
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 10083

FSC-USNet: Fractional Snow Cover Retrieval on the
Tibetan Plateau by Integrating Improved Attention

Mechanisms
Xu Liu , Member, IEEE, Xi Kan , Member, IEEE, Yonghong Zhang , Member, IEEE,

Linglong Zhu , Member, IEEE, Qi Liu , Senior Member, IEEE, Zhou Zhou , Member, IEEE,
and Guangyi Ma , Member, IEEE

Abstract—Snow on the Tibetan Plateau (TP) is not only a fresh-
water resource for the major rivers in Asia but also plays a signif-
icant role in adjusting temperature by reflecting solar radiation.
Fractional snow cover mapping with fine spatial and temporal
resolution is of great significance for clarifying snow resources
and accurately managing snow water resources. However, due to
the complex TP topography, the existing fractional snow cover
(FSC) retrieval methods are affected by a variety of disturbance
factors, resulting in a decrease in accuracy. In this study, a deep
learning-based FSC retrieval method, FSC U-shape net, is pro-
posed to improve snow cover mapping accuracy. The input images
of FengYun-4A advanced geosynchronous radiation imager and
geographic data are extracted using the proposed spatial-channel
feature extraction module to characterize the shallow features
with texture information into high-dimensional feature images.
Additionally, an attention mechanism is introduced to improve
the feature differences between different FSC degrees. Finally, the
correlation of the decoded features in the channel direction is mined
using the channel refinement module to obtain the final FSC results.
In this study, a backpropagation artificial neural network, random
forest, ResNet_FSC, and UNet are trained, compared, and vali-
dated against the MOA10A1 FSC product. The results show that
the proposed method effectively mitigates the problems of unclear
texture of snow edges, poor robustness, and underestimation in
some areas, which exist in other models. Additionally, the proposed
method has higher accuracy, with an R2 and explained variance
score reaching 0.7182 and 0.7332, respectively. Compared to the
MOD10A1 snow product, the proposed method exhibits higher
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detection accuracy in mountainous areas with high snow cover and
significantly improves the low snow cover detection rate.

Index Terms—Attention mechanism, deep learning, fractional
snow cover, FengYun-4A (FY4A), Tibetan Plateau.

I. INTRODUCTION

SNOW is an important component of the Earth’s surface and
one of the most active natural factors [1], [2]. Its strong

albedo in the visible band, low thermal conductivity, and strong
heat absorption during the melting process [3], [4] directly affect
the radiation balance and energy exchange at the surface at global
and continental scales [2]. Therefore, snow is an important
indicator of global climate change [5].

The Tibetan Plateau (TP), referred to as the “Roof of the
World” [6], is recognized as one of three principal stable snow
accumulation regions in China. The variations in snow cover
exhibit a highly prominent predictive value for climate change
not only in China but also on a global scale [6]. Existing re-
search has indicated that East Asian atmospheric circulation and
summer monsoons are significantly influenced by the dynamic
effects of TP snow cover [7], [8]. Fractional snow cover (FSC),
as one of the pivotal indicators in snow research [3], can offer
more refined and precise snow area parameters for areas with
mixed pixels and regions with blurred snow boundaries. Hence,
constructing a high-precision and high-efficiency FSC retrieval
method is scientifically and practically significant. However, due
to the high altitudes, rugged terrain, and vast snow coverage of
the TP, manual field techniques for snow detection have become
exceedingly challenging. Therefore, remote sensing technology
has emerged as the most effective method for monitoring snow
cover in the TP region [9]. Due to the unusual variability of
the snow on the TP and the presence of cloud interference,
high temporal resolution remote sensing data have become an
important means of dynamically monitoring snow parameters
and filtering out cloud interference.

Currently, the methods for retrieving FSC using remotely
sensed data can be broadly categorized into linear regression-
based methods [10], [11], hybrid image decomposition methods
based on spectral analysis [12], [13], and methods based on
machine learning [14], [15]. Salomoson established a linear
relationship between snow cover and the normalized difference
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snow index (NDSI) [16] through a linear regression method,
and this method was later used to produce version 005 of the
MODIS global FSC product [17]. However, studies [18], [19]
found that MOD10A1 FSC had lower accuracy in the TP region
through Landsat8 validation. To further improve FSC retrieval
accuracy, Zhang [18] plotted MODIS FSC maps of the TP
by means of a four-segment segmentation function, and the
standard error of snow cover extracted by this method was
reduced from the original 0.35 to 0.22, which significantly im-
proved the accuracy of snow cover mapping. Follow-up studies
have shown that the complex topography, diverse land cover
types, and scattered snow distribution in the snow region can
cause major interference with the linear regression method
and spectral decomposition process [15], [20], [21], especially
during the transition period between snow accumulation and
melting, which affects the retrieval result accuracy [22], [23].

With the development of machine learning technology, re-
searchers have begun to use machine learning to establish the
relationship between input data and FSC. Data, such as land
cover type and geographic data, are beginning to be used as
auxiliary data to provide more comprehensive auxiliary features
for FSC retrieval. Dobreva et al. [15] constructed a three-
layer backpropagation artificial neural network (BPANN) and
achieved comparable results to the MOD10A1 FSC product
in the flat Northern Hemisphere using MODIS surface albedo,
NDSI, normalized difference vegetation index, and surface cover
type as inputs. As subsequent research has advanced, Liu [9]
verified that in the TP region, machine learning algorithms
exhibit superior precision compared to alternative methods. Hou
[20] employed the BPANN method to achieve results surpassing
those obtained from the MOD10A1 product. In addition, with
the advancement of unmanned aerial vehicle (UAV) technology,
UAVs equipped with small cameras have become an effective
method for collecting snow data due to their high spatial reso-
lution and flexibility. Liang et al. [1] performed FSC mapping
based on UAV data and MODIS data using methods such as
linear regression and BPANN. They verified the snow map ex-
tracted using Landsat8, which showed that the BPANN method
based on MODIS and UAV data was more similar to the Landsat8
snow map. The essence of machine learning is learning to fit a
large quantity of input data, which is the fundamental reason why
machine learning methods can outperform traditional methods.
However, the BPANN and random forest methods only focus on
the input features in the channel direction, completely ignoring
the features present in the image space or neighboring pixels,
which may result in poor modal robustness.

To improve the overall utilization of data information,
convolution-based deep learning methods have been applied in
FSC retrieval studies. Nihawan et al. [24] combined multispec-
tral imagery captured by satellites with auxiliary information
such as geographic elevation and used a deep learning method
to obtain satisfactory results in the Himalayan Khiroi region.
Zhang et al. [25] introduced the convolution-based deep learning
method ResNet into FSC retrieval and drew a high-precision
FSC map of the Xinjiang region based on FY4A data. The
accuracy was verified to be better than that of the MOD10A1
FSC snow product and other classical methods. Subsequently,
based on AMSR2 and MODIS data, Xing et al. [26] proposed

a new “area-to-point” depth estimation method by combin-
ing a convolutional neural network and residual block, which
achieved good estimation accuracy and is expected to be applied
in other regions. Although the convolutional operation accounts
for both the channel features and the connection between neigh-
boring pixels, the increase in the number of network layers
will inevitably cause irreversible information loss, which is very
unfavorable to FSC retrieval.

With the operation of advanced geostationary meteorological
satellites, such as the FengYun-4A advanced geosynchronous
radiation imager (FY4A/AGRI), the data sources that can be
used for large-scale FSC mapping have become more reliable
and near real-time. Compared with other low temporal reso-
lution satellite data, FY4A can obtain snow information in an
all-weather stable manner, ensuring the reliability and continuity
of snow monitoring, and capturing snow cover and changes
in a more timely manner, which is very useful for emergency
decision-making and disaster management. In addition, due to
the unusual variability of the snow on the TP and the interference
of cloud cover, high temporal resolution remote sensing data
have become an effective means to dynamically monitor the
snow parameters and to filter out the interference of cloud
cover.

In this study, we employ high-resolution Landsat 8 satellite
images to extract FSC as reference data and utilize FY4A
images in conjunction with geographic elevation data as input
to generate a wide-area, fine temporal resolution snow cover
map for the TP region. To improve the accuracy of the FSC
retrieval method, we compared the efficiency of various machine
learning methods in the FSC retrieval process in the TP region
and developed a deep learning-based FSC retrieval method with
a shallower depth, which can produce more accurate FSC maps
based on the FY4A/AGRI imagery data in the TP region. The
main features of this article are as follows.

1) Based on the FY4A high temporal resolution satellite data,
a snow cover dataset is produced to learn the snow reflectiv-
ity characteristics under various topographic features and to
improve the retrieval accuracy of snow cover.

2) A new spatial and channel coding module and decoding mod-
ule are designed to more comprehensively mine the potential
high-dimensional features in the input data.

3) An improved attention mechanism and channel refinement
module are added to strengthen the snow features to suppress
the interference signal, and the correlation between channels
is gradually refined by the channel refinement module to
output the snow coverage inversion results.

II. DATASETS

A. FY4A/AGRI Data

FY4A represents the inaugural satellite within the second-
generation cohort of China’s geostationary orbit quantitative
remote sensing satellites, which carries an advanced geosyn-
chronous radiation imager in the inheritance and development
of Fengyun-2 based on developing fourteen data channels, cov-
ering the visible, short infrared, mid-wave infrared, and long
wave infrared bands. FY4A has a higher temporal resolution of



LIU et al.: FSC-USNET: FRACTIONAL SNOW COVER RETRIEVAL ON THE TIBETAN PLATEAU 10085

TABLE I
FY-4A/AGRI RADIOMETER SPECIFIC CHANNEL INFORMATION

the full disk image observation time of only 15 min. Additionally,
FY4A can accomplish a wide range of fine temporal-resolution
detections. In this study, the main use of FY4A/AGRI L1 level 1
to 7 channel data and data-specific channel information is shown
in Table I.

B. Land Imager Landsat 8 OLI Data

Landsat 8 is the eighth satellite in the Landsat program
launched by the National Aeronautics and Space Administration
(NASA). Its primary payloads consist of an operational land
imager (OLI) for land imaging and a thermal infrared sensor
(TIRS) for thermal infrared sensing. The combined wavelength
coverage spans from 0.43 to 1.38 μm, with a spatial resolution
of 30 m and a revisit period of 16 days. Landsat8 data at a spatial
resolution of 30 m are rich in spectral information and can be
used to produce reliable FSC maps based on surface reflectance
[4]. Many previous studies have used snow FSC maps extracted
from Landsat 8 as reference data [20], [27]. In this research,
following the example of other studies in obtaining FSC, Landsat
8 images extracted from clear sky conditions with less than 10%
cloud cover were selected as the real reference data.

C. MOA10A1 Snow Products

The MODIS daily snow product MOD10A1 V006, provided
by NASA, is an internationally recognized and widely accepted
leading product in the field of remote sensing for snow, with a
spatial resolution of 500 m. MODIS was carried on two satellites,
Terrra and Aqua, and the transit times were 10:30 and 13.30 local
time per day, respectively, which is a small time difference from
the FY4A/AGRI data used in this article to produce the dataset.
Therefore, areas with relatively stable snow conditions were
selected for comparison and validation. Snow cover products
and binary snow cover data are no longer provided in the newly
released version (V006) of the MODIS snow cover product,
having been replaced with NDSI data. Therefore, this article
synthesizes existing studies and produces snow cover based on
NDSI data to be used as a comparative validation. It has been
shown that MOD10A1 FSC calculated by the recommended
equations is less accurate on the TP than in other regions [1],
[18]. On one hand, due to the complex topography and land
cover of the TP, the global NDSI reference threshold is no longer
applicable in the TP region, and Zhang et al. [28] have shown
through extensive experiments that an NDSI threshold of 0.29
is better than the global reference threshold of 0.4 in the TP.

On the other hand, Liang et al. [1] fitted a linear relationship
between MOD10A1 NDSI and FSC in the TP using snow cover
extracted from UAV imagery as a label, which implies that the
recommended equation may no longer be applicable in the TP
region as well. Therefore, in this article, the MOD10A1 FSC is
determined based on the fitting relationship proposed by Liang
with a selected threshold value of 0.29. The MOD10A1 FSC
equation fitted by Liang et al. [1] is shown in the following:

FSCMOD = 0.8286× NDSI + 0.3941. (1)

D. Geographic Data

Elevation data reflect the geographical characteristics of the
study area, providing rich features and a foundation for detecting
fragmented snow cover. This facilitates the improvement of FSC
retrieval accuracy and results in a more realistic distribution
pattern in the FSC map. In this research, we use 30-m resolution
digital elevation model (DEM) data [29] from the shuttle radar
topography mission.

E. Data Processing

In this article, FSC extracted from Landsat 8 imagery is
used as label for training the model, but the slope, aspect,
and elevation can cause variations in reflectance for similar
features with different terrain positions [30], [31], which has
an impact on the reliability of extracting FSC with Landsat 8.
Therefore, in this article, the SCS + C [32] terrain correction
method has been applied to Landsat 8 imagery to eliminate
the errors introduced due to terrain factors. The method uses
the sun-canopy-sensor (SCS) with a semi-empirical moderator
(C) to account for diffuse radiation, comparing to cosine, C,
Minnaert, the statistical-empirical method has better calibration
results.

While ensuring that the transit time of the Landsat 8 satellite
closely aligns with the observation time of the FY4A satellite,
we selected areas with cloud cover of less than 10% to create
the dataset. Subsequently, the preprocessed Landsat 8 data were
employed to generate a binary snow map at a 30-m resolution
using the SNOWMAP algorithm [16]. Zhang et al. [28] verified
with 201 Landsat8 images of the TP that the optimal Landsat8
NDSI threshold at the regional scale of the TP is about 0.4 for
snow cover >50%, which is also not much different from the
classical NDSI threshold. Considering that the snow coverage
in the snowy region of the Tibetan Plateau is mostly greater
than 50%, the NDSI threshold of 0.4 is selected to generate
a binary snow map, and the interference of water bodies on
snow identification is eliminated by determining whether the
reflectivity in the fifth band is greater than 0.11 [30]. Finally, the
binary snow map was aggregated into a 2000-m resolution FSC
map by the definition method, which was calculated as shown
in the following:

FSC =
NS

Nt
× 100% (2)

where NS denotes the number of snow-covered pixels in each
grid and Nt denotes the total number of pixels included in each
grid.
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Fig. 1. Map of the study area.

The original FY4A/AGRI data underwent several steps, in-
cluding radiometric calibration, geometric correction, and vec-
tor clipping, to obtain TP region images. Radiometric calibration
is the conversion of satellite scanning radiometer output counts
into reflectance physical quantities. The pixel values of the image
data layer “NOMChannelX” (X is the channel number) are first
read from the officially downloaded raw data, and then the data
is calibrated according to the calibration table “CALChannelX”
(X is the channel number) to convert the raw digital signal
into reflectance. Geometric correction is to eliminate or correct
geometric errors in remote sensing images. First of all, the
region of interest is established in the original data and the
official longitude and latitude lookup table, and then accord-
ing to the conversion relationship given by the China Satellite
Meteorological Center, the data row number and longitude and
latitude are converted to each other to obtain the latitude and
longitude information. Subsequently, DEM data were integrated
as the eighth channel data and merged with the FY4A/AGRI
data. Finally, the FY4A/AGRI data with DEM channels were
cropped to a size of 64×64 based on the FSC maps extracted
from Landsat 8 OLI data. To ensure the balance of the training
samples, the images from the west to the east of the TP, which
included the gradual transition from the snow-free region to the
high snow-covered region, were selected as the dataset. The
selected areas of the training and test sets are shown in Fig. 1.

III. METHODOLOGY

UNet [33] is a classical network model based on an encoder–
decoder structure, which has been successfully applied to glacier
identification in remote sensing images [34], [35]. Its unique

U-shaped structure makes it accurate when trained using a small
number of samples, making it particularly suitable for use in
this FSC retrieval study. Therefore, this study proposes a deep
learning-based FSC retrieval method; the overall flow is shown
in Fig. 2. Raw data were processed and fed into the model
for training. Subsequently, model evaluation was performed to
select the best model. Finally, validation was conducted using
MOD10A1 snow products. The fractional snow cover U-shape
net (FSC-USNet) method proposed in this study mainly consists
of the spatial and channel feature extraction module (SCFE
module), decoding module, improved attention module (ICA
module) and channel refinement module (CRF module); the
overall network structure is shown in Fig. 3. The encoding mod-
ule mines the relationships between various channels and spatial
information from the input image and characterizes the shallow
features into high-dimensional feature images. The decoding
module gradually inverts the sublinear relationship between each
channel and FSC from the deep features and gradually recovers
the spatial information. The ICA module associates the encoding
and decoding modules, allocating different weight information
to different pixels and channels to enhance the distinctiveness of
various FSC ranges. Finally, the final FSC retrieval result was
obtained by gradually refining the number of output channels
through the output header with residuals.

A. Spatial-Channel Feature Extraction Module

In previous research, substantial FSC retrieval was accom-
plished by linearly combining different spectral bands of mul-
tispectral images. The relationships existing between different
bands are crucial for FSC extent retrieval. Therefore, this study
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Fig. 2. Overall flowchart of the study.

Fig. 3. Structure of the FSC-USNet network.

incorporates a channel feature extraction branch composed of
1×1 convolutional kernels into the feature extraction module
to explore the relationships between various channels in the
input image. To obtain finer snow boundary information and
spatial information, we add a spatial feature extraction branch
composed of 3×3 convolutional kernels. To improve the gener-
alization ability of the model to prevent overfitting, we added
dropout for random deactivation of the convolution kernel after
the convolution kernel in the above two branches. After mapping
the activation function, the spatial features are concatenated
in the direction of the channels, and the spatial features are
fused with the 1×1 convolutional kernel to reduce the num-
ber of channels by half to avoid redundancy. To solve the
underestimation problem in the UNet FSC retrieval process,
we introduce the classical residual structure. In the residual
branch, the number of channels is adjusted by a 1×1 convolution
kernel, which is then summed with the fused main branch
feature map to obtain the final spatial and channel features.
The overall module structure is shown in Fig. 4. It is worth
noting that the network architecture proposed here employs
3×3 convolutions as the downsampling method between each
SCFE module. The traditional UNet model is designed for image
segmentation, which rarely needs to account for the numerical
differences in the neighboring pixels; thus, using max-pooling
as a downsampling method in the image segmentation task has

Fig. 4. Structure of the SCFE module. Extract and encode snow information
from input images.

little effect on the overall results. However, FSC is a continuous
value, and due to resolution constraints, significant numerical
differences can occur between neighboring pixels. Using 3×3
convolutional kernels not only allows for thoroughly extracting
spatial features but also facilitates further adjusting relationships
between different channels.

B. Improved Coordination Attention Module

Due to limited resolution, the input image size is only 64×64;
thus, the dataset is unsuitable for very deep networks. Simply
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Fig. 5. Structure of the ICA module. Deep fusion of coding features and
decoding features after skip connection.

concatenating the shallow features extracted by the encoder and
the deep features restored by the decoder makes it difficult to dis-
tinguish highly similar features and perfectly integrate two-stage
features. To further enhance retrieval performance, an improved
coordinated attention mechanism is added after fusing encoded
and decoded features. The coordinated attention mechanism
[36] is an attention mechanism that simultaneously accounts for
spatial and channel dimensions and considers position-related
information in the spatial direction. The coordinated attention
mechanism assigns different weights to various channels in the
channel dimension to enhance the discrimination between snow-
cover and snow-free pixels, which is an outstanding contribution
to snow-pixel recognition. Spatially, the classical coordinated
attention mechanism encodes the input features using average
pooling along the height and width directions, which weakens
feature information in regions with highly fragmented snow
coverage due to the averaging effect. Additionally, because of the
high similarity between cloud and snow classes, average pooling
can lead to combining feature information, making it ineffective
in distinguishing highly similar categories. Therefore, in this
study, an enhancement to the coordinated attention mechanism
is implemented, replacing avg-pooling with max-pooling to
prevent feature loss in high FSC extent areas and enhance
sensitivity to texture features in the feature maps. Additionally,
H×1 and 1×W convolutional branches are added to learn feature
map texture features to capture remote spatial interactions with
precise location information and to learn texture features for each
snow-covered area. Then, the attention vectors in the horizontal
and vertical directions are obtained by F1 variation. Finally, the
attention vectors are multiplied by the input features to obtain
the final feature map with weights. The ICA module is shown
in Fig. 5.

For a given feature map X ∈ RC×H×W , with maximum
pooling along the height and width directions using the 1,W and
(H, 1) pooling kernels, its output at the Cth channel at height h
can be expressed as follows:

Zh_max
c = max0≤i≤w [xc (h, i)] (3)

Zh_conv
c = Conv1×w [xc (h, i)] . (4)

Fig. 6. Structure of the decoding module. Feature decoding of encoded fea-
tures and gradual recovery to original resolution.

Similarly, the output of its C channel at width w can be
expressed as follows:

Z2_max
c = max0≤i≤h [xc (w, i)] (5)

Zw_conv
c = Convh×1 [xc (w, i)] . (6)

Then, the output tensor is spliced along the channel direction
and F1 is transformed by a shared 1×1 convolution to obtain
the coded intermediate feature mapping of spatial information
in the horizontal and vertical directions f ∈ R

c
r×(H+W ), where

r is the downsampling multiplicity, which is computed as shown
in the following:

f = δ
(
F1

([
Zh_max, Zhconv , Zw_max, Zw_conv

]))
(7)

where δ is the nonlinear activation function. Immediately after
that, f is sliced into two separate tensors fh ∈ R

c
r×H and

fw ∈ R
c
r×W along the spatial dimension. Then, fh and fw are

transformed into tensors with the same number of channels as
the input X by two 1×1 convolutional transforms, Fh and Fw.
gh and gw are obtained by the sigmoid activation function. The
equations are shown in the following:

gh = Sigmoid [Fh (fh)] (8)

gw = Sigmoid [Fw (fw)] . (9)

Finally, the attention weight matrix is obtained by tensor
multiplication; the output is represented as follows:

yc (i, j) = xc (i, j)× ghc (i)× gwc (j) . (10)

C. Decoding Module

The decoding module, shown in Fig. 6, consists of two parts:
the SCFE module and the upsampling module. After the last
level of feature extraction is completed, deep feature decoding
begins. First, the features are upsampled by a factor of 2 to
recover the spatial texture features. Then, a 1×1 convolution
is applied to mine the relationship between the channels and
halve the number of channels. Finally, the nonlinear mapping is
completed by batch normalization and an activation function. It
is undeniable that upsampling improves the spatial dimension of
feature information, but it does not bring additional information
in essence. Therefore, in this study, coded features are aggre-
gated for feature information filling through the ICA module,
while effective features are extracted through a spatial-channel
feature extraction module and redundant features are eliminated.
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Fig. 7. Structure of the CRF module. Suppresses non-snow pixels and outputs
FSC maps.

D. Channel Refinement Module

After going through the final decoding module, deep features
are restored to 32 channels with rich texture information. How-
ever, experimental results have shown that directly mapping
the 32 channels to the output through fully connected layers
leads to less-than-ideal retrieval results. This issue is reflected in
underestimated FSC in the fragmented snow area, and blurred
texture features in areas with high FSC. Therefore, this study
adds the CRF module, shown in Fig. 7, to gradually refine the
output channels and achieve the suppression of nonsnow image
elements before outputting the results. First, the number of
channels is gradually reduced twice in the main branch by a 1×1
convolution kernel while recombining all channel information.
In the residual branch, a 1×1 convolution kernel is used to
reduce the number of channels in line with the main branch.
Then, the results of the two branches are added together for
the superposition of information to supplement the possible
information loss in the main branch. Finally, we replace the fully
connected layers with 1×1 convolutions, followed by batch nor-
malization and a sigmoid activation function to map the output
to the [0, 1] range. The advantage is that the fully connected
layer destroys the spatial structure of the image, whereas the
convolutional layer does not. The computational process of the
1×1 convolution is equivalent to the fully connected layer [37].
In the snow accumulation detection branch, we convolve the
decoded features with rich texture information twice to reduce
the number of channels and complete the nonlinear mapping
to obtain the classification results of snow and nonsnow pixels,
where we use 0 to denote nonsnow pixels. Finally, it is multiplied
with the FSC map obtained from the main branch to achieve the
suppression of nonsnow pixels.

IV. EXPERIMENTS

A. Experimental Setup

The deep learning framework used in the proposed method
is PyTorch 1.12.0, the GPU acceleration tool is CUDA 11.3,
and the programming language is Python 3.8. The hardware
configuration is an i7-12700H CPU and an NVIDIA GeForce
RTX 3060 GPU. The dataset is 300 TIF images, the size is
64×64, and the training set and test set are divided according
to 8:2. When training the network, the batch size was set to 8.

Since the experiment almost converged after 150 iterations, the
number of iterations was set to 200, the initial learning rate was
set to 0.01, the decay coefficient was set to 0.1, and the learning
rate was updated every 50 iterations using the Adam optimizer.

B. Evaluation Indicators

FSC is an indication of the degree of FSC within a given
image element and is a continuous value belonging to the range
between [0, 1]. In this study, the mean squared error (MSE)
is employed as the loss function, and the evaluation metrics
include the R2_score (R2), root mean square error (RMSE),
correlation coefficient, kappa coefficient (kappa), and explained
variance score (EVS). For the FSC retrieval model, R2 reflects
the proportion of the total variation in the dependent variable
that can be explained by the variable through the regression
relationship. EVS characterizes the degree of the model’s ex-
planation of the variation in FSC, and the closer R2 and EVS
are to 1, the better it indicates that the model can predict the
variation in FSC well. RMSE measures the average difference
between the model’s predicted coverage and the true coverage,
with a lower RMSE indicating a more accurate model prediction.
The correlation coefficient reflects the strength and direction of
the linear relationship between true and model-predicted FSC.
The kappa coefficient evaluates FSC retrieval accuracy and is
commonly used in discrete classification tasks. In this study, FSC
is divided into discrete data to calculate the kappa coefficient.
The formula is shown as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (11)

R2 = 1−
∑n

i=1 (y
i − ŷi)

2∑n
i=1 (yi − yi)

2 (12)

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)

2 (13)

P =

∑n
i=1 (yi − yi)

(
ŷi − ŷi

)
(n− 1)× σyi

× σŷi

(14)

Kappa =
po − pe
1− pe

(15)

EVS = 1− σ2 (yi − ŷi)

σ2 (ŷi)
(16)

where yi denotes the true value, ŷi denotes the predicted value,
yi denotes the mean of the true value, ŷi denotes the mean of
the predicted value, and n denotes the sample size, po denotes
the observational accuracy, which is the amount by which the
predicted values match the number of classifications of the true
value, pe denotes the stochastic accuracy, which is the proportion
of the model calculated according to the probability of stochastic
classifications that match the actual category, σ denotes the
standard deviation, and σ2 denotes the variance.
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TABLE II
COMPARISON TABLE OF DIFFERENT INPUT INVERSION METRICS

C. Prelaboratory

The FY4A/AGRI remote sensing data provide reflectance data
in seven bands, of which NDSI can be obtained by the operation
of band 1 with band 5, so it is reasonable to assume that they
are helpful for the retrieval of snow cover. As can be seen in
Table II, the data in the other bands help to avoid interference
from feature signals such as clouds and bodies of water, and only
band 2 and band 3 are targeted at the role of vegetation. To further
verify the contribution of band 2 and band 3 to the retrieval of
snow parameters, we conducted experiments with all bands and
data excluding band 2 and third band 3 as inputs to the base
model Unet, respectively. The experimental results are shown in
Table II, and the model trained with all bands as inputs shows
better performance in terms of various metrics, with the largest
fluctuations in R2, EVS, and the smallest increase in Kappa.
In addition, since the texture characteristics of snow on remote
sensing images are related to the nature of the subsurface [38],
adding the bands with vegetation information to the input data is
also useful for improving the inversion accuracy of snow cover.
Therefore, bands 1 to 7 are used as input data in the subsequent
experiments in this article.

V. RESULTS

A. Comparison of Experimental Results

To validate and compare the performance of the FSC retrieval
method proposed in this study, it was tested against several
classical retrieval methods on the test dataset. The comparative
methods include BPANN, random forest, UNet [33], UNet++
[39], ResNet_FSC [25], and spectral mixture analysis (SMA)
[41] methods. The comparison of the retrieval indices of each
method on the test set is given in Table III, in which the average
value of R2 of the proposed method on the test set is 0.7182, the
average value of RMSE is 0.1100, the average value of kappa
is 0.4060, the average value of correlation is 0.8178, and the
average value of EVS is 0.7332. Table II indicates that SMA
methods can obtain relatively accurate results within snow-rich
image elements. However, there are large errors and even a large
number of missed detections within the image elements with
small snow areas and weak signals, which is the main source
of errors in the spectral mixture analysis method. The BPANN
method focuses on the relationship between each channel of the
input image, and can achieve relatively accurate point-to-point
FSC retrieval, with R2 and EVS reaching 0.6557 and 0.6601,
respectively. However, it is more sensitive to interference in
snow-free areas, and there is the phenomenon of recognizing
snow-free areas as low snow-covered areas, which is the main
reason for its relatively high RMSE (0.1254). In addition, since

TABLE III
COMPARISON OF RETRIEVAL METRICS FOR EACH METHOD

BPANN mines features in a pointwise manner, the retrieval
results have an overall discontinuous scatter distribution.

UNet, UNet++ adopt convolution as the way to extract
features, which on the one hand expands the sensory field
during feature extraction and takes into account the relationship
between neighboring pixels. On the other hand, the relationship
of each channel is taken into account, so the robustness is
improved compared to the BPANN method. Compared with
UNet++, UNet only uses a simple concat process when skip
connection, which results in less in-depth fusion of encoded
and decoded features. This directly leads to the underestimation
of FSC by UNet in some areas, which is the main reason for
the relatively large RMSE of 0.1267 for the UNet. In contrast,
UNet++ performs fusion of features by introducing a dense
jump connection mechanism. This dense jump connection helps
to enhance the perception of information at different scales and
levels, making the spatial distribution of snow closer to the
real situation, with R2 and EVS reaching 0.6431 and 0.6638,
respectively. Resnet_FSC uses Resnet as the backbone network
for feature extraction, and the feature extraction capability is
greatly enhanced. However, due to the network is too deep,
the loss of texture detail information is severe and excessive
attention is paid to the areas with high snow coverage, resulting
in the results presenting patchy features with lack of texture,
which is the main reason why the Resnet_FSC error (RMSE) is
as high as 0.1286.

Random forest, in contrast, maintains high efficiency even
with relatively high-dimensional inputs in this study. It bene-
fits from its random sampling approach for individual pixels,
which results in strong generalization capabilities and excellent
performance. With an R2 score as high as 0.6599, it is second
only to the proposed model. It also achieves favorable metrics
in terms of EVS (0.6197). The proposed model focuses on
extracting more comprehensive feature maps by leveraging the
SCFE module, which emphasizes correlations between adjacent
pixels and channels, dropout randomized disable convolution
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Fig. 8. Comparison of retrieval results of each method. FY4A denotes FY4A true color image.

kernel essentially achieves the same effect as random forests.
Additionally, it employs convolution as a downsampling method
to alleviate the spatial information loss caused by max-pooling.
The introduced ICA mechanism aggregates features from differ-
ent stages, supplying the decoder with weighted supplementary
information. Ultimately, the relationship between the individual
channels of the decoded feature map is mined by the CRF mod-
ule and the non-snow pixels are suppressed. Thus, the retrieval
results have a small RMSE of only 0.1100 deviations from the
true label, and the kappa and correlation coefficients are also
0.4060 and0.8152, respectively.

In addition, from Table III, it can be seen that the addition
of DEM data makes an outstanding contribution to improving
FSC retrieval accuracy. Notably, the proposed method achieved
an approximately 4.5% increase in R2 and a 4.6% increase
in the kappa coefficient (kappa) after incorporating elevation
data. Other evaluation metrics also exhibited varying degrees of
improvement.

The FSC retrieval results obtained by different methods are
depicted in Fig. 8. Fig. 8(b) shows that the BPANN retrieval
results exhibit weaker spatial coherence. The transition zones
between snowy and snow-free regions appear significantly elon-
gated, and the method demonstrates higher sensitivity to dis-
turbances in snow-free areas, resulting in a substantial number
of misclassifications of snow-free areas with FSC percentages
below 10%. In the region where FSC is higher than 70%,
the BPANN inversion results show an underestimation and
this underestimation is distributed in a point-like manner. In
the convolution-based approach, the excessive depth of the
ResNet_FSC network diminishes the distinctions between high
snow-cover areas and loses information about low FSC and frag-
mented snow-covered regions. This directly results in excessive

smoothing of the FSC results in areas with over 70% coverage,
with small differences in neighboring pixels. It also leads to the
common issue of misclassifying regions with FSC percentages
below 20% and fragmented snow areas as background. These
factors are the primary reasons for the high RMSE observed
in the retrieval results of ResNet_FSC, as illustrated in Fig. 8.
The proposed method fuses the shallow features encompassing
rich edge information and the upsampled features encompass-
ing high-dimensional information through the ICA module to
strengthen the feature differences between background and dif-
ferent FSC types and to enhance the attention on snowy ele-
ments, which realizes the fine-loading judgment of fragmented
and low FSC image elements. In comparison, the UNet network
structure has a shallower depth, preserving shallow structural
features such as boundaries while also exploring more high-
dimensional features. However, limited by its oversimplified
skip connection approach, the inversion results not only lose
information about the fragmented snow region but also show a
huge underestimation problem in the high FSC region. UNet++
is an upgraded version of UNet, which mitigates to some extent
the underestimation of UNet in areas where the FSC is higher
than 70%, but still has some errors.

To address this underestimation issue, the proposed method
employs a dual-pronged approach. First, it enhances feature
extraction and diminishes information loss through the SCFE
module. Second, it gradually reduces the number of channels
using the CRM module and supplements any potential informa-
tion loss within the main branch through the residual branch.
Fig. 8 shows that the proposed method is effective in alleviating
the underestimation problem in areas with FSC higher than 70%
and is rich in hierarchical and textural information. In transition
areas with approximately 20% FSC between high-snow-covered
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Fig. 9. Results of FSC retrieval based on the proposed method at different times in the same region.

regions, the proposed method demonstrates accurate classifica-
tion without producing adhesion or excessive segmentation.

In addition, the convolution-based method is more effective
in segmenting the edges of the region with and without snow,
but there may be a phenomenon that such overly clear edges
are enlarged. Comparing the retrieval results of the different
methods in Fig. 8(a) and (e), it can be seen that for such
narrow boundaries UNet++, Resnet_FSC, and other methods
detected significantly more snow-free regions than labels. The
BP-ANN and RF methods produce different degrees of misjudg-
ment at the boundary, resulting in the blurring of the boundary,
which is because it is difficult to shield the interference of the
background information only by the characteristics of a single
image element. The proposed method, on the other hand, not
only combines the relationship between the channel and the
surrounding pixels, but also suppresses the nonsnow pixels in
the CRF module, which achieves a relative balance between this
boundary blurring and expansion.

B. Extensibility Validation

To further verify the generalization performance of the
method in this article, we conducted two sets of comparisons
of FSCs in the same region at different times, and the results
are shown in Fig. 9. From the figure, it can be seen that for the
same area of the spatial distribution of snow even at different
times show obvious similarity, but the specific FSC does not
show a certain pattern, only closely related to the environment
at each time. The proposed method is not greatly affected by
this, not only the FSC retrieval results are consistent with the
label, but also presents obvious spatial texture information in
the mountainous areas with complex terrain. This proves that

TABLE IV
TABLE OF ABLATION EXPERIMENT RESULTS

the proposed method possesses the ability to be extended to
other times or regions.

C. Ablation Experiments

To validate the effectiveness of the proposed modules, we
conducted a series of ablation experiments to reveal the impact
of each module in the FSC retrieval process. First, we replaced
the feature extraction module with the SCFE module for the
experiments. Table IV shows that the R2 is greatly improved to
0.6397 after replacing the SCFE module. The kappa and the EVS
also improved by more than 5%. This suggests that compared
to the original model, the SCFE module effectively mitigates
the underestimation problem in regions with high FSC. This is
because whether the encoder sufficiently extracts the features
from the input images fundamentally determines the retrieval
performance. The SCFE module accounts for the relationships
between space and channels and introduces a residual branch to
alleviate the underestimation problem. As a result, the retrieval
accuracy is significantly improved. Subsequently, we added the
ICA module, and we can see from the various metrics that the
ICA module has slightly improved RMSE, but both R2 and EVS
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Fig. 10. Comparative validation plot of retrieval results.

have gained a modest improvement. However, the primary role
of the ICA module lies not only in the modest optimization of
the retrieval results but also in the comprehensive aggregation
of shallow-level features with upsampled features, thereby se-
lectively supplementing information loss in the decoding stage.
As a result, after adding the CRM module to gradually refine the
decoding features, the R2 obtains an enormous improvement of
0.0703, and the RMSE and EVS are also optimized by 0.0111
and 0.0732, respectively.

To verify that the proposed ICA module is more effective than
the classical coordination attention mechanism, we specifically
set up a fourth set of experiments in Table III. In the fourth set
of ablation experiments, we added the classical coordination
attention mechanism, and in comparison, the proposed ICA
module gained a 0.0229 improvement in R2 and achieved better
results in other metrics by a narrow margin.

D. Snow Product Comparison

The MOD10A1snow product is internationally recognized as
the predominant snow product. In this study, the retrieval results
of the proposed method are compared with the MOD10A1
product to validate the results and calculate the indicators, as
shown in Fig. 10 and Table V. Overall, in comparison to the
MOD10A1 snow product, the proposed method demonstrates
superior retrieval capabilities in predicting FSC. Both R2 and
RMSE exhibit significant improvements, but there is still a
certain degree of underestimation problem for some high snow
cover regions. From Fig. 10, it can be seen that Liang’s [1]
proposed equation for fitting the snow cover of MOD10A1 on
the TP is in high agreement with the snow cover computed from

TABLE V
COMPARISON OF RETRIEVAL METRICS BY METHOD

Landsat 8 high-resolution image, with an average R2 and corre-
lation coefficient of 0.5877 and 0.6916, respectively. However,
the phenomenon of overestimation in mountainous areas with
high snow cover and underestimation in small patchy areas [13],
[20], [41] still exists. On one hand, a larger solar angle leads to
an overestimation of snow cover in MOD10A1 [42], and other
environmental factors are also an important contributor to the
overestimation of FSC. The retrieval results of the proposed
method in this paper are closer to the true value in the region
with snow cover higher than 80%, and the error is smaller
relative to the overestimation of MOD10A. The shortcoming
is that the underestimation occurs in the edge area of the high
snow cover region in Fig. 10. On the other hand, MOD10A1 is
more susceptible to fragmented snow [42]. This may be highly
correlated with the resolution of the MOD10A1, where snow
cover extracted through the MOD10A1 has been missed or
underestimated in scattered small, low snow cover areas. The
snow cover extracted by high-resolution satellites accurately
extracts these weak signals, and the model trained with this
as truth value also understands this information in depth, so
that the proposed method in this article has a better detection
ability for small, low snow cover areas. In addition, the spatial
texture information of snow cover extracted by MOD10A1 is
weak, and in the vast majority of cases, it is scattered, which is
particularly obvious in Fig. 10(e). In contrast, the snow cover
inverted by the method in this article is overall coherent and
rich in texture information. From the graph, it is evident that the
simple linear regression method employed by MOD10A1 results
in a substantial overestimation exceeding 5% in mountainous
areas with FSC exceeding 70%, while underestimation occurs
in patchy snow-covered regions. This is not only reflected in
Fig. 9 but also highly consistent with previous studies [13], [20],
[41]. Furthermore, the MOD10A1 product shows a cliff-like
drop in FSC at the junction of snowy and snow-free areas. In
other words, the MOD10A1 product is insensitive to the junction
of snowy and low FSC areas, and there are instances of FSC
misclassification in Fig. 9. The reason for this could be attributed
to the fact that the MOD10A1 snow product only provides daily
snow data, while on the TP, snow accumulation and melting
rates are rapid, especially in areas with low FSC. Therefore,
the MOD10A1 snow product cannot accurately observe low
FSC areas. In this study, we utilize FY4A data with a temporal
resolution as fine as 15 min as the data source, which effectively
meets the requirements of real-time observations and allows for
a clear observation of temporal changes in FSC. In addition,
the proposed method fully considers the characteristics of the
neighboring pixels, so it has certain texture characteristics. A
clear transition zone is also present in the junction area between
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Fig. 11. Imagery of the TP region on 23 December, 2022. (a) Is FY4A/AGRI
true color imagery. (b) Is the map of declouded snow cover by the proposed
method.

snow-covered and snow-free regions, which is more in line with
the actual situation. Table IV shows that the proposed method
achieves better results than the MOD10A1 product, both in
the area with abundant FSC and in the area with relatively
fragmented FSC.

FSC mapping was performed for the TP region using the
method proposed in this study. We selected the FY4A/AGRI
image at 4:00 on 23 December, 2022, which has less cloud
cover, as the input data. The high temporal resolution of FY4A
was utilized to filter out the cloud cover in the northwestern
and southeastern parts of the TP. Specifically, we preprocessed
five images around 04:00 on 23 December, 2022, using the same
vector crop to produce the FY4A remote sensing image of the TP
region. Then the clouds are identified based on cloud movement
and snow immobility and filled with data from the proximity
time, resulting in a multitemporal phase filtered cloud effect. The
final map of snow cover on the TP was produced, as illustrated
in Fig. 11. From Fig. 11(b), it can be seen that the method
proposed in this article is sensitive to the fragmented and low
snow-covered areas, and the image elements are arranged contin-
uously and compactly with rich texture information. Combined
with the high temporal resolution FY4A remote sensing data, it
can comprehensively and accurately complete the inversion of
snow cover.

VI. UNCERTAINTIES AND LIMITATIONS

In this article, snow cover on the TP is estimated based on
FY4A remote sensing data by deep learning method, which
improves the accuracy of snow cover retrieval and faces some

problems at the same time. The convolution-based feature ex-
traction method comprehensively takes into account the long-
term association of image elements in both channel and spatial
dimensions. However, it will weaken the feature differences
of neighboring image elements to a certain extent, especially
at high frequencies such as at the edge of snow, which will
cause information smoothing, and this is the main reason for
the unclear boundary between snow-covered and snow-free
areas. Therefore, it is necessary to construct a more effective
feature extraction method in feature extraction, so that it can
better capture the subtle differences between neighboring image
elements and also extract rich spatial information.

In addition, the reference FSC used in this study was derived
from Landsat8 according to the SNOWMAP algorithm, and
the choice of the NDSI threshold has a decisive role in the
selection of the snowpack image elements. However, study [28]
showed that the optimal NDSI threshold generally increases
with slope and decreases as the aspect varies from southeast to
northwest in the TP. Harer [3] has also found through his research
that in some cases, fixing NDSI thresholds to estimate snow
cover introduces some error, and he suggests that seasonal
variations in NDSI thresholds be considered. Therefore, the fixed
use of the optimal NDSI threshold for the TP region in this study
is subject to errors due to the spatial and temporal distribution of
the dataset. On the other hand, while controlling for the Landsat8
transit time versus the FY4A/AGRI shot time, it is still possible
for shallow snow to melt or ablate within this time difference.
Because of the relatively small snow depths on the TP [44], it
is still possible for latent snow to melt or sublimate within this
time difference, which creates some error in the estimation of
FSC in the latent snow region.

Finally, Zhang et al. [28] found that FSC has significant
accuracy differences between different land cover types, and this
study did not fully consider such differences on different land
types when preparing the truth labels and training the model.
Many studies [9], [24] have found that FSC in forested areas
tends to be significantly underestimated due to the forest canopy
and the accuracy is significantly lower than that in basins and
grasslands [28]. Such a problem can be alleviated by considering
view angle effects [45] and multi-index technique [46], and a
separate study can be carried out for forested areas to improve
the accuracy of FSC.

VII. CONCLUSION

In this study, a deep learning-based FSC retrieval method is
proposed for FSC detection in the TP region. The network archi-
tecture follows the classical encoder–decoder structure, with the
addition of the SCFE module and the decoding module for ex-
tracting spatial features and channel relationships. Furthermore,
the ICA module is incorporated to fuse shallow features with
upsampled features, providing the decoder with comprehensive
and detailed abstract information. Combined with the channel
refinement module, a high temporal resolution FSC map based
on FY4A/AGRI data was generated.

The experimental results show that compared with the tradi-
tional FSC retrieval method, the proposed method can obtain
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highly accurate FSC retrieval results. The SCFE module and the
decoding module comprehensively provide the spatial texture
structure of the FSC map. The ICA mechanism assigns higher
weights to snow information, enhancing the model’s resistance
to interference. Furthermore, the CRF module comprehensively
refines the decoding features, effectively alleviating the underes-
timation issues in FSC estimation in some regions and improving
the efficiency of detecting fragmented FSC.

However, in this study, cloud interference is avoided in the
dataset production, and cloud-snow confusion caused by frag-
mented clouds still needs to be solved further. In addition, the
higher resolution FY4A/AGRI images are only available in a
few bands, which directly limits the spatial resolution of FSC
estimation in this study. In the future, we expect to improve the
spatial resolution of FY4A/AGRI images using super-resolution
techniques to produce more accurate snow maps.
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