sensing images.

I. INTRODUCTION

MULTITEMPORAL high-resolution (HR) remote sens-
ing images contain rich spatial, spectral, and temporal
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information. Effectively leveraging these abundant features is
essential for monitoring changes on the earth’s surface [1].
Change detection (CD) aims to infer the changed regions among
multitemporal HR remote sensing images, which has been ap-
plied to many fields, including land cover analysis [2], urban
expansion [3], and earthquake damage estimation [4], [5].

In recent years, deep neural networks (DNNs), particularly
convolutional neural networks (CNNs), have demonstrated ex-
ceptional performance in the field of CD due to their strong
ability to represent features effectively. For example, in [6], a
CNN was proposed for the semantic CD of multitemporal HR
images, in which a shared U-Net was adopted to encode the
spatial and spectral features of changed areas. In [7], a W-Net
was developed, which integrated the superpixel technique into
the U-Net structure. In [8], a high-frequency attention-guided
concatenated network was presented to better highlight the
high-frequency information of buildings. In [9], an encoder–
decoder architecture based on a CNN model was introduced.
This model incorporated gating and self-attention modules to
achieve efficient fusion of multimodal features. The features
extracted by CNNs demonstrate strong performance in terms
of capturing local details and characteristics. However, these
networks may struggle to effectively model and represent the
global information in images.

To address the need for capturing global relationships in
images, researchers have increasingly turned their attention
to transformer-based and graph convolutional neural network
(GCN) methods for CD. For instance, a cross-temporal differ-
ence transformer was established in [10] to learn the local–global
semantic features in images. In [11], a hybrid transformer was
built for CD, in which the architecture was designed according to
that of U-Net. In [12], a transformer-based contextual informa-
tion aggregation network was proposed, effectively filtering out
irrelevant changes while extracting rich semantic information.
The CNN and the transformer were also jointly considered
in [13] to infer the spatial and spectral dependencies. Besides,
as a typical global learning tool, GCN-based models are also
considered. Tang et al. [14] introduced a multiscale GCN that
incorporated metric learning techniques to enhance CD per-
formance. In [15], a multiscale framework was employed to
model high-level semantic similarities at various levels using a
GCN. In [16], autoencoders with bipartite graph attention were
proposed to learn the global properties of different objects in
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images. Although these methods produced good CD results,
the complicated correlations among different objects in mul-
titemporal images cannot be well depicted because the methods
mentioned above, especially GCN models, can only represent
the pairwise low-order relationships. However, multitemporal
images contain more complex change patterns in terms of spa-
tial and spectral properties. It is difficult for these methods to
formulate the high-order dependencies in images.

Recently, hypergraph convolutional networks (HCNs) have
emerged as powerful tools for modeling complex high-order
relationships. For example, HCNs were employed in [17] to
exploit the correlation among multimodal data. Furthermore,
HCNs were extended in [18] to deal with the underlying re-
lationships by encoding them with degree-free hyperedges.
In [19], hypergraphs were also applied to the CD task, where
hypergraphs were constructed by estimating spatial coupling
neighbors. In [20], multiscale segmentation was utilized to find
similar neighbors, and hyperedges were calculated from the
features extracted by the pretrained U-Net. However, the existing
methods, including HCNs, simply concatenate features directly
ignoring the differences between them and face challenges in
exploring correlations in spatial, spectral, and temporal dimen-
sions.

To address these limitations and capture the high-order re-
lationships in multitemporal images more efficiently, we pro-
pose a multiview hypergraph fusion network (MVHFNet) for
CD, in which hypergraphs are constructed along spatial, spec-
tral, and temporal dimensions for the modeling of high-order
relationships in images. The proposed MVHFNet is specifi-
cally divided into three branches, including the spectral hyper-
graph learning (SpeHGL) branch, the spatial hypergraph learn-
ing (SpaHGL) branch, and the temporal hypergraph learning
(TemHGL) branch. In these three branches, the spectral attention
module (SpeAM), the spatial attention module (SpaAM), and
the temporal enhancement module (TemEM) are designed to
comprehensively extract the features in multitemporal images.
Then, hypergraphs are constructed for each view, and the hyper-
graph convolutional (HGC) module is utilized to obtain higher
order relationships for efficient learning of complex relation-
ships among objects. Finally, we design the multiview feature
fusion (MVF) module, which effectively integrates information
from multiple views for the prediction of changed areas. The pro-
posed MVHFNet is validated on three datasets, i.e., LEVIR-CD,
SYSU-CD, and CLCD, and the results illustrate the effectiveness
of the proposed MVHFNet due to the introduction of hypergraph
learning (HGL). In summary, the contributions of the MVHFNet
are as follows.

1) We propose an MVHFNet for CD that captures complex
higher order relationships from spatial, spectral, and tem-
poral views for CD.

2) We design a three-branch network, including SpaHGL,
SpeHGL, and TemHGL, to extract the higher order re-
lationships in multitemporal images. In these branches,
hypergraphs are constructed, and hypergraph convolution
is utilized for the learning of these relationships.

3) The proposed MVHFNet produces state-of-the-art CD
performance on three benchmark datasets, including
LEVIR-CD, SYSU-CD, and CLCD.

The rest of this article is organized as follows. Section II
provides a detailed introduction to DNN- and GCN-based CD
methods. In Section III, we describe the proposed MVHFNet
in detail. Then, the experimental results on three datasets are
presented in Section IV to demonstrate the CD performance of
the MVHFNet. Finally, Section V concludes this article.

II. RELATED WORK

A. DNN-Based CD Methods

Due to their outstanding performance, methods based on
DNNs have seen extensive use in the field of CD in recent
years. For example, Daudt et al. [21] developed three fully
convolutional (FC) networks for CD. These networks were
named FC-early fusion (FC-EF), FC-Siamese-concatenation
(FC-Siam-conc), and FC-Siamese-difference (FC-Siam-diff).
Since there are some differences among multitemporal HR
remote sensing images, the two-branch network or the multi-
branch network is generally considered to extract discriminative
features [3], [22], [23], [24]. In [25], a CNN-based two-branch
network was introduced to address edge ambiguity issues in
CD results. In [26], a dual-branch multiscale FC neural network
was proposed, which can effectively detect the detailed changes
of ground objects due to the introduction of multiscale features.
In [27], a dual-discriminative metric network was constructed to
measure the distance among features and infer changes through
the discriminative implicit metric module. In [28], an innovative
three-branch network was developed to acquire multitempo-
ral image features and capture changes within the images. In
addition, multiscale or multilevel feature representation was
also introduced to boost the CD performance of the existing
networks [29], [30], [31]. For example, a multilevel feature
constraint fusion network was designed in [32], which imposed
multiattention modules on the extraction of multilevel features.
In [33], a multiscale network was proposed, which combined
pyramid pooling and an attention mechanism to effectively
leverage feature information from the original image while
focusing on the change area. In [34], multiple cascaded attention
blocks were embedded into the two-branch network to integrate
the multiscale features more efficiently.

Besides, recurrent neural networks (RNNs) were also applied
to the CD task due to their suitability for processing sequence
data. In [35], a recurrent convolutional neural network was built
to learn the temporal dependence in images. In [36], multilayer
RNNs were incorporated into CNNs to simultaneously capture
the spatial–spectral features in multitemporal images. Moreover,
a semisupervised generative adversarial network (GAN) was
developed by Jiang et al. [37] to jointly use the labeled and
unlabeled data. In [38], the GAN was also employed to model
spectral and spatial variations between multitemporal images.
Transformer-based CD methods are also developed by exploit-
ing the self- or cross-attention mechanisms in multitemporal
images. For instance, a multilevel difference aggregation trans-
former was proposed in [39] to extract more informative deep
features in terms of global properties. In [40], an asymmetric
cross-attention network was presented, in which the CNN and
the transformer were simultaneously introduced for the model-
ing of local and global features in images. Very recently, the
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Fig. 1. Illustration of the proposed MVHFNet.

diffusion model has been considered in [41] and applied to
the CD task, in which the excellent generative capacity of the
diffusion model was mined.

B. GCN-Based CD Methods

In recent years, the GCN has begun to receive extensive
interest from researchers due to its superior global modeling ca-
pability. For example, a multiscale fusion network model based
on the GCN was proposed in [42], which learned richer features
by aggregating the features of neighbors in the graph. In [43], a
novel two-branch differential amplification GCN was designed
to leverage the graph structure for capturing non-Euclidean
features and preserving class boundaries. In [44], a robust
graph mapping method was advanced for the heterogeneous
CD problem. A two-branch framework based on spatiotemporal
joint graph attention was proposed in [45], which extracted
superpixel- and pixel-level features from multitemporal hyper-
spectral images. In [46], a stacked GCN was proposed to detect
complex structural changes in multitemporal images. In [47], an
unsupervised method based on autoencoders was developed for
object-based CD, in which variational graphs were constructed
for global modeling. A semisupervised GCN-based CD method
was proposed in [48], which effectively captured spatial and
temporal changes by segmenting multitemporal images into
multiple patches and constructing graphs over these patches.
Due to the more powerful global representation capability of
hypergraphs, HCN-based CD methods also emerged. In [49], a
hypergraph-based CD method was designed to extract change
information by utilizing context-sensitive relationships among
pixels. In [19], hypergraph matching and segmentation were
applied to the CD of synthetic aperture radar images, in which
a different image was generated by matching each vertex and
hyperedge between two hypergraphs.

III. MULTIVIEW HYPERGRAPH FUSION NETWORK

In this section, we first introduce the proposed MVHFNet
framework, as shown in Fig. 1. Then, we present the structures
of TemHGL, SpaHGL, and SpeHGL modules in detail for the
extraction of multiview features. Finally, these features from
different views are integrated by the MVF module and decoded
to obtain the estimated change map.

A. Overall Architecture

We denote the images from different phases as I1, I2
∈ H×W×B , where H and W are the height and width of the input
images, respectively, and B is the number of bands in I1 and
I2. In the proposed MVHFNet, we use the modified ResNet-18
as encoders for feature extraction. Through the corresponding
encoders, we can obtain the features of I1 and I2, and they are
denoted as E1 ∈ R

H
2 ×W

2 ×C and E2 ∈ R
H
2 ×W

2 ×C , respectively.
C is the number of channels in E1 and E2. For the modification
of ResNet-18, we particularly remove the max-pooling layer
and use pointwise convolution in the last layer to adjust the
number of channels to C. Then, E1 and E2 are further fed
into the proposed SpaHGL, SpeHGL, and TemHGL modules
for multiview feature learning. Specifically, spatial features
QH

1 , QH
2 ∈ Rd2C×N are obtained by the SpaHGL module. The

features PH
1 , PH

2 ∈ Rd2C×N from spectral view are provided
by the SpeHGL module. The temporal feature TH ∈ R2d2C×N

is learned by the TemHGL module. To improve the network
efficiency of training and inference, we perform downsampling
on multiview features. Through these modules, multiview fea-
tures are learned from I1 and I2 efficiently. Then, the MVF
module is employed to aggregate these features, whose output is
concatenated with E1 and E2 for the prediction of change map.
Finally, the proposed MVHFNet is trained by minimizing the
cross entropy between the predicted change map and the ground
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Fig. 2. Architecture of TemHGL.

truth (GT). The structures of all the modules in the proposed
MVHFNet are detailed in the following subsections.

B. Temporal Hypergraph Learning

TemHGL is responsible for the learning of temporal informa-
tion in I1 and I2, whose architecture is illustrated in Fig. 2. In
TemHGL, the TemEM is first designed to extract the temporal
information in images, which consists of two dilated convolution
blocks. In the TemEM, the number of channels of E1 and E2

is condensed to C/4 by a 3 × 3 convolutional layer. Then, the
convolutional layers with different dilation ratios are imposed on
the condensed features of E1 and E2 for multiscale information
extraction. The outputs of these dilated convolutional layers are
concatenated and combined with the corresponding E1 or E2.
In the TemEM, the two dilated convolution blocks share the
same weights to reduce model size. Finally, all the features are
concatenated and downsampled with a ratio of 2 to produce
ET ∈ R

H
4 ×W

4 ×C .
1) Hypergraph Construction: For the enhanced temporal in-

formation ET , we employ HGL to capture the high-order rela-
tionships along temporal dimension. To construct the temporal
hypergraph, ET is first segmented into nonoverlapping patches
with the size of d× d. Then, these patches are flattened and ar-
ranged as the matrix T ∈ R2d2C×N . According to the similarity
among columns inT , the temporal hypergraphGT (VT , ET ,WT )
is constructed, in which VT and ET denote the vertex and
hyperedge sets, respectively. A diagonal matrixWT is utilized to
assign a weight to each hyperedge. For simplicity, the diagonal
elements in WT are set as 1. Specifically, we consider each
column in T as a vertex in VT . The similarity among vertices is
measured by the Euclidean distance, and K-nearest neighbor is
considered to select the neighbors. Here, we set K as 10. Then,
the vertex and its K neighbors are connected by a hyperedge.
Therefore, there are multiple vertices on one hyperedge. In this
way, the high-order temporal relationships are modeled. Finally,
we can obtain N hyperedges, and K+1 vertices are connected
by each hyperedge. These high-order relationships are encoded
in an incidence matrix HTem ∈ RN×N , which is computed as

HTem(i, j) =

{
1, if vi ∈ ej
0, else

(1)

where vi represents the ith vertex in VT , and ej is the jth
hyperedge in the hyperedge set ET . If the vertex vi belongs to
the hyperedge ej , we set HTem(i, j) as 1. Otherwise, it is 0. The
hypergraph is contained in HTem.

2) Hypergraph Convolution: To embed the high-order tem-
poral relationship into T , we construct an HGC module for
the combination of T and HTem. Specifically, we first compute
the degree matrix Dv of vertices and the degree matrix De of
hyperedges from HTem. For Dv , it is defined as

Dv = diag (d (v1) , . . ., d (vi) , . . ., d (vN )) (2)

where d(vi) =
∑N

j=1 wjHTem(i, j) represents the degree of
each vertex, and wj stands for the weight of the jth hyperedge.
diag(·) denotes the diagonalization operation of a vector. In the
same way, De is also calculated as

De = diag (d (e1) , . . ., d (ej) , . . ., d (eN )) (3)

where d(ej) =
∑N

i=1 HTem(i, j) is the degree of the jth hyper-
edge. By integrating Dv and De, the hypergraph convolution is
defined as

TH = D−1/2
v HTemWD−1

e HT
TemD

−1/2
v T. (4)

Through the hypergraph convolution in (4), T is further en-
hanced by the high-order relationships at temporal view. To
sufficiently depict the high-order relationships in images, two
HGC layers are cascaded by which the ability to model complex
change patterns in images is improved.

C. Spectral Hypergraph Learning

SpeHGL aims to learn the high-order relationships among
multitemporal images along spectral dimensions. In SpeHGL,
we design a SpeAM to extract the correlation among channels
of E1 and E2. Fig. 3 presents the structure of SpeAM. In the
SpeAM, max pooling and average pooling along spatial dimen-
sions are performed on the input to produceFmax andFavg. Then,
a multilayer perception (MLP) is used to model the correlation
in Fmax and Favg. To improve information interaction between
Fmax andFavg, the outputs of the two MLPs are further combined
to learn the correlation sufficiently. Through the interaction, we
obtain F a

max and F a
avg, which are integrated as the attention map

F . Finally, the spectral information in the input of SpeAM is
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Fig. 3. Architecture of the SpeAM.

Fig. 4. Architecture of the SpaAM.

enhanced by F , and the outputs of SpeAM are denoted as S1

and S2, corresponding to E1 and E2.
To learn the high-order relationships at spectral view, we

reshape S1 and S2 as P1 ∈ Rd2C×N and P2 ∈ Rd2C×N , respec-
tively, by partition and flattening. Here, the patch size is also set
as d× d. Similar to the formulation in TemHGL, HGL is also
imposed on P1 and P2. Take P1 for example; all the columns in
P1 consist of the vertex set, and an incidence matrix HSpe can be
inferred from these columns. Then, the hypergraph convolution
on P1 can be written as

PH
1 = A−1/2

v HSpeWSpeA
−1
e HT

SpeA
−1/2
v P1 (5)

where Av and Ae are of the vertex and hypergraph degree
matrices of HSpe, respectively. WSpe is the weight matrix of all
the hyperedges. In the same way, the enhanced feature PH

2 also
can be generated from P2. Through SpeHGL, the high-order
relationships along channel dimension are extracted, and com-
plex patterns in terms of spectral changes can be modeled more
efficiently.

D. Spatial Hypergraph Learning

In SpaHGL, the spatial high-order relationships are also
learned by hypergraph convolution. To further enhance the
spatial information in E1 and E2, a SpaAM is introduced into
SpaHGL. Fig. 4. shows the structure of SpaAM. In the SpaAM,
max pooling and average pooling are implemented onE1 andE2

along the channel dimension to extract the spatial features in E1

and E2. Then, the extracted features are concatenated and pro-
jected by a dilated convolutional layer for the generation of the
spatial attention map. Finally, the spatial attention is combined
with E1 or E2 to produce the corresponding O1 ∈ R

H
4 ×W

4 ×C

Fig. 5. Architecture of the MVF Module.

or O2 ∈ R
H
4 ×W

4 ×C . To meet the construction of hypergraphs,
we divide O1 and O2 into N patches with the size of and
assign them into the corresponding matrices Q1 ∈ Rd2C×N

and Q2 ∈ Rd2C×N . Then, hypergraphs are built by regarding
all the columns in these matrices as vertices. Similar to the
hypergraph convolution in Fig. 2, we can obtain QH

1 ∈ Rd2C×N

and QH
2 ∈ Rd2C×N , which contain the embedded high-order

relationships in the spatial domain.

E. MVF Module

Through TemHGL, SpeHGL, and SpaHGL, we can obtain
the higher order relationships at spectral, spatial, and temporal
views jointly. Therefore, we design an MVF module as shown in
Fig. 5 to integrate them efficiently. In this module, we combine
the spatial features QH

1 and QH
2 , spectral features PH

1 and PH
2 ,

and temporal features TH by the cross-temporal fusion strategy.
Taking the spatial features as an example, the aggregatedQH

1 and
QH

2 are first subtracted to estimate the spatial difference feature.
Then, the difference image is multiplied with the aggregated
QH

1 and QH
2 to highlight the information in changed regions.

Next, the information of changed regions in I1 or I2 is added
to produce the fused spatial feature QF ∈ R

H
4 ×W

4 ×C . In the
same way, the fused spectral feature PF ∈ R

H
4 ×W

4 ×C also can
be acquired. Finally, all the fused features and the aggregated
TH are concatenated and upsampled as the output of the MVF
moduleF ∈ R

H
2 ×W

2 ×4C . The fusion in Fig. 5 can be formulated
as

F = U (
Concat.

(
QF , PF ,A

(
TH

)))
(6)

where U and A stand for the upsampling and aggregation op-
erations, respectively. Through the MVF module, the features
from different views are fused, in which the difference features
between I1 and I2 are preserved.
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Fig. 6. Samples of the different change patterns in the three datasets.

F. Loss Function

In this work, we use the cross-entropy loss to evaluate model
performance. For each sample i, the cross-entropy loss Li can
be calculated by the following equation:

Li = − [yi · log (pi) + (1− yi) · log (1− pi)] (7)

where yi is the GT, which takes the value 0 or 1 and indicates
whether the sample is changed or not, and pi is the predicted
probability of the model. The overall cross-entropy loss is ob-
tained by averaging the loss over all the samples

L = − 1

N

N∑
i=1

Li (8)

where N is the number of samples.

IV. EXPERIMENTS

In this section, the descriptions of all the datasets are first
provided. Second, we introduce the evaluation indicators in
detail and then briefly illustrate the implementation details of
all the compared methods and the proposed MVHFNet. Subse-
quently, we analyze the comparative experimental results, and
the effectiveness of MVHFNet is validated.

A. Datasets

In the experimental part, all the methods are implemented on
three datasets with different change patterns. The datasets are
LEVIR-CD [50], SYSU-CD [51], and CLCD [13]. As shown in
Fig. 6, LEVIR-CD and CLCD datasets contain changes in terms
of buildings and cropland, respectively. In the SYSU-CD dataset,
there are three different kinds of change patterns, including
buildings, construction within the sea area, and expansion of
agricultural land.

1) LEVIR-CD: This dataset consists of 637 HR Google Earth
image pairs, with a spatial resolution of 0.5 m and a size of
1024 × 1024 pixels. These images are composed of three bands:
red (R), green (G), and blue (B). Considering the memory
requirements, we downsampled the original images into patches
with a size of 256 × 256. Then, the numbers of training, valida-
tion, and testing samples are 445, 64, and 128, respectively.

2) SYSU-CD: The dataset was collected in Hong Kong and
contains 20 000 pairs of aerial images. For each image in this
dataset, its size is 256 × 256, and the spatial resolution is 0.5 m.
There are six different types of changes, and we select three
main change patterns shown in Fig. 6 for training. In the training
dataset, the number of images is 1200. Validation and testing
datasets are 340 and 170, respectively.

3) CLCD: The CLCD dataset mainly covers the images of
farmland changes collected in 2017 and 2019. This dataset
consists of 600 images with a size of 512 × 512. The spatial
resolutions of these images range from 0.5 to 2 m. Considering
the insufficient GPU memory capacity, we downsampled the
original images into patches with a size of 256 × 256. In the
following experiments, these images are randomly divided into
three groups: 360, 120, and 120 for training, validation, and
testing of all the methods, respectively.

B. Evaluation Metrics

To evaluate the CD performance of all the methods, we use
five quantitative indicators: precision (P), recall (R), F1-score
(F1), intersection over union (IoU), and overall accuracy (OA).
Their definitions are given as follows:

P = (Pc + Puc)/2

R = (Rc +Ruc)/2

F1 = PcRc(Pc +Rc) + PucRuc(Puc +Ruc)

IoU = TP(TP + FP + FN)+TN(TN + FN + FP)

OA = (TP + TN) /TP + TN +m+ FN (9)

where Pc and Puc represent the precision of detecting changed
and unchanged regions, respectively. TP, TN, FP, and FN rep-
resent the quantities of true positives, true negatives, false pos-
itives, and false negatives, respectively. These metrics collec-
tively reflect the overall detection performance of the model.

C. Compared Methods and Implementation Details

In the following experiments, the MVHFNet is compared with
nine methods, including the FC-EF [21], the FC-Siam-conc [21],
the FC-Siam-diff [21], the dual-task-constrained deep Siamese
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Fig. 7. (a)–(e) Visualization of all the methods on the LEVIR-CD dataset.

convolutional network (DTCDSCN) [52], the combination of
Siamese network and NestedUNet (SNUNet) [53], the bitem-
poral image transformer (BIT) [54], the transformer-based CD
(ChangeFormer) [55], a multiscale graph convolutional network
(MSGCN) [15], and a dual-neighborhood hypergraph neural
network (DNHGNN) [20]. A brief introduction to these methods
is as follows.

1) FC-EF: This method treats the concatenated multitempo-
ral images as the images with more channels, which is
regarded as the input of the FC neural network.

2) FC-Siam-diff: The multitemporal images are processed
separately by a dual-branch network with shared structures
and parameters. Then, feature differences among dual-
branch networks are utilized to infer the change areas.

3) FC-Siam-conc: This network uses the Siamese FC net-
work to extract multilevel features, which are then fused
by direct concatenation.

4) DTCDSCN: This network concatenates the multiscale
features, which are extracted by channel attention and
SpaAMs to improve their discriminative.

5) SNUNet: In SNUNet, Siamese network and NestedUNet
are combined to extract high-level features. This method
further applies channel attention and deep supervision to
enhance the effectiveness of features.

6) BIT: BIT is proposed based on the transformer, which
uses tokens to obtain deep semantic information and
enhance the semantic information through the cross-
attention mechanism.

7) ChangeFormer: This method embeds a hierarchical trans-
former encoder with an MLP into the Siamese network
architecture to learn the global features in multitemporal
images.

8) MSGCN: This network combines the GCN and mul-
tiscale features to overcome the difficulty of existing
models in modeling ground object features with different
modalities.

9) DNHGNN: In the DNHGNN, image segmentation is con-
sidered to construct the hypergraph, and the hypergraph
neural network is used to extract changed features of nodes
by combining feature maps at fine and high scales.

All the methods were trained using cross validation on
NVIDIA 2080Ti GPU. The proposed MVHFNet is optimized
through stochastic gradient descent. The initial learning rate
is set to 0.01, and then, the learning rate is decayed every
100 epochs. Training for the proposed MVHFNet is considered
complete when the number of epochs reaches 1000. For other
compared methods, we also set the number of epochs to 1000.
Besides, the patch size d× d during hypergraph construction is
set to 4 × 4.

D. Comparison to State-of-the-Art Methods

1) Experiments on the LEVIR-CD Dataset: In this part, the
experiments are conducted on the LEVIR-CD dataset. For visual
analysis, we randomly select some samples, and their CD results
are shown in Fig. 7. TP, TN, FP, and FN are represented in
white, black, green, and red, respectively. As shown in Fig. 7(b)
and (e), FC-Siam-diff and FC-Siam-conc have significantly
more red regions, resulting in larger FN. We believe that mul-
tiview feature extraction enables our proposed MVHFNet to
maintain the shape and edge information of changing buildings.
For example, in Fig. 7(d), other methods have some issues in
terms of incomplete internal structure of buildings, while FC-EF
has more FN regions. Moreover, hypergraphs can capture high-
order relationships among objects, so the results of MVHFNet
produce fewer error regions. As shown in Fig. 7(a) and (b), it is
particularly important to obtain high-order relationships among
buildings because the buildings in these scenes are very close.
It can be seen that the MVHFNet has fewer FP areas compared
to other methods. Overall, it can be seen intuitively that the
MVHFNet has achieved the best detection results.

Table I reports the quantitative results of all the methods on
this dataset. The SNUNet achieved the highest P value, while
the DNHGNN attained the highest OA. Our method obtained the
highest values in the other three metrics. However, in general,
these metrics can reflect that our method achieves fine-grained
change detection.

2) Experiments on the SYSU-CD Dataset: In this part, we
compare all the methods on the SYSU-CD dataset. Fig. 8 shows
the visual results of some typical samples from the SYSU-CD
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Fig. 8. (a)–(e) Visualization of all the methods on the SYSU-CD dataset.

TABLE I
QUANTITATIVE EVALUATION OF THE LEVIR-CD DATASET

datasets. In Fig. 8, we present five change patterns. Fig. 8(a)
contains the change of ships at sea area, and we can see that
all the methods show good performance on this image pair.
Meanwhile, our proposed MVHFNet is slightly better than other
methods in terms of FP and FN. In Fig. 8(b) and (c), the change
areas are focused on roads and the construction in the sea. In
these results, it can be seen that the MVHFNet has the least
amount of red areas, which corresponds to a smaller FN. This
may be because the MVHFNet extracts more discriminative
features by hypergraph modeling. In Fig. 8(d), there is a large
area of building changes. We can find that the MVHFNet and
the DNHGNN have fewer undetected parts thanks to hypergraph
neural network (HNN). However, the result of DNHGNN has
more FN regions. Fig. 8(e) shows the farmland change, and the
proposed MVHFNet also has the least FP and FN. In conclusion,
the MVHFNet also shows better detection performance on the
SYSU-CD dataset with more complex change patterns.

All the evaluation values on the dataset are shown in Table II.
This dataset contains more change types than the LEVIR-CD
dataset. The results imply that the proposed MVHFNet can find
more complicated change patterns than other compared methods
due to the introduction of HGL.

3) Experiments on the CLCD Dataset: This part presents the
experimental results of all the methods on the CLCD dataset
quantitatively and qualitatively. Fig. 9 shows some CD results
of all the methods on the CLCD dataset. In this dataset, the types

TABLE II
QUANTITATIVE EVALUATION OF THE SYSU-CD DATASET

of changes mainly include road and building changes. For road
changes shown in Fig. 9(a) and (d), the road is more likely to
merge with the background and cause pseudo changes. It can be
seen that the MVHFNet produces fewer FP regions compared
to FC-EF, FC-Siam-diff, and SNUNet. In Fig. 9(b), there is a
wider road. Therefore, high-order information modeling is more
important for the detection of this kind of change. It can be seen
that the MVHFNet has lower FN and more complete detec-
tion performance results compared to BIT and ChangeFormer.
Fig. 9(c) and (e) is related to building changes, and the
MVHFNet has also achieved good performance in terms of FN.
Table III provides the quantitative results of all the methods on
this dataset. The OA value for the MVHFNet is not the highest
but is very close to that of the DNHGNN. Thus, the proposed
method has better overall performance.

E. Ablation Study

In this subsection, we evaluate the effectiveness of each
module in the MVHFNet on three datasets, including encoders,
multiview feature branches, and the MVF Module.

1) Effectiveness of Encoders: In the MVHFNet, we use the
modified ResNet-18 as an encoder for feature extraction. In this
part, ResNet-18 is replaced by ResNet-50 to analyze the perfor-
mance of different backbones. For a more intuitive illustration,
we randomly select some CD results from different datasets and
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Fig. 9. (a)–(e) Visualization of all the methods on the CLCD dataset.

Fig. 10. Visualization of ablation experiments. (a) LEVIR-CD. (b) SYSU-CD. (c) CLCD.

TABLE III
QUANTITATIVE EVALUATION OF THE CLCD DATASET

show them in Fig. 10. Some interesting regions are circled in red.
From these regions, we can observe that the results of ResNet-50
suffer from performance degradation and have more FN areas.

The results in Table IV show that higher values in terms of P,
R, F1, and IoU are achieved when ResNet-18 is considered. For
ResNet-50, better OA values are provided on CLCD datasets.
The reason for this may be that ResNet-50 is larger than ResNet-
18 and involves more parameters to be learned. ResNet-50 may
not be trained sufficiently on these datasets. Besides, considering
the higher computational complexity of ResNet-50, ResNet-18

TABLE IV
ABLATION STUDY OF RESNET ON THE LEVIR-CD, SYSU-CD, AND CLCD

DATASETS

is regarded as the encoder to extract spatial and spectral features
from the corresponding inputs.

2) Impact of Three Attention Modules: First, we verify the
validity of SpaAM, SpeAM, and TemEM in all three branches.
Specifically, we remove SpeAM, SpaAM, and TemEM sequen-
tially. In this way, hypergraphs in the three HGL branches
are directly constructed on the features from encoders E1 and
E2. As we can see from the red circles in Fig. 10, there are
more FP areas in CD results when SpeAM and SpaAM are
ablated. Some changed regions cannot be inferred when we
remove the TemEM. The reason for this is the lack of interaction
among multitemporal images. Thus, the above experimental
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TABLE V
ABLATION STUDY OF THE SPAAM, SPEAM, AND TEMEM ON LEVIR-CD,

SYSU-CD, AND CLCD DATASETS

TABLE VI
GRAPH VERSUS HYPERGRAPH ON LEVIR-CD, SYSU-CD, AND CLCD

DATASETS

results indicate that our proposed MVHFNet can obtain more
effective spatial, spectral, and temporal features enabling the
CD performance better. Table V reports the numerical results of
MVHFNet with different architectures, where “w/o” indicates
that the corresponding module is removed from the MVHFNet.
It can be seen that the complete MVHFNet has better overall
metrics although a few best values are not from the complete
MVHFNet.

3) Graph Versus Hypergraph: To verify the effectiveness
of HGL, we replace the hypergraph convolution with graph
convolution and constructed an adjacency matrix to represent
the relationships among vertices. From Fig. 10, we also can find
that the CD results obtained by the MVHFNet with the GCN
have more FP regions, which are circled by red circles. Table VI
provides the evaluation results of different relationship modeling
tools. As can be seen in Table VI, the MVHFNet with HGL is
better than that with the GCN on the three datasets. Since the
relationships between features are much more complicated, the
GCN cannot depict the changing relationships among features
sufficiently and also produces worse detections.

4) Ablation of MVF Module: Finally, we replace the MVF
module with concatenation to further validate its influence on all
the datasets. Fig. 10 demonstrates that more FP regions are pro-
duced because the difference information is not extracted by the
concatenation operation. Table VII shows the metric values on
the three datasets. The overall performance in Table VII indicates
that the direct concatenation of multiview features suffers from
some performance degradation. Therefore, the MVF module

TABLE VII
ABLATION STUDY OF THE MVF MODULE ON LEVIR-CD, SYSU-CD, AND

CLCD DATASETS

TABLE VIII
ANALYSIS OF PATCH SIZE ON LEVIR-CD, SYSU-CD, AND CLCD DATASETS

TABLE IX
ANALYSIS OF HGCN LAYERS ON LEVIR-CD, SYSU-CD, AND CLCD

DATASETS

can more efficiently integrate the spatial, spectral, temporal in
multiview features.

F. Analysis of Patch Size and HGCN Layers

This section discusses the impact of constructing hypergraphs
using patches with different sizes and the number of hypergraph
convolution network (HGCN) layers. As can be seen from
Fig. 11 , there are obvious undetected regions when the patch size
is set as 8 × 8, and only one HGCN layer is adopted. This may
be because the patch size is too large, resulting in an insufficient
detection region. Thus, the patch size is finally set as 4 × 4.
Table VIII gives the metric values for different patch sizes on
the three datasets. It can be seen that the best metrics are obtained
when the patch size is 4× 4. Table IX shows that using two layers
of HGCN gives higher metrics than one layer, while more layers
will increase training time and lead to oversmoothing problems.
Therefore, we use two layers of HGCN finally.

G. Complexity Analysis

Table X presents model sizes and Giga floating-point opera-
tions per second (GFLOPs) of all the methods on the NVIDIA
2080Ti GPU, using image pairs with a resolution of 256 × 256.
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Fig. 11. Comparison of different patch sizes on LEVIR-CD, SYSU-CD, and CLCD datasets.

Fig. 12. Feature visualization on LEVIR-CD, SYSU-CD, and CLCD datasets.

Fig. 13. F1-score of all the methods for each epoch on the LEVIR-CD datasets.
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Fig. 14. F1-score of all the methods for each epoch on the SYSU-CD datasets.

Fig. 15. F1-score of all the methods for each epoch on the CLCD datasets.

TABLE X
COMPARISON OF MODEL SIZES AND GFLOPS

For model size, compared with lightweight networks (FC-EF,
FC-Siam-Di, etc.), the proposed network has more parameters
but achieves better detection, and compared with other methods
such as DTCDSCN and DNHGNN, the MVHFNet has a rela-
tively small model size, achieving a balance between model size
and CD accuracy.

H. Feature Visualization

To better understand multiview feature learning in the
MVHFNet, we used Grad-CAM to visualize the output of each
module on the three datasets. Fig. 12 illustrates the outputs of
encoders, three HGL branches, and MVF module. Besides, the
final output is also visualized. The network is a single branch
starting from the TemHGL module. In Fig. 12, the outputs of
TemHGL and MVF modules are plotted in the first and second
rows, respectively. It can be seen that encoders extract the

difference features among multitemporal images. SpaHGL and
SpeHGL capture the complex spatial and spectral relationships
in images, respectively. In addition, TemHGL obtains the tempo-
ral differences in images. Moreover, all the multiview features
are fused by the MVF module, and more reliable results can
be found from its output. Therefore, the heat maps in Fig. 12
also demonstrate the effectiveness of multiview learning in the
MVHFNet.

I. Training Convergence

Figs. 13–15 show the training and validation processes of all
the methods on LEVIR-CD, SYSU-CD, and CLCD datasets,
where F1-score is used as an indicator. From Fig. 13, we can
see that all these values have a similar growth trend on this
dataset, whereas there are some fluctuations on SYSU-CD and
CLCD datasets for most compared methods, as shown in Figs. 14
and 15. This may be because these two datasets have more
types of changes than the LEVIR-CD dataset, and thus, the
CD performance is not as effective as the LEVIR-CD dataset.
Compared to other methods, our proposed MVHFNet has a
steady growth trend on all three datasets. When the number of
epochs reaches 1000, the F1-score converges, and the validation
performance has no more significant improvement. Therefore,
the maximum number of epochs is set to 1000.

V. CONCLUSION

This article proposed an MVHFNet for CD. In this network,
SpaHGL, SpeHGL, and TemHGL were designed to learn spatial,
spectral, and temporal higher order information, respectively.
Among them, SpaAM, SpeAM, and TemEM were embedded to
extract the features of multitemporal images from three views.
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To effectively fuse the higher order information from multiple
views, we designed the MVF module and condensed the con-
catenated features for further prediction. Finally, the change map
was obtained by a prediction head. The subjective and objective
evaluation results on three datasets demonstrated that MVHFNet
produces higher values in terms of F1, IoU, and OA, which ben-
efit from the efficient high-order relationship modeling by HGL.
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