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Quantifying Uncertainty in Slum Detection:
Advancing Transfer Learning With Limited

Data in Noisy Urban Environments
Thomas Stark , Michael Wurm , Xiao Xiang Zhu , Fellow, IEEE, and Hannes Taubenböck

Abstract—In the intricate landscape of mapping urban slum
dynamics, the significance of robust and efficient techniques is often
underestimated and remains absent in many studies. This not only
hampers the comprehensiveness of research but also undermines
potential solutions that could be pivotal for addressing the complex
challenges faced by these settlements. With this ethos in mind, we
prioritize efficient methods to detect the complex urban morpholo-
gies of slum settlements. Leveraging transfer learning with minimal
samples and estimating the probability of predictions for slum
settlements, we uncover previously obscured patterns in urban
structures. By using Monte Carlo dropout, we not only enhance
classification performance in noisy datasets and ambiguous feature
spaces but also gauge the uncertainty of our predictions. This offers
deeper insights into the model’s confidence in distinguishing slums,
especially in scenarios where slums share characteristics with for-
mal areas. Despite the inherent complexities, our custom CNN
STnet stands out, delivering performance on par with renowned
models like ResNet50 and Xception but with notably superior
efficiency—faster training and inference, particularly with limited
training samples. Combining Monte Carlo dropout, class-weighted
loss function, and class-balanced transfer learning, we offer an
efficient method to tackle the challenging task of classifying intri-
cate urban patterns amidst noisy datasets. Our approach not only
enhances artificial intelligence model training in noisy datasets but
also advances our comprehension of slum dynamics, especially as
these uncertainties shed light on the intricate intraurban variabil-
ities of slum settlements.

Index Terms—Imbalanced dataset, learning from few samples,
noisy dataset, slum mapping, transfer learning, uncertainty
estimation.

I. INTRODUCTION

THE criticality of data in artificial intelligence (AI),
particularly in deep learning model development, are
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well-documented [1], [2], [3]. Quality datasets, free from biases
and errors, are essential for creating algorithms that are gen-
eralizable and trustworthy for decision-making processes [4],
[5], [6]. However, the prevalence of biases and inaccura-
cies in training datasets necessitates either thorough curation
or specialized methods to handle these challenges. The ad-
vancement of AI architectures has been significant in address-
ing issues like imbalanced and noisy datasets, or classifying
within fuzzy feature spaces [7], [8], [9]. These improvements
are pivotal for handling the complexities and unpredictabil-
ity of real-world scenarios, underscoring the importance of
data quality in AI workflows for accurate and meaningful
outcomes.

By leveraging AI, researchers can uncover hidden connec-
tions and gain a deeper understanding of complex phenomena,
leading to more insightful studies and breakthrough discoveries.
The constant evolution and improvement of AI architectures,
especially in dealing with challenging datasets marked by im-
balanced and noisy datasets [7], [8], or classifying within fuzzy
feature spaces [9], has empowered researchers to handle diverse
and unpredictable real-world scenarios effectively. As AI contin-
ues to progress, it brings the promise of more comprehensive and
accurate solutions for the complexities of our dynamic world.

One area where AI has shown promising results is in remote
sensing, particularly when it comes to understanding urban
environments [10], [11]. This technology has been used to gather
vast amounts of insightful data on cities, including information
about population density [12], land use [13], or transportation
patterns [14]. This also includes detecting urban poverty, where
researchers and policymakers can gain valuable insights on
locations of slum settlements. The utilization of high-resolution
remote sensing imagery played a pivotal role in the comprehen-
sive mapping of slums within the dynamic cityscape of Mumbai,
as highlighted in [15]. Similarly, the city of Accra witnessed the
integration of remote sensing data in conjunction with income
data, facilitating an insightful mapping of poverty patterns, as
seen in [16]. Furthermore, Kuffer et al. [17] conducted an intri-
cate examination of the multifaceted factors that contribute to the
enduring presence of slums, shedding light on their persistence
within urban landscapes. Satellite imagery, population data,
and economic indicators can help to recognize poverty patterns
and map poverty levels to identify needy areas, enabling more
focused and effective poverty reduction activities [18], [19],
[20], [21].
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Fig. 1. Dense and low-rise areas shown with a black outline for the city of Nairobi [26]. Google Street View imagery is used to show that only some parts of the
dense areas can also be considered a slum settlement highlighting the challenge of slum mapping.

Detecting urban poverty from remote sensing data is very
challenging, due to data availability and the many different
morphological features that can occur in slum settlements [22].
The issue of data availability is twofold: While some data exist
for large and often studied areas [23], [24], for many cities of the
Global South there are still very few data on slum settlements
following a coherent and reproducible approach. The data that
exist on slum settlements is often outdated, incomplete, and
based on heterogeneous approaches on its definition regarding
the morphology of slum settlements [24]. The second major
challenge to detect slum settlements is the nature of its noisy
feature space. Despite the fact that a typical morphological slum
can be characterized by its high building density, small and com-
plex street layouts, low-rise and small building structures, and
use of a wide variety of construction materials, in reality slum
settlements sometimes share just parts of these features [22].
Moreover, as indicated in [25], the delineation of slums is subject
to variability owing to differing opinions on what constitutes
a slum. Recognizing this, the data used for training an AI to
classify slum settlements needs to diligently harmonized into
a unified dataset to enhance a study’s reliability, given that
such variability in slum definitions could markedly affect the
results. This subjectivity poses a challenge in classifying urban
poverty. This impact can make it difficult to distinguish between
a slum settlement and a formal built-up region. This challenge is
depicted in Fig. 1 where the results from [26] show predictions
of the local climate zone class seven, which is described as
dense-low-rise buildings and shows two areas within the city of
Nairobi, Kenya. While both highlighted areas display dense and
low-rise building structures, only some parts of one highlighted
area can be described as a slum upon having a closer look using
Google Street View imagery. Thus, classifying a settlement as a
slum cannot be solely determined by the previously mentioned
features. Conversely, just because a settlement has a low-rise and
dense structure does not automatically make it a slum. Similarly,
the absence of density in a settlement does not guarantee that it
cannot be classified as a slum. In other words, the combination of
multiple morphological characteristics is a detrimental criterion

for determining whether a settlement is a slum or not. While
other factors, like plumbing and access to basic services need to
be considered in evaluating the status of a settlement as well,
these are not derivable from high-resolution remote sensing
data. Thus, with the described noisiness of the dataset in mind,
for the purpose of this research and considering the limitations
in acquiring actual real ground-truth data, we rely here on the
typical morphological appearance of slum settlements.

In our study, we focus on addressing two primary challenges:
limited data availability and noisy datasets in the context of slum
mapping using remote sensing data. Our main goal is to develop
an efficient method for detecting slums with limited training
samples, and to estimate the uncertainty in these predictions. To
this end, we employ a transfer-learning approach, leveraging a
large, imbalanced dataset to effectively train toward a smaller,
balanced dataset. This method ensures that only a few samples
are needed for successful slum detection. To tackle the issue of
noisy datasets, we utilize Monte Carlo dropout. This technique
allows us to approximate the uncertainty associated with pre-
dicting slum settlements, providing a more robust and reliable
analysis. In addition, we introduce a custom convolutional neural
network (CNN), the slum transfer network (STnet), specifically
designed for high-resolution remote sensing data. STnet is engi-
neered not only to enhance the training efficiency with a limited
number of samples but also to offer significant improvements
in processing time compared to standard CNN models. Our
research aims to demonstrate the effectiveness of STnet in accu-
rately detecting slums in various urban environments, thereby
contributing to the broader field of urban studies and remote
sensing.

II. RELATED WORK

A. Detecting Urban Poverty Using Remote Sensing

Traditional machine learning approaches have already made
significant contributions to the detection of urban poverty by
enabling the analysis of large datasets [24]. These approaches
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have proven to be invaluable in providing researchers and policy-
makers with the necessary tools to gain a deeper understanding
of poverty patterns within urban areas. By employing various
machine learning algorithms, such as classification and regres-
sion models, researchers can process and analyze extensive
datasets containing socioeconomic and spatial information [19].

A specific area where traditional machine learning has shown
promise is in the application of remote sensing data for larger
scale urban poverty detection [27], [28]. In the context of poverty
detection, remote sensing data provide valuable information
about the morphological patterns of slum settlements. This
data can include features such as building density, land cover
classification, and infrastructure characteristics [29], [30].

While traditional machine learning approaches have been
effective in urban poverty detection, recent advancements in
AI have further enhanced our ability to identify poverty using
innovative techniques. AI, including deep learning models, has
demonstrated remarkable capabilities in analyzing satellite im-
agery for poverty detection [15], [27], [31], [32], [33]. Deep
learning algorithms, characterized by their ability to learn hierar-
chical representations of data, can automatically extract intricate
visual features from satellite images, capturing subtle patterns
that may indicate poverty.

However, despite these advancements, there is still a need for
larger scale applications of poverty detection using AI. Most
existing studies in this field are often limited to specific areas of
interest within the same geographical region. To fully harness
the potential of AI in urban poverty detection, it is essential
to expand research efforts to encompass a broader range of
urban environments worldwide. By doing so, it is intended to
unlock the true power of AI in addressing the complex challenges
associated with urban poverty on a global scale.

B. Training on Imbalanced Datasets

Studies revealed that slum morphologies in general consist
of a small share of the built-up environment in cities, and in
particular, mapping information is only scarcely if at all avail-
able [34]. Dealing with imbalanced datasets in deep learning
involves several approaches that can help mitigate the issue of
class imbalance. Some common methods include cost-sensitive
learning, as seen in [35], which adjusts misclassification costs,
favoring the minority class and improving overall performance
on imbalanced datasets. Synthetic data generation increases
the minority class representation by creating artificial samples,
achieving a more balanced dataset and enhancing predictive
accuracy [36], [37]. Using curriculum learning gradually ex-
poses the algorithm to challenging examples, minimizing biases
toward the majority class [38], [39].

Another simple approach is resampling the dataset by either
oversampling the minority class or undersampling the major-
ity class. Oversampling involves replicating or generating new
instances from the minority class to balance the dataset. Under-
sampling reduces the majority class to match the minority class.
Both approaches help achieve a more balanced class distribution
and improve AI model performance [33], [40], [41]. The choice

between them depends on the dataset and learning algorithm
used.

Furthermore, class weight adjustment is a technique in AI
used to tackle imbalanced datasets. By assigning higher weights
to the minority class during training, the model places greater
emphasis on learning from the minority class. This helps to
address the issue of class imbalance and ensures that the model
pays more attention to the minority class, improving its ability
to correctly classify instances from that class. By adjusting the
class weights, the model becomes more sensitive to the minority
class and achieves a better balance in handling imbalanced
datasets [42], [43].

It is important to carefully evaluate the performance of the
model after implementing these methods to ensure that the
imbalance has been effectively addressed without negatively
impacting the overall performance. In this work, we direct our
attention toward a class-weighted loss function for pretraining
and for transfer learning an undersampling method. Both present
a straightforward and efficient workflow that can be effortlessly
replicated. By choosing to focus on these specific methods, we
aim to harness their advantage and capitalize on their ease of
implementation.

C. Transfer Learning From Few Samples

Transfer learning a CNN involves adjusting the weights of
an already trained model to fit the specific task or dataset in
the target domain. This is achieved by pretraining a model and
retraining it with a smaller learning rate on a related classification
task for the target domain [44]. The benefits of transfer learning
a CNN include: faster training times as the model has already
learned useful features from the pretraining data [45], [46],
improved performance on the target task as compared to training
a model from scratch, and the ability to leverage the knowledge
gained by the pretrained model on a large dataset to improve the
performance on a smaller dataset [47], [48].

When it comes to transfer learning with few samples, the
situation is similar to few-shot learning techniques. However,
in transfer learning, the focus is not solely on handling a few
labeled examples of a new task. Instead, transfer learning aims to
exploit the knowledge learned from a source task with sufficient
labeled data and apply that knowledge to a target task with
limited labeled data. Whereas in few-shot learning, the model
is trained to learn from none or very few labeled samples.
In [9], a few-shot learning technique from [49] was used in order
detect complex morphologies representing poor areas within the
urban environment, the authors found out that the technique
works very well when only a hand-full of samples are available.
Other approaches have been using self-supervised embedding
optimization for adaptive generalization in urban settings [50]
or using prototypical networks for urban damage detection after
natural hazards [51].

D. Bayesian Uncertainty Estimation

In deep learning, Bayesian uncertainty refers to the incor-
poration of probabilistic inference into neural networks and
can be categorized into two domains: epistemic and aleatoric.
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The former, epistemic uncertainty, pertains to the uncertainty
associated with the model parameters or weights, while the
latter, aleatoric uncertainty, is commonly associated with data
uncertainty.

Variational inference, which models the network’s weights as
probability distributions and employs optimization techniques
to approximate them [52], [53], and Bayesian neural networks,
which treat the network’s parameters as random variables and
infer posterior distributions [54], [55], offer valuable insights
into model uncertainty. These approaches can significantly assist
in improving the trustworthiness of deep learning methods in
remote sensing tasks [56], [57], [58].

Monte Carlo dropout is another method used for uncer-
tainty estimation in predictive models. It leverages dropout to
approximate Bayesian inference for deep neural networks by
performing multiple forward passes with dropout during infer-
ence [59]. Each pass generates different predictions, allowing for
the calculation of prediction variance and capturing the inherent
epistemic uncertainty in the model’s output. It can also be used
to prevent overfitting [60]. This technique has been applied
successfully in various domains, such as computer vision [61],
[62], natural language processing [63], and healthcare [64].

One of the key benefits of Monte Carlo dropout is its potential
to enhance prediction interpretability [65]. By generating multi-
ple predictions with dropout, the method provides a probabilistic
distribution of possible outcomes, enabling a more comprehen-
sive understanding of the model’s uncertainty. This distribution
can be visualized and analyzed to gain insights into the factors in-
fluencing the model’s decisions. Monte Carlo dropout has found
applications in a wide range of tasks. Uncertainty estimation
helps to identify ambiguous regions in image classification tasks,
or it can guide the system to seek clarification or avoid providing
incorrect or misleading information. Moreover, Monte Carlo
dropout has been utilized to understand the level of confidence
in the model’s predictions and assisting in making informed
decisions [66].

III. METHODOLOGY

A. Convolutional Neural Networks

ResNet-50 [67] and Xception [68] are two widely acclaimed
and standard CNNs that find extensive usage in various sci-
entific domains, including remote sensing image classification
tasks. ResNet-50, short for residual network with 50 layers,
revolutionized the field of deep learning by introducing residual
connections that mitigate the vanishing gradient problem and
enable the training of extremely deep networks. This architec-
ture facilitates the construction of deeper models, leading to
improved accuracy in image classification tasks. On the other
hand, Xception, an extension of the Inception architecture, takes
the concept of depth-wise separable convolutions to an extreme
level. It separates the spatial and channel-wise convolutions,
reducing the computational cost significantly while maintaining
high performance.

In our study we use both, ResNet-50 and Xception in order
to introduce our Slum Transfer network (STnet), a custom CNN
specifically designed to excel in processing high-resolution

remote sensing imagery. The STnet is a heavily customized
Xception network [68] and a simplified schematic can be seen in
Fig. 2. The entry flow consists of five convolution combinations
using residual skip connections. In order to capture a larger area
when using high-resolution remote sensing imagery, the first
two 2-D convolutions use large 9x9 kernels. In the middle flow,
feature pyramid pooling is used to provide a unified framework
to extract features at different scales. Finally, the classification
flow is composed of two linear functions. Throughout the whole
STnet, a combination of batch normalization and dropout layers
afterwards are used. In total, STnet has 22 layers and 3.3 million
trainable parameters.

B. Transfer Learning

The learning strategy employed in this procedure can be
divided into two distinct phases. In the initial phase, the STnet
undergoes pretraining on a class-imbalanced dataset denoted
as Dbase. To address the class imbalance during this stage,
we employ a weighted loss, as illustrated in (1), to give due
importance to underrepresented classes and make the most of
the available data. Subsequently, the STnet is transfer learned
using an additional dataset, referred to as Dbal

loocv. However, one
of the classes in Dbase is significantly imbalanced compared to
the others, while in Dbal

loocv, a class balanced dataset is created
using undersampling. Dbal

loocv is designed to be class balanced,
meaning it contains an equal number of images from all classes.
By ensuring that each class is represented equally in Dbal

loocv, we
mitigate the bias toward the imbalanced class from Dbase. This
balanced dataset allows for a fair and unbiased transfer-learning
process, as each class contributes equally to the training of the
new classifier.

During pretraining and transfer learning, we use a class
weighted cross entropy loss L as seen in (1) where wi is the
weight for each class, scaled by the inverted count of the class
occurrence

L(x, c, w) = −
∑
i

wi · y′i · log
(

exp(xi)∑
j exp(xj)

)

where

wi : weight for class i;

y′i : target distribution after

label smoothing for class i;

xi : logit for class i. (1)

During transfer learning, the complete CNN remains train-
able, and no layers are frozen. This means that all the layers of the
pretrained CNN, are trained using theDloocv dataset. By keeping
all layers trainable, the CNN can adapt its learned features to the
new dataset while still benefiting from the knowledge gained
on the base dataset. This approach allows the CNN to capture
task-specific features from Dbal

loocv while retaining the general
knowledge acquired from Dbase.
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Fig. 2. Simplified schematic of the STnet architecture, comprising five convolutional variants in the entry -flow, succeeded by feature pyramid pooling layers
and a classification- flow in the end. This light-weight architecture encompasses 3.3 million trainable parameters.

C. Monte Carlo Dropout for Uncertainty Estimation

In our classification setting, we have a dataset D(X,Y ),
where X = x1, x2, . . ., xn represents the records of input im-
ages and Y = y1, y2, . . ., yn denotes the corresponding refer-
ence labels. We employ our STnet model to predict new outputs
ȳ from new data x̂. The model’s predictions rely on a set of
weights, and the task at hand involves finding the optimal set of
these weights through an optimization problem

ȳ =
1

T

T∑
t=1

y(t)

where

ȳ : Averaged prediction over Monte Carlo runs;

T : Total number of Monte Carlo runs;

y(t) : Prediction for the tth forward pass. (2)

To incorporate the Monte Carlo dropout technique as seen in
(2), we use a probability p = 0.3 for each dropout layer, and for
each model in all our experiments. This decision was informed
by the preliminary test with p = 0.1, p = 0.3, and p = 0.5,
where p = 0.3 offered the most effective balance between the
Monte Carlo probabilities and the accuracies of the models.

During the forward pass, a unit is dropped and set to zero if its
corresponding binary variable is zero. By utilizing Monte Carlo
dropout, we aim to model the distribution, and subsequently, the
predictive posterior distribution of ȳ. Notably, we can achieve

this by training the neural network as if it were a typical network,
with the inclusion of dropout layers after each layer with weight
parameters and performing T predictions.

In summary, unlike the conventional classification setting
where a single prediction y(t) is obtained, the Monte Carlo
dropout technique allows us to model a predictive distribution.
This approach entails training the network with dropout layers
and making multiple predictions, resembling the training pro-
cess of a standard neural network with slight modifications.

IV. DATA AND EXPERIMENTAL SETUP

A. Dataset

The remote sensing data used in this study were acquired
using PlanetScope satellites during 2021. In total, 8-bit RGB
data were used and all scenes were resampled to 3-m reso-
lution per pixel. Data from eight cities of the Global South
were collected including Cape Town, Caracas, Lagos, Medellin,
Mumbai, Nairobi, Rio de Janeiro, and Sao Paulo. The division
of the remote sensing data into 88 ∗ 88 pixel patches (equivalent
to 264 m ∗ 264˜m) was methodically chosen based on empirical
evidence from previous studies in the domain of learning with
few samples, which demonstrated the efficacy of this specific
patch size [9], [49].

Our dataset consists of three target classes: zero back-
ground,one formal built-up areas, and two slums. The formal
built-up areas were derived by using data from the LCZ42
dataset [26]. Reference data for the slum settlements were
created by mapping polygons from experts in the field of remote
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Fig. 3. Class distribution in eight cities and combined distribution. The figure displays nine pie charts depicting the class distribution in eight cities, with the slum
sample proportion highlighted for each city. The final pie chart showcases the combined distribution, illustrating the overall class proportions across all cities.

sensing and urban poverty on the basis of up to date aerial
imagery using Google Earth. To ensure data consistency for
the reference data gathered from all sources, all polygons were
checked and if necessary adjusted by the authors.

Each image patch used for training and testing the AI model
has a dimension of 88 ∗ 88 ∗ 3, with each label patch is 88 ∗
88 ∗ ncl, where ncl = 3 for the three classes used. If a reference
patch contains at least 25% pixels of slum settlements, it is
considered toward the slum class, patches with less than 25% but
containing at least one slum pixel are discarded during training
the model. For all other samples, the class with the highest pixel
tally is considered as the main class. In total, 64 686 samples
are available in the Doriginal dataset used for training and testing
our approach as seen in Fig. 3.

B. Data Sampling

We define Doriginal in (3) as the set of ordered pairs, where
each pair consists of an image X and CL as its corresponding
city’s location. Xn is the nth image in the set and CLi as the
location of the nth image, where i ranges between the city’s
location ID from 1 to 8. This dataset contains a wide range of
diverse samples, encompassing various morphologies of urban
patterns relevant to our topic.

For all experiments, we use a leave-one-out cross-validation
approach, which is instrumental in ensuring comprehensive
model evaluation and robustness across diverse urban environ-
ments, reflecting the variability in slum morphologies. This
method also effectively mitigates the risk of overfitting, en-
suring the model’s adaptability and generalizability to different
geographical contexts, crucial for the real-world application of
urban poverty analysis and slum mapping. The image patches
from seven of the eight cities are used for training and validation,
while the remaining city’s dataset is used for testing and transfer-
learning. This process is repeated for all eight cities creating
eight pretrained models to use for the test datasets. We parti-
tioned Doriginal into two distinct datasets as seen in (4). The first
subset, named Dbase, was employed for pretraining the STnet.
Dbase served as the foundation for training the initial weights

and learning representations, the dataset always consist of seven
cities of the dataset as seen in (5). The second subset, called
Dloocv in (6), was dedicated to the transfer-learning phase. By
using a leave-one-out cross-validation dataset Dloocv, we were
able to refine and optimize the STnet’s performance, ensuring its
adaptability and robustness. Overall, the division of Doriginal into
Dbase and Dloocv played a crucial role in our research, enabling
us to achieve accurate and reliable results.

During the transfer-learning phase, the datasetDloocv is turned
into a class balanced dataset Dbal

loocv, using undersampling of
the majority class. In (7) Xn is the nth image in the dataset
with its corresponding label Yn. We count the occurrence of
all classes c and randomly sample j patches used for transfer
learning.

Doriginal = {(X1,CL1), (X2,CL2), . . . , (Xn,CLi)} (3)

Doriginal = Dbase ∪ Dloocv (4)

Dbase = {(X1,CLi), . . . , (Xn,CLi)} ∈ Doriginal (5)

CLi �= loocv

Dloocv = {(X1,CLi), . . . , (Xn,CLi)} ∈ Doriginal

CLi = loocv (6)

Dbal
loocv =

{(
Xn, Yn

) ∣∣∣∣ count
(
Yn ∈ Dloocv, Yn = c1

)
= j,

count
(
Yn ∈ Dloocv, Yn = c2

)
= j,

count
(
Yn ∈ Dloocv, Yn = c3

)
= j

}
. (7)

To evaluate the number of image patches required for transfer
learning, we examine 1, 5, 10, 25, 50, and 100 image samples per
class. For each experiment, we randomly select these samples
per class from Dloocv, and use the remaining city, not included
in the training dataset, for transfer learning. The samples cho-
sen for transfer learning are subsequently eliminated from the
test dataset. This process ensures that our experiments avoid
bias and accurately reflect the model’s capability to generalize
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from limited data. In order the address the effects of randomly
choosing image samples, we averaged the outcomes of five dif-
ferently seeded experiments and report the standard deviations
in our results, highlighting the impact of sample selections on
the model’s performance. In order to guarantee that there are
sufficient samples of each class, particularly the slum class,
100 samples were the maximum number of samples required
to verify our transfer-learning strategy.

C. Experimental Setup

To examine the impact of transfer learning on noisy datasets,
we follow the setup outlined as follows. In all experiments, we
warm up the optimizer for three epochs with a learning rate of
1e− 8. For pretraining, we use a learning rate of 1e− 3 and for
transfer learning 1e− 4. All experiments use an Adam optimizer
and weighted soft cross entropy loss. In addition, a batch size of
16 is used for training. To tackle both, dataset noise and model
prediction uncertainty, we employ Monte Carlo dropout. This
technique involves obtaining an average of 25 outputs from
the model’s predictions. We compute the average of the raw
logits produced by the model and calculate the corresponding
entropy value in order to compare the level of uncertainty of the
prediction.

In our evaluation framework, it is important to note that while
our models were trained on three classes to effectively manage
class (im-)balance, the accuracy metrics reported specifically
pertain to the slum class. This focused approach is due to our
primary interest in slum mapping. Classes representing back-
ground and urban/formal built-up areas are not included in the
accuracy assessment. Therefore, in assessing performance, we
use three commonly used metrics for image classification prob-
lems, namely the F1-score, precision, and recall, as our primary
metrics to gauge the effectiveness of our models in accurately
identifying slum areas. To further compare the efficiency of
different models, we analyze the training time required for each.
In addition, we assess the influence of Monte Carlo steps on
our results, examining how variations in this parameter impact
the models’ stability and inference time. By integrating both
performance metrics and computational efficiency measures, we
ensure a thorough evaluation that guides our decision making
process and optimizes the overall quality of our outcomes.

A fundamental challenge in the context of transfer learning is
the variability in model performance when using a limited num-
ber of samples. This variability arises due to the random selection
of training samples, leading to potential sample selection bias.
To obtain a comprehensive understanding of model performance
and address the issues arising from outlier data training, it is im-
perative to employ a rigorous approach. Specifically, we conduct
five seeded runs to effectively assess the models’ capabilities. By
averaging the results obtained from these diverse seeded runs, we
obtain a robust estimation of model performance, which allows
for a more accurate representation of sample selection bias. This
approach aids in reducing the impact of random fluctuations,
providing a clearer picture of the model’s general performance
across varying training data subsets.

TABLE I
RESULTS FOR EIGHT CITIES COMPARING DIFFERENT NUMBER OF SAMPLES

USED FOR TRANSFER LEARNING THE STNET, INCLUDING THE STANDARD

DEVIATION FOR FIVE SEEDED RUNS

V. RESULTS

A. Transfer-Learning Results

The results of the transfer-learned STnet reveal an empirical
relationship between the number of samples per class used for
transfer-learning and the corresponding F1-score as seen in
Table I. Notably, an increase in the number of samples yielded
improved F1-scores. However, it is noteworthy that even with
just a single sample per class, the model achieved commend-
able F1-scores of 73.24%. Nevertheless, after 50 samples, the
F1-score seems to plateau, suggesting an upper limit of high
80% F1-score for this classification task. These findings indicate
the potential for achieving favorable F1-score with STnet, even
when training data are scarce. The highest F1-score of 86.24%
was achieved when using 100 samples per class for transfer-
learning.

In addition, when examining the precision and recall val-
ues in Table I of the transfer-learned STnet, notable patterns
emerge. While the precision values increases more drastically
as the number of samples for transfer learning increases, the
recall values, however, only steadily increases. These results
underscore the effectiveness of the transfer-learning approach
in refining the model’s precision and recall, leading to improved
overall performance and indicating the potential of STnet in
applications with limited training data.

Fig. 4 depicts the F1-scores for eight cities and the correspond-
ing number of samples used to transfer learn our STnet model.
The general trend observed in the figure indicates that as the
number of samples per class used for transfer learning increases,
the F1-scores also increase. The experiment was conducted five
times, with each transfer-learning approach utilizing different
random samples. The error band in Fig. 4 from the five runs uses
confidence intervals of 95% to draw around estimated values.

In Cape Town (93.60%), Caracas (90.62%), and Medellin
(91.09%), we achieve the highest F1-scores, when using 100
samples for transfer learning. But it needs to be noted that in
Medellin and Caracas, we already achieve high accuracies using
simple inference of over 82.10%. We also observe a decrease in
F1-score when only one sample per class is used for transfer
learning, in Caracas, Medellin, Lagos, and Mumbai, indicating
a more challenging setting for transfer learning. But even in
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Fig. 4. F1-score for eight cities using a variety of number of samples to transfer learn the STnet pretrained using a transfer-learning approach.

TABLE II
COMPARISON OF F1-SCORES FOR STNET, XCEPTION, AND RESNET50,
AVERAGED OVER FIVE DIFFERENTLY SEEDED RUNS SHOWN WITH ITS

STANDARD DEVIATIONS

Lagos and Mumbai, using only five samples per class results in
a major improvement of roughly 10% in F1-score compared to
simple inference.

B. Comparing Various CNNs

In Table II, we conduct a comprehensive comparative analysis
of the F1-scores for three distinct CNNs: STnet, Xception, and
ResNet50. This comparison spans a range of scenarios in transfer
learning, starting from simple inference results to the use of 1–
100 image samples in transfer-learning processes. Each model’s
F1-score is calculated as an average across five independently
seeded runs, and we provide the standard deviations to illustrate
the variability in performance. In addition, all models were
subjected to 25 Monte Carlo iterations to ensure consistency
in our evaluation methodology. Our analysis reveals that STnet,
despite having a considerably lower parameter count of only 3.3
million, achieves performance metrics that are comparable to
those of Xception and ResNet-50, which are significantly more
parameter intensive. Notably, in scenarios where only a limited

TABLE III
COMPARING DIFFERENT CNN ARCHITECTURES TO EACH OTHER BASED ON

THEIR SIZE AND TRAINING TIME

number of samples are employed for transfer learning, STnet
demonstrates superior performance, outscoring both Xception
and ResNet-50.

Table III provides a detailed comparison of the training times
for each step and the total time required to achieve the best
validation metric for the three models. Although the overall
F1-scores of these CNNs are relatively similar, a significant dif-
ference is observed in their training durations. This discrepancy
is largely attributed to STnet’s more streamlined architecture,
which makes it considerably lighter and faster in processing
compared to Xception and ResNet-50, as evidenced in Table III.
Notably, STnet not only demonstrates faster processing times
but also requires less total time to attain the optimal validation
metric. However, it is important to note that despite its shorter
overall training duration, STnet demands more epochs to reach
the best model fitness, in contrast to Xception and ResNet-50.
This aspect highlights the efficiency of STnet in terms of time
management.

C. Comparing Monte Carlo Dropout Rates

In Table IV, we investigate the impact of varying the number
of Monte Carlo dropout test runs on our STnet model. The
performance of the model is evaluated using inference time,
F1-score, and finally, the entropy value, which is a measure
of uncertainty or randomness within the predicted distributions
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TABLE IV
COMPARISON OF STNET’S INFERENCE TIME, F1-SCORE, AND ENTROPY

ACROSS DIFFERENT MONTE CARLO DROPOUT ITERATIONS, TRAINED ON 100
SAMPLES PER CLASS

generated by the Monte Carlo dropout technique. Specifically,
we compare the results obtained from using 1, 5, 25, and 50
Monte Carlo dropout test runs. In [69], 50 iterations are men-
tioned when using Monte Carlo dropout, but they only used a
dropout layer in the last layer of their CNN. Since STnet uses
dropout throughout its complete architecture, we test iterations
of up to 50.

Our findings reveal that increasing the number of Monte Carlo
dropout test runs leads to a slight improvement in the F1-score.
Furthermore, we observe a slight decrease in the entropy values
as the number of Monte Carlo dropout test runs increases,
which implies that the predictions become more focused and
certain as more test runs are performed. Significant observations
were made regarding the inference time when increasing the
number of Monte Carlo dropout iterations. The results indicate a
substantial increase in inference time, with a 275% rise observed
when transitioning from five Monte Carlo dropout iterations to
25, followed by an additional 84% increase when reaching 50
iterations. Despite the availability of insightful uncertainty mea-
surements with just five iterations, the experiments conducted in
this study employed 25 iterations as the preferred configuration
for analysis.

VI. DISCUSSION

A. Uncertainty of Slums

Fig. 5 shows the results obtained for all cities using the
transfer-learned STnet with 100 samples per class. The incor-
poration of Monte Carlo dropout as a method for uncertainty
estimation unveils a significant advantage. It allows us to dis-
cern the STnet’s level of certainty in predicting the location of
slum settlements and identifies cases where its predictions are
inconclusive. This not only provides crucial insights into the
decision-making process of the STnet but also sheds light on
the inherent challenges associated with the classification of slum
areas.

The analysis demonstrates that the STnet exhibits ele-
vated confidence in predicting the presence of typical slum

settlements, characterized by typical morphologic slum features,
including high density, heterogeneous building patterns, and
irregular road shapes. This pattern is evident in cities that achieve
high F1-scores, namely Cape Town, Caracas, Medellin, and
Mumbai.

In addressing the challenges faced in slum classification
within specific cities, it is observed that Lagos presents notable
difficulties with underclassification of slums. Conversely, in
Nairobi, Rio de Janeiro, and Sao Paulo, the primary challenge
lies in overclassification. These issues are largely due to two key
factors. The first factor is the absence of distinct morphological
features typically found in slum settlements, which are otherwise
noticeable in cities like Caracas and Medellin. The second factor
contributing to these classification challenges is the presence of
formal settlement structures that share similarities with slum
areas in terms of density and low-rise characteristics. This
overlap in physical attributes complicates the task of clearly
differentiating between formal and slum classes in these urban
environments.

This highlights the complexity of slum classification due
to local morphologic specifics in relation to the surrounding
built-up morphologies as well as it emphasizes the importance
of taking into account differences in morphological character-
istics present within slums. Moreover, in fringe regions, where
slum settlements are intertwined with urban formal settlements,
vegetation areas, or both, higher uncertainties are observed.

In regards to assessing the uncertainty of slums and their
prediction, evaluating the chosen dropout value during training
and Monte Carlo inference becomes a crucial aspect of our
methodology. The decision to implement a 30% dropout rate
was a strategic one, aimed at striking an optimal balance in
our models. This rate was selected after observing effects of
different dropout rates in preliminary tests. At a lower 10%
dropout rate, we noticed less variability in uncertainties, but
this did not significantly enhance the models’ accuracies. On
the other hand, a higher dropout rate of 50% adversely impacted
the models’ accuracies, suggesting a potential overadjustment
in the learning process.

This understanding of the impacts of varying dropout rates
was important in optimizing the performance of our models. By
settling on a 30% dropout rate, we managed to maintain a balance
where the accuracy of the models was not overly compromised,
nor was the effectiveness of the Monte Carlo estimation diluted.
This decision was crucial in ensuring that our models remained
robust and efficient in predicting slum areas.

It is crucial to acknowledge the influence of the inherently
noisy dataset on our results. Although we have unified the dataset
into a coherent representation of slums, as detailed earlier in this
article, the intra- and interurban variability inherently introduces
a significant level of noise. This variability means there is a wide
range of slum characteristics to learn and predict. However, this
diversity also serves as a key advantage of employing the Monte
Carlo Dropout method. By using this technique, we can observe
the effects of this variability in the probabilities, which is also
evident in the maps presented in Fig. 6.

Furthermore, it is important to consider how the application
of our models to different definitions of morphological slums
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Fig. 5. Results for all eight cities using the transfer-learned STnet trained on 100 samples per class. All results are in the same scale of 1:80 000 and use the same
color bar for the probability value of the slum class. Black outlines are used for the reference slum polygons.

could impact the results. Slums can vary greatly in their physical
characteristics, spatial distributions, and overall appearances
from one urban area to another. If our models were applied
to slum areas with different morphological characteristics than
those on which they were trained, this could potentially lead
to variations in predictive accuracy and uncertainty estimations.
Such a transfer would require careful consideration and possibly
adjustments to the model to account for these differences. This
aspect underscores the importance of context and adaptability
in model application, especially in diverse urban environments.

B. Transfer Learning With Few Samples

In Fig. 6, we present the results obtained for the STnet within
a similar area of interest as depicted in Fig. 1. To provide
additional clarity, we have outlined the slum reference polygons
with a black border. Furthermore, we present the slum probabil-
ity results obtained from the five different training techniques
using the same red colorbar. These results shed light on the
model’s performance in identifying slum settlements. All images
(a)–(f) within this figure are consistently displayed at a scale
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Fig. 6. Results for the STNet in a comparable area of interest, as depicted in Fig. 1. All images (a)–(f) are presented in a consistent scale of 1:10 000. Image (a)
showcases a very high-resolution Google satellite imagery of the identical point of interest shown in Fig. 1. Images (b)–(f) exhibit the outcomes obtained using
the STNet, with variations from no transfer learning (b) to transfer learning from 1 to 50 samples per class (c)–(f). (a) Google Satellite basemap. (b) No transfer
learning. (c) One sample. (d) Five samples. (e) Ten samples. (f) Fifty samples.

of 1:10 000. Fig. 6(a) offers a detailed view, featuring very
high-resolution Google satellite imagery of the exact point of
interest showcased in Fig. 1. The subsequent images, Fig. 6(b)
through 6(f), illustrate the diverse outcomes achieved through
the utilization of the STnet. Fig. 6(b) presents results ob-
tained without the application of transfer learning, while images
Fig. 6(c) through 6(f) demonstrate the progressive impact of
transfer learning with 1 to 50 samples, highlighting the evolution
of performance and insights gained through this process. The
variation in results for Nairobi, transitioning from utilizing 50
samples per class to 100 samples per class for transfer learning,
exhibits negligible differences in both accuracy metrics and
visual outcomes. Consequently, we conclude the figure at the
50 sample mark, as further iterations do not yield significant
improvements in performance or visual representation. By lever-
aging transfer learning, we aim to improve the model’s ability to
recognize and understand the unique features of Nairobi’s urban
landscape.

From Fig. 4, we find a comprehensive overview of the STnet’s
performance metrics for the entire city of Nairobi. Specifically,
we evaluate the model’s F1-score. When employing simple
inference without transfer learning, the F1-score achieved was as
low as 49.06%, indicative of an initial struggle to map the slums
of Nairobi. While Fig. 6(b), initially presents promising results
with minimal overclassification tendencies, it is essential to

consider the broader context. The depicted area represents only
a small portion of the dataset. What is particularly noteworthy
is the relatively low confidence values associated with these
predictions. This underscores the significance of considering
local context, which becomes evident that the models using
transfer learning displays higher confidence in its classifications,
emphasizing the value of leveraging transfer learning to enhance
the classification accuracy and contextual understanding.

However, as we incorporate one sample per class for transfer
learning, we observe a notable improvement, with the F1-score
rising to 66.78%. This demonstrates the efficiency of using
a limited number of labeled samples to enhance the model’s
understanding of Nairobi’s unique morphologic characteristics.
In Fig. 6(c), we observe a significant increase in the F1-score
for the entire city of Nairobi. However, this improvement is
accompanied by a notable issue of overclassification in the area
of interest. In addition, there is an evident rise in the overconfi-
dence levels of the predictions, highlighting a disparity between
quantitative scores and visual accuracy. From Fig. 6(c) to 6(e),
there is a noticeable progression in the F1-score. However, it
is not until Fig. 6(f), when a sufficient number of samples are
utilized for transfer learning, that the visual outcomes demon-
strate considerable improvement. In this instance, the results
are promising, exhibiting only minor instances of over- and
underclassification.
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As discussed in Section I, low-rise and dense settlement struc-
tures do not necessarily equate to slum settlements. The region
depicted in Fig. 6 exemplifies this challenge, containing only
one slum settlement amidst several dense formal settlements.
This blend of characteristics intensifies the difficulty of accurate
classification. Furthermore, these findings hold broader implica-
tions, suggesting that our results are highly generalizable to other
cities with similar fuzzy feature spaces between formal, low-rise
dense settlements and slum settlements. Cities like Lagos, Rio de
Janeiro, and Sao Paulo, known for their similar morphological
appearances of slums, can especially benefit from these insights,
as they present comparable classification challenges.

VII. CONCLUSION

Through the integration of Monte Carlo dropout, we gained
valuable insights into the uncertainties in our predictions, allow-
ing us to identify areas where our AI model is more or less certain
in its slum classification. The presence of multiple typical slum
morphologies led to higher certainty in the model’s predictions.
However, challenges arose when slums shared features with
formal areas, which made the classification task more complex.
Despite this, the application of Monte Carlo dropout proved to be
effective, especially when dealing with noisy datasets and fuzzy
feature spaces, which typically pose significant challenges for
any classification tasks.

Moreover, we introduced our custom CNN STnet, which
demonstrated comparable results to renowned models like
ResNet50 and Xception while offering significantly reduced
processing time. We have successfully attained an elevated
F1-score of 86.24%, a performance that can be deemed re-
markable in the context of slum mapping, where we address
intricate urban patterns and challenges. Particularly noteworthy
was its performance when trained on limited samples, making
it an ideal choice for scenarios with fewer available training
data. We were able to outscore both Xception and ResNet50
when using ten or fewer samples per class for transfer learn-
ing. By combining Monte Carlo dropout, a class-weighted loss
function for pretraining, and class-balanced transfer learning,
we presented a simple yet efficient approach for accurately
classifying challenging urban patterns in noisy and imbalanced
datasets. Our approach not only addressed the uncertainties in
slum classification but also tackled the inherent complexities of
working with real-world data, which often lacks perfect labels
and may exhibit imbalances across classes. In summary, our
research provides a valuable contribution to the field of urban
pattern classification and demonstrates the importance of con-
sidering uncertainties in AI models for more accurate and robust
predictions. The proposed framework opens avenues for future
research in improving the understanding of slum settlements and
urban planning, ultimately leading to more effective and targeted
interventions in urban development and poverty alleviation.
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