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Hybrid Attention Fusion Embedded in Transformer
for Remote Sensing Image Semantic Segmentation

Yan Chen ", Quan Dong ', Xiaofeng Wang
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Abstract—In the context of fast progress in deep learning, con-
volutional neural networks have been extensively applied to the
semantic segmentation of remote sensing images and have achieved
significant progress. However, certain limitations exist in capturing
global contextual information due to the characteristics of convolu-
tional local properties. Recently, Transformer has become a focus
of research in computer vision and has shown great potential in
extracting global contextual information, further promoting the
development of semantic segmentation tasks. In this article, we use
ResNet50 as an encoder, embed the hybrid attention mechanism
into Transformer, and propose a Transformer-based decoder. The
Channel-Spatial Transformer Block further aggregates features
by integrating the local feature maps extracted by the encoder
with their associated global dependencies. At the same time, an
adaptive approach is employed to reweight the interdependent
channel maps to enhance the feature fusion. The global cross-fusion
module combines the extracted complementary features to obtain
more comprehensive semantic information. Extensive comparative
experiments were conducted on the ISPRS Potsdam and Vaihingen
datasets, where mlIoU reached 78.06% and 76.37 %, respectively.
The outcomes of multiple ablation experiments also validate the
effectiveness of the proposed method.

Index Terms—Global cross fusion, hybrid attention, remote
sensing image, semantic segmentation, Transformer.

1. INTRODUCTION

ITH the continuous development of satellite and remote
W sensing technologies, numerous high-resolution images
can be easily acquired [1]. Semantic segmentation plays a crucial
role in various remote sensing applications, including urban
construction and planning, land surveying, environmental mon-
itoring, and disaster assessment, to name a few. In the classical
paradigm of geographic object analysis based on image analysis,
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it is expected first to use unsupervised segmentation methods
to segment the image and then classify the segmented regions
[2]. However, semantic segmentation employs a pixel-level su-
pervised style and assigns each pixel with a predesigned label.
Although remote sensing images contain a wealth of detailed
ground object information, the distribution of ground object
categories is often imbalanced. In addition, due to variations
in shape, color, texture, and other features, the ground ob-
jects exhibit significant intra-class variance and slight interclass
variance in the imaging process. Consequently, the semantic
segmentation task for remote-sensing images poses substantial
challenges [3].

Methods based on hand-crafted feature extraction were the
primary approach in the early stages of addressing semantic
segmentation on remotely sensed images [4]. However, as re-
mote sensing image resolution continues to improve, conven-
tional methods face significant challenges in extracting ground
object features and achieving accurate semantic segmentation
[5]. These conventional methods often rely heavily on domain
knowledge and expertise, requiring manual feature design and
the selection of suitable machine learning algorithms. However,
high-resolution remote sensing images contain abundant details
and intricate scenes, making it difficult for these methods to
perform refined feature extraction and segmentation. In addi-
tion, traditional methods have poor adaptability, as each task
may require parameter adjustments or method redesign, which
increases manual intervention and development costs and limits
the scalability and generality of the algorithms [6].

Deep learning techniques, particularly convolutional neural
networks (CNNs), have emerged as the dominant approach
for various semantic segmentation tasks in recent years [7],
[8]. Unlike conventional methods, deep learning models do
not require manual feature design. They automatically learn
feature representations from data, thereby increasing automa-
tion and possessing strong nonlinear modeling capabilities [9].
By employing deep learning architectures such as CNNG, it
becomes possible to capture more fine-grained local contex-
tual information, effectively extracting the complex advanced
features of objects on the ground and achieving more accurate
semantic segmentation. Inspired by the end-to-end fully CNN
(FCN) framework [10], many semantic segmentation networks
have been developed. For example, SegNet [11] employs an
encoder—decoder architecture for feature extraction and up-
sampling, thereby generating efficient pixel-level segmentation
results. DeepLab v3-+ [12] introduced the atrous spatial pyramid
pooling (ASPP) module to obtain spatial contextual feature
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information. Regular convolutions are replaced by atrous con-
volutions to expand the receptive field and achieve multiscale
feature extraction. PSPNet [13] achieves multiscale receptive
fields and fine-grained feature fusion through a pyramid pooling
structure to enhance the understanding of semantic information
in images. Both BiSeNet V1 [14] and V2 [15] adopt a concise
and efficient dual-path encoder structure, which respectively
extracts spatial detail information and high-level semantic in-
formation, achieving high accuracy and fast speed while en-
hancing discriminative ability. MPSegNet [16] incorporates a
scale guidance module, enabling the subnetwork to focus on
specific scale objects with large-scale variations in the image.
CGFDN [17] designs a feature decoupling module to encode
the co-occurrence relationship into the convolutional features,
thereby decoupling the most discriminative features. SLA-NET
[18] proposes a spatial-logic aggregation network based on
morphological transformations, where morphological operators
effectively embed trainable structural elements to form unique
morphological representations. However, compared to natural
images, remote sensing images contain more abundant infor-
mation. The convolutional operations used for feature extrac-
tion also introduce significant noise interference. Spectral data
provides valuable information for scene understanding. Spec-
tralGPT [19], ExViT [20], and GSANet [21], among others, all
integrate complementary information from different modalities
to achieve more comprehensive and accurate results. Other
works specifically design attention mechanisms targeting spe-
cific problems and challenges to effectively alleviate the impact
of noise on segmentation [22].

Subsequently, attention mechanisms aroused a wave of en-
thusiasm in the field of deep learning and gained widespread
application in semantic segmentation tasks. For example, the
convolutional block attention module (CBAM) [23] combines
mechanisms of channel attention and spatial attention, enabling
the network to adaptively adjust the performance of feature maps
in the channel dimension and spatial dimension, thereby enhanc-
ing the model’s ability to focus on essential features and suppress
noise. MACU-Net [24] adopts asymmetric convolutional blocks
to enhance the feature representation capability, replacing the
standard convolutional layers. It also designs multiscale skip
connections combined with channel attention to combine and
refine the semantically generated features at multiple levels.
MANet [25] proposes a multiscale strategy based on kernel and
channel attention to aggregate relevant contextual features at
different levels. MsanlfNet [26] uses multiscale attention and
fast Fourier transform to obtain fine multiscale spatial features
and global contextual information, effectively balancing perfor-
mance and computational complexity. The introduction of these
efficient attention mechanisms has effectively alleviated the
weakness of CNNs in handling global dependence relationships,
resulting in significant improvements in semantic segmenta-
tion accuracy. However, there is still room for improvement in
modeling global context. For example, as shown in Fig. 1(a),
the lack of global context information in MANet leads to an
inaccurate understanding of the complete shape and boundaries
of the target object, resulting in erroneous segmentation results.
In addition, as shown in Fig. 1(b), trees and low-vegetation areas
may be influenced by clouds, shadows, occlusions, and other
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Fig. 1. Examples of predictions on the ISPRS Vaihingen dataset. (a) MANet
incorrectly segmented the complete boundaries and shape of the target object.
(b) MsanlfNet encountered category confusion and misclassified low-vegetation
as trees.

interferences, causing them to exhibit similar texture features.
This can lead to category confusion when MsanlfNet encounters
these regions.

Many studies have also started to address the challenges
posed by remote-sensing images. For example, HighDAN [27]
proposes a high-resolution domain adaptation network, by em-
bedding the adversarial learning-based DA’s idea into HR-Net
and utilizing the Dice Loss to mitigate the effects of class imbal-
ance. MMT [28] proposes a mixed-mask attention mechanism
that assists the network in learning more explicit intraclass and
interclass correlations by capturing long-range interdependent
representations. The study in [29] highlights the significant
progress and breakthroughs achieved by introducing Trans-
former methods into semantic segmentation tasks. Drawing from
the recent vital advances of Transformers in computer vision, we
propose a novel Transformer architecture to address the afore-
mentioned issues. HAFNet primarily combines a CNN-based
encoder with a specially crafted Transformer decoder, forming
ahybrid architecture. This design fully leverages the strengths of
both CNN and Transformer, enabling the network to efficiently
extract and process complex contextual information. The main
contributions of this article are outlined as follows.

1) A novel hybrid attention-based Transformer architecture,
Channel-Spatial Transformer Block (CSTB), is intended
to aggregate local detail, channel, and global information
at different levels to obtain more comprehensive semantic
information.

2) GCFM employs an interactive fusion strategy that pro-
motes synergy between different branching features to
establish effective correlations between features so that the
network can capture critical information from the image
as a whole.

3) A novel decoder architecture constructed by CSTB and
GCFM based on the encoder of ResNet50 has been pro-
posed for improving representation capacity. Comparisons
between the different methods are carried out on the ISPRS
Potsdam and Vaihingen datasets, and the experimental
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results indicate that our proposed approach exhibits higher
efficiency compared to other advanced approaches.

The subsequent sections of this article are organized in the fol-
lowing manner. Section Il reviews some related work. Section I11
provides a thorough description of the proposed approach.
Section IV introduces the datasets and evaluation metrics used
in the experiments and presents a detailed analysis of the exper-
imental results. Section V concludes this article.

II. RELATED WORK

This section concisely reviewed the semantic segmentation
methods related to our study and analyzed their constraints.

A. Encoder-Decoder-Based Architectures

The FCN is a classic end-to-end method for semantic seg-
mentation. It uses convolution and deconvolution operations to
restore feature maps to the original image resolution, achiev-
ing pixel-level classification. However, the overly simplified
encoder—decoder structure in FCN leads to coarse segmentation
results, thereby reducing segmentation accuracy. U-Net [30]
effectively solves this issue by employing a symmetric structure
that connects the encoder and decoder, known as the contraction-
expansion path. This architecture preserves abundant contextual
information and high-resolution features, leading to more accu-
rate image segmentation. Specifically, the encoder progressively
decreases the feature map size and captures semantic features,
whereas the decoder restores details and spatial detail informa-
tion through a combination of upsampling and skip connections,
achieving accurate segmentation while preserving details. The
encoder—decoder architecture has subsequently achieved excel-
lent performance and wide application in remote sensing image
semantic segmentation tasks [31]. In related studies [32], [33],
various improvements have been made at the decoder stage to
extract rich semantic information.

While the CNN-based encoder—decoder architecture has
achieved remarkable performance, it faces certain limitations
regarding the receptive field. If the emphasis is solely placed
on extracting local semantic features, the network may have
difficulty effectively capturing the comprehensive image infor-
mation, especially in high-resolution remote sensing urban scene
images with rich features. This limitation can pose considerable
challenges in accurately identifying complex target objects,
leading to erroneous segmentation results.

B. Attention Mechanism

Combining deep learning and attention mechanisms has seen
widespread use in many fields. To address the problem of CNN
focusing too much on local patterns, numerous attempts have
been made to model global information, with the widely fa-
vored approach being to introduce attention mechanisms into the
network. For example, nonlocal neural networks [34] introduce
nonlocal modules to capture global dependencies by computing
similarities between pixels, overcoming the limitations of con-
ventional CNNs in handling long-range dependencies. DANet
[35] proposes combining positional attention with channel atten-
tion to better capture dependencies and contextual information
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between diverse pixel positions. OCRNet [36] constructs soft
object regions for each category in advance and enhances the
feature representation ability of pixels by learning the relation-
ship between pixels and object regions, thus fusing local feature
information with global contextual information.

With the development and broad application of numerous
attention mechanisms further validating their great potential,
attention mechanisms have also contributed significantly to
the progress in the semantic segmentation of remotely sensed
images. LSCNet [37] introduces a large kernel sparse ConvNet
weighted by multifrequency attention, utilizing two parallel rect-
angular convolutional kernels and employing an adaptive sparse
optimization strategy to dynamically optimize the fixed neuron
connections between different convolutional layers. In [38], a
spectral attention subnetwork and a spatial attention subnetwork
are constructed to focus on more discriminative information in
the spectral domain and spatial domain, respectively. In [39], a
multimodal attention-aware convolutional network is proposed,
where designed cascaded blocks facilitate multistage informa-
tion exchange. LANet [40] proposes a local attention embedding
method, which allows the network to focus on leveraging the
connection between local detail features and global features
to capture comprehensive contextual information. AFNet [41]
designs an attention fusion network that allows the network to
retain more detailed information while adaptively performing
multiscale feature fusion to capture more integrated semantic
information. CANet [42] leverages the techniques of multiscale
residual concatenation and spatial pyramid pooling to aggregate
rich contextual information at different levels. Despite these
advantages, the convolution operation based on limited receptive
fields primarily focuses on extracting local feature information.
At the same time, these attention modules heavily rely on convo-
lutional operations, making it challenging to efficiently extract
global context dependencies and acquire long-range dependen-
cies. As a result, it can easily lead to ambiguity in classifying
certain pixels in remote sensing images [43], [44]. Finally, if
only a single attention module is used at the decoder, the network
lacks the ability to globally model multilevel semantic features.

C. Transformer-Based Semantic Segmentation Methods

With its excellent sequence-to-sequence modeling capability,
the Transformer model has shown outstanding performance
in extracting global contextual information compared to the
models mentioned above that only use the regular attention
mechanism. Subsequently, many researchers began to explore
applying the Transformer model to the semantic segmentation
task of remotely sensed images [45]. The main advantage of the
Transformer model in dealing with fine high-resolution remote
sensing imagery of urban scenes is its capacity to efficiently
establish long-range dependence relationships, thereby improv-
ing the accuracy and robustness of semantic segmentation.

Currently, most Transformer models used for semantic seg-
mentation still adopt an encoder—decoder structure. Based on
different combinations of encoders and decoders, Transformer
models for semantic segmentation can be classified into two
types. The first type is models that fully utilize the Transformer
structure. For example, SegFormer [46], SwinUnet [47], and
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Fig. 2. Schematic of the HAFNet.

Segmenter [48] leverage the advantages of Transformers to
better consider global semantic information, leading to signifi-
cant improvements in segmentation performance and efficiency.
The second type involves using the Transformer in the encoder
while employing CNN in the decoder. For example, GMHF
[49] proposes a bibranch global ™ multiscale hybrid network that
extracts both multiscale global and local features. These features
are further integrated through correlation modules to provide
the network with more comprehensive semantic information. In
DC-Swin [50], the Swin Transformer [51] is used in the encoder
to enhance the network’s ability to handle long-range dependen-
cies. Conversely, the decoder incorporates a densely connected
feature aggregation module based on convolution operations. In
the research by [52], SwinTF-U-Net, SwinTF-PSP, and SwinTF-
FPN also utilize the Swin Transformer as the encoder, whereas
the decoder is based on multiscale CNN architectures, such as
U-Net, PSP, and FPN. Although the second type of Transformer
combined with CNN has achieved impressive results in remote
sensing image semantic segmentation tasks, its computational
cost is much higher than that of a CNN-based encoder [53].
Therefore, the proposed network architecture in this article
adopts CNN as the encoder and utilizes the Transformer in the
decoder part.

III. METHODOLOGY

This section presents the structure of HAFNet and provides an
overview of the model’s framework, as shown in Fig. 2. The con-
struction of the model involves the utilization of a CNN-based
encoder and a Transformer-based decoder. A comprehensive
description of every component follows.

A. CNN-Based Encoder

The feasibility of ResNet50 in remote sensing image semantic
segmentation tasks has been verified in previous studies [25],
[26]. We adopt a pretrained ResNet50 as the encoder, which
consists of four residual block layers. Each residual block layer
performs a down-sampling of the feature maps by a factor of
2. The deep structure enhances the network’s generalization

256 X 64 x 64

256x32x32 256x16x 16

——  Skip connection

GCFM : Global Cross-Fusion Module

CSTB : Channel-Spatial Transformer Block

ability and representation power. Multiscale skip connections
ensure that our model efficiently handles both fine-grained and
coarse-grained semantic information in the images. To extract
multilevel semantic features while maintaining computational
efficiency, we apply channel compression to the end of the
backbone network, reducing the final output channels to 256 and
ensuring consistency throughout the decoder with 256 channels.
This design aims to balance performance and computational
cost.

B. Transformer-Based Decoder

The mainstream methods for capturing global contextual in-
formation can be divided into two types. The first approach is to
add attention modules at the end of the encoder [34]. However,
this design may make it difficult for the network to capture
multiscale global semantic features. The second approach is to
directly use a Transformer model in the encoder [54]. However,
this not only increases the computational burden and number
of parameters but may also result in the loss of spatial detail
feature information. In contrast, HAFNet introduces the CSTB
and GCFM in our decoder. These components work together
to extract global context correlation without sacrificing spatial
details. Different from the traditional multihead self-attention
in the regular Transformer, the proposed CSTB mainly includes
a channel attention module and a spatial attention module to
optimize the network’s utilization of channel information and
capture global contextual information. In addition, the resid-
ual branch in the CSTB effectively aggregates local details,
channels, and global contextual information by leveraging the
local feature information extracted by ResNet50, which helps
the network capture more comprehensive semantic information.

C. Channel Adaptive Module (CAM)

Channel attention is to learn channel weights to weigh differ-
ent channels of the input feature map, which enables the model to
dynamically select and adjust the importance of channels. CAM
adopts a two-branch structure compared to previous classical
channel attention modules [55], [56]. Specifically, as shown in
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Fig. 3., for an input feature map of size X € ROV frst, maxi-
mum pooling and average pooling operations are performed on it
to aggregate the global semantic information of the feature map,
resulting in two channel maps with the same dimensions, i.e.,
the maximum pooling feature X ;. € R®*! and the average
pooling feature X 4. € R®!¥1, In the subsequent bottleneck
structure, the channel dimension is reduced by a 4x factor
through convolution. Next, LayerNorm is introduced to enhance
the model’s robustness. Subsequently, the channel dimension is
restored to its original value through convolution. Finally, we use
the Sigmoid activation function to acquire weight coefficients
and multiply the input feature map with these two channel
weights to enhance the effective features. The two corresponding
results are then fused together using a summation operation. The
relevant formulas are as follows:

MC (X) = U(Wla:l (LN(Wla:l (AVgPOO] (.’17))))) - X
+ U(chcl(LN(Wlml (MaxPoo] (.’13))))) - X
= 0(Wie1(Ly(Wia1 (Xae)))))

+ o(Wizt (Ln (Wi (Xac))) (1)

where AvgPool represents the average pooling operation,
MaxPool denotes the maximum pooling operation, Ly denotes

the Layernorm operation, o represents the Sigmoid activation
function, and W7, represents the 1 x 1 convolution operation.

D. Spatial Context Module (SCM)

SCM can focus the attention on the global scope of the
whole image or feature map, enhancing the model’s ability to
perceive global features, achieving a more comprehensive and
integrated grasp of the overall information of the image, and
better interpreting the relationship between different regions.
As shown in Fig. 4., the primary emphasis lies in merging two
distinct branches. First, in the upper part, the input feature map
X € R&HW is subjected to average pooling and max pooling
operations along the channel dimension separately. The two
results are then concatenated, and a convolutional operation
is performed to generate the spatial feature map (€). Finally,
by applying the Sigmoid activation function, the resulting map
is multiplied with the input feature map to acquire the spatial
attention map Ejy(x), capturing the dependence relationships
between different positions. The formula is as follows:

Ey (X) = oc(Wia1 [MAP;AVP]) - X = o (€) - X (2

where MAP represents max pooling across the channel di-
mension, whereas AVP represents average pooling along the
channel dimension. In the following part, the spatial feature
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map (€)is dimensionally transformed, and the Softmax acti-
vation function is applied to the dimensionally adjusted result
(i.e., H¥W dimension). The dimension is added to the output
to obtain Xg € R™HWx! Furthermore, the input feature map
is reshaped to obtain Xz € R®HV_ Subsequently, the result
of the unsqueeze transformation, denoted as X;; € RIX*HW,
undergoes matrix multiplication with Xg € R*HWx! Finally,
the channel map F;(z) with dimensions of Cx1x1 is obtained
through the reshape operation. This part is the distillation of spa-
tial information for global perceptual convergence. The specific
steps are formulated as follows.

E, (X)= R(U, (Sa2 (R (€)))

= R(Xs- Un(XRr))

- Un (R(X)))

— R(Xs-Xu) 3)

where R denotes the Reshape operation, Sy denotes the Soft-
max activation function acting on the second dimension and
U, signifies the unsqueeze operation that expands on the data
dimensions. The subsequent bottleneck structure is used to
enhance the interchannel dependencies. First, the channels are
compressed to C/r by a convolutional layer, where r is the re-
duction factor. In addition, LayerNorm is inserted in the middle,
allowing the normalization operation to be performed before the
nonlinear activation function GELU. This facilitates the preser-
vation of the data’s dynamic range and improves the model’s
generalization ability. After that, the result Ec € R©!*! which
aggregates the global feature information, is superimposed on
the spatial feature Eo(x). Finally, the fused result is summed
with the input feature map to obtain E(X) as follows:

E (X) = Waus(3(Ln(Wazs (E1 (X)) + Eo (X) + X
=FEc +Ey(X)+X 4)

where W3,3 represents the 3x3 convolution operation, and &
denotes the GELU activation function.

E. Redesigned MLP Layer in Transformer

Although the FFN layer in the previous Transformer Block
has strong nonlinear modeling ability, its local perceptiveness
is inadequate as it only focuses on the feature information
of the current position. Therefore, further improvements have
been made to the FFN in the Transformer Block. As shown in
Fig. 5, the improved FFN layer first utilizes a 7 x 7 depthwise
convolution to enhance the model’s local perceptiveness.

Next, in the subsequent fully connected layer, we introduce
the simple and efficient global response normalization (GRN)
from ConvNext v2 [57]. It aggregates global features, nor-
malizes features, and calibrates features, thereby helping the
network suppress feature collapse and enhance channel contrast
and selectivity. The three specific steps of GRN are as follows.
First, the spatial features X; are aggregated into a vector gx
using the global function G(-) as follows:

G(X):= X € RHeW2C _, g3 ¢ RO, (5)
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Fig. 5. Schematic of the Channel-Spatial Transformer Block.
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Fig. 6. Schematic of the global cross-fusion module.

This can be seen as an elementary pooling layer. Next, we
apply the response normalization function N(-) to the aggre-
gated value. Specifically, we use the following standard division
normalization:

[ X |l
2j=1,..cl Xl

where || X; || represents the L2-norm of the ith channel. Intu-
itively, (6) quantifies the importance of the ith channel relative
to all other channels in the entire feature map. Similar to other
normalization methods [58], this step aims to induce competi-
tion and mutual inhibition among different channels, thereby
enhancing the expressive power of features. Ultimately, the
original input response is adjusted using the computed feature
normalization scores, which is formulated as follows:

X, = X; *N(G (X),;) € R"=W. (7

NATXil): =1 Xille R— €ER (6)

F. Global Cross-Fusion Module

In the decoder, conventional feature fusion methods typically
involve using fixed interpolation or convolution operations to
upsample the image and then directly fuse it with the features
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obtained from skip connections. However, this often leads to loss
of detailed information and blurriness. Thus, we propose a global
cross-fusion module (GCFM) to obtain more comprehensive and
global semantic information, enabling more accurate restoration
of image details. As shown in Fig. 6, the information interaction
fusion of different branches compensates for the information
loss caused by the reduction in the number of channels and en-
hances the spatial and semantic information. Secondly, a global
average pooling layer is utilized to generate the attention map
Xc € RIX! Then, the channel dimension C is reduced by four
times, expanded to the original size, and multiplied with the low-
level features to obtain the attention feature map Yo € REHW,
This suppresses unnecessary noise and selectively focuses on
essential parts of the image. Finally, the upsampling operation
is performed on the high-level features, and the obtained result
is fused with the attention feature map using summation. The
formula is as follows:

G (X) = CBR(C, BR (AvgPool (X - Y))) - CBR (Y - X)
+Up (X)
— CBR(C, BR(X¢)) - CBR(Y - X) 4 U, (X)
= Yo + U, (X) (8)

where X represents the deep semantic features, Y represents the
shallow semantic features, X - Y denotes the feature fusion by
summation of Y after upsampling and dimension adjustment
with X, and Y - X follows the same logic. CBR represents con-
volution, batch normalization, and ReLU, whereas U, represents
bilinear interpolation upsampling.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will outline the datasets used, the evaluation
metrics employed, and provide details of the conducted experi-
ments. We will analyze and discuss the experimental results on
both datasets.

A. Dataset Description

1) Potsdam: This dataset, provided by ISPRS, was collected
from aerial imagery of the German city of Potsdam, with a total
of 38 high-resolution images. Each image has an average size
of 6000 x 6000 pixels and a ground sampling distance of 5
cm. This dataset includes six categories: Impervious surfaces,
buildings, low vegetation, trees, cars, and clutter/background.
Specifically, we use images with IDs 2_11, 2_12, 3_10, 3_11,
3.12,4.10,4_11,4_12,5_10,5_11,5_12,6_7,6_8,6_9,6_10,
6_11,6_12,7_7,7_8,7.9,7_10,7_11, and 7_12 for training.
We use the images with IDs 2_10 for validation and the rest
for testing. To reduce the amount of computation, a digital
surface model (DSM) and a normalized DSM are not used in
our experiments. In addition, red, green, and blue bands are
used in our experiments. We also crop the original images into
patches of 512 x 512 size and perform data enhancement by
randomly rotating, scaling the size, vertically flipping, horizon-
tally flipping, and adding random Gaussian noise.
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TABLE 1
ABLATION STUDY OF EACH COMPONENT OF THE HAFNET

Dataset  Method OA mF1 mloU
Baseline 89.62 84.86 76.19
Baseline + GCFM 89.73  85.59 76.88
Baseline + CAM 90.01 85.44 76.99
Potsdam Baseline + SAM 89.70  85.47 76.75
Baseline + CS 89.81 85.89 77.16
Baseline + CSTB 90.44  86.02 77.66
Baseline + CSTB + 90.45 86.47 78.06

GCFM
Baseline 89.89 84.13 74.25
Baseline + GCFM 90.04 84.70 74.84
Baseline + CAM 90.22 84.50 74.77
Vaihingen Basel?ne + SAM 89.88  84.85 75.00
Baseline + CS 90.08 85.01 75.18
Baseline + CSTB 90.14 85.23 75.45
Baseline + CSTB + 90.29 85.93 76.37

GCFM

The best values in the column are emphasized in bold.

2) Vaihingen: This dataset, provided by ISPRS, was col-
lected from aerial imagery of the German city of Vaihingen
and consists of 33 high-resolution images. Each image has an
average size of 2994 x 2064 pixels and a ground sampling
distance of 5 cm. The ground reality comprises six categories
identical to those in the ISPRS Potsdam benchmark. The training
setincludes 16 images, whereas the test set consists of 17 images.
For training, we use images with IDs 1, 3, 5, 7, 11, 13, 15, 17,
21, 23, 26, 28, 32, 34, and 37. Image with ID 30 was reserved
for validation, whereas the rest 17 images were used for testing.
The dataset is processed in the same manner as Potsdam.

B. Evaluation Metrics

The experimental results are evaluated based on three com-
monly used metrics: overall accuracy (OA), mean F1 score
(mF1), and mean intersection over union (mloU). Their cal-
culations are as follows:

S o K

OA = ©)
c c
Di—02j—0kKi
c
1 Ky
C+1 12::0 Kii+ 3 ZJC: o (Kij + Kji)
c
1 Ky
mlou =
C+1 ig() Z;C: o Kij + Zf: o (Kji — Kij)
(11)

where K ;; expresses the number of correctly classified pixels for
class i. K;; expresses the number of pixels incorrectly classified
as class j. Kj; denotes the number of pixels from class j that are
incorrectly classified as class i. C characterizes the total number
of categories.
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Image GT Baseline +GCFM +CAM +SAM +CS +CSTB Ours
Insllpl):f;vclg:s - Building | | Tree | vegetatlon I:I Car - Clutter
Fig.7. Visualization of ablation experiments on two datasets.
TABLE 11
RESULTS FROM EXPERIMENTS CONDUCTED ON THE POTSDAM TEST SET
Per-class IoU (%) Evaluate Metrics (%)
Method Imp.surf  Building Low.veg. Tree Car Clutter mF1 OA mloU
PSPNet 82.77 90.01 74.45 76.97  90.48 31.69 83.46 88.65 74.39
BiSeNeV1 82.95 89.63 73.92 74.36 88.22 35.45 83.60 88.25 74.09
BiSeNeV2 80.91 87.18 71.95 73.16 81.94 34.66 82.05 86.95 71.63
MAResU-Net 84.34 91.76 75.40 76.73 90.70 40.90 85.53 89.54 76.64
MsanlfNet 83.98 90.24 74.02 74.98 88.70 37.57 84.26 88.69 74.92
ABCNet 84.78 92.02 76.52 78.49 91.70 36.39 85.21 89.92 76.65
MANet 84.49 91.48 76.36 78.12  91.03 41.17 85.85 89.81 77.11
BANet 83.35 89.14 73.55 74.56 87.99 33.88 83.26 88.17 73.74
PVT 83.35 91.36 73.33 75.03 81.41 37.24 85.79 88.91 77.32
UnetFormer 84.81 91.40 74.34 77.54  91.77 36.51 84.85 89.38 76.06
CMTFNet 85.63 92.65 76.18 78.36 91.60 40.52 86.01 90.17 77.49
BuildFormer 83.04 89.02 72.84 74.8 88.87  37.56 83.84 88.00 74.23
MCCANet 85.84 92.51 76.60 79.05  92.16  39.01 85.93 90.31 77.53
GCDNet 85.67 92.40 75.65 7822 9126 3832 85.51 89.99 76.92
Ours 85.94 92.54 76.89 79.32 9158 42.12 86.47 90.45 78.06

The best values are highlighted in bold.

C. Implementation Details

All experiments were conducted using PyTorch on a single
server equipped with an NVIDIA GeForce RTX 3090 GPU,
which has 24 GB of memory. In all experiments, we utilized
the AdamW optimizer to accelerate convergence. The baseline
learning rate was set to 6e-4, and a cosine strategy was employed
to update the learning rate. The batch size was set to 8§, and
the maximum number of epochs for training was set to 105.
Moreover, during the training process, we combined the soft
cross entropy loss and dice loss using a weighted sum to form the
final joint loss function. Lastly, all our experimental results are

individual results, and the experimental environment is PyTorch
2.0.1 and CUDA 11.8.

D. Ablation Experiments

To comprehensively evaluate the performance of different
modules, Table I lists the conducted ablation experiments on two
datasets under different configurations. The baseline model uses
ResNet50 as the backbone network and models only local con-
textual information at the decoder. Baseline + GCFM represents
the use of only the GCFM, whereas Baseline + CSTB represents
the use of only the Channel-Spatial Transformer Block. To
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TABLE III
RESULTS FROM EXPERIMENTS CONDUCTED ON THE VAIHINGEN TEST SET
Per-class IoU (%) Evaluate Metrics (%)
Method Imp.surf  Building  Low.veg. Tree Car Clutter mF1 OA mloU
PSPNet 84.76 89.25 70.56 80.13 72.30 44.95 83.95 87.88 73.66
BiSeNetV1 83.94 87.75 68.73 78.96 69.60 42.09 82.63 88.77 71.84
BiSeNetV2 81.14 85.56 66.65 78.10 60.27 39.90 80.29 87.52 68.60
MAResU-Net 84.92 90.26 70.31 79.84 79.58 39.67 83.92 89.75 74.10
MsanlfNet 84.20 88.85 68.12 78.89 71.31 38.02 82.19 88.93 71.57
ABCNet 84.86 89.72 69.14 79.85 76.80 45.81 84.44 89.49 74.37
MANet 85.37 90.50 70.18 80.12 80.23 41.49 84.37 89.90 74.65
BANet 82.82 86.61 67.42 78.19 65.67 39.36 81.25 88.09 70.01
PVT 80.77 85.31 67.71 75.77 57.12 36.60 82.05 88.87 71.79
UnetFormer 84.71 89.22 69.59 80.22 75.44 42.90 83.86 89.49 73.68
CMTFNet 85.89 90.91 71.44 80.29 79.66 42.84 84.78 90.23 75.17
BuildFormer 83.44 87.83 68.50 79.15 7299  41.54 82.87 88.75 72.24
MCCANet 85.98 90.95 71.07 80.79 80.05 44.96 85.19 90.31 75.63
GCDNet 85.39 90.40 70.24 80.11  79.24 4448 84.76 89.87 74.98
Ours 85.35 90.96 71.57 80.88 79.01 50.44 85.93 90.29 76.37
The best values are highlighted in bold.
demonstrate the contribution of the improved MLP in CSTB,
we also construct a simple variant Baseline + CS by removing 0 h. A
MLP and using the attention mechanism only. =
Baseline + GCFM: At the decoder, the interactive fusion = paPNet
of features from different branches can be accomplished “ Bl e
by using GCFM to establish the correlation between the £ mcchng
features and enable the network to better extract the global ~ £ M HAFNet
contextual information. mIoU is improved by 0.69% and 3 * o
0.59% on the Potsdam and Vaihingen datasets, respec- £ ,,w -
tively, and this improvement proves the effectiveness of &
the GCFM module. ” BiSeNetvl
Baseline + CAM: CAM can learn channel weights to * - o
. . . . 5
weigh different channels of the input feature map, enabling cnetionmer
. . . o
the model to dynamically select and adjust the importance peetenz
of channels. This leads to significant improvements over . S
the Baseline on two datasets.
Baseline + SAM: SAM models the relationships between  Fig. 8.  Visualization of network performance evaluation.
different positions to enhance the model’s perception abil-
ity and better understand the semantic information in the ) ) )
image. Itimproves mloU by atleast 0.56% on two datasets. 1nforma't10n, enabh'ng. the network to capture more com-
Baseline + CS: By effectively ageregating complemen- prehensive semantic information. On both datasets, the
tary features using the channel-spatial attention module, performance of mFl and .mIOU has improved by at least
the network gains more discriminative features. This leads 1‘ 1% a.nd 1.47%, reip .ectl.vely. Furthermore, ‘Ehe mI9U of
to significant improvements of 1.03% in mFI and 0.97% Bisellne + CSTB 1? hlgher, than that of . Baseline +
in mIoU on the Potsdam dataset, showcasing the effec- C5”by 0.5%/0.27%, highlighting the necessity of CSTB.
tiveness of CS. 6) Baseline + CSTB + GCFM: This efficient fusion ap-

5)

Baseline + CSTB: CSTB is applied at different positions
in the encoder. It fuses local details, channels, and global

proach utilizes three CSTBs and three GCFMs, enabling
the network to understand and analyze images from dif-
ferent perspectives. It significantly suppresses the impact
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TABLE IV
COMPARISON OF COMPLEXITIES BETWEEN OUR METHOD AND OTHER METHODS
Method mF1(%) mloU(%) Params(M) Flops(G)
PSPNet 83.95 73.66 53.32 201.59
BiSeNetV1 82.63 71.84 23.11 40.90
BiSeNetV2 80.29 68.60 5.10 11.19
MAResU-Net 83.92 74.10 26.77 35.11
MsanlfNet 82.19 71.57 32.24 27.81
ABCNet 84.44 74.37 11.68 15.63
MANet 84.37 74.65 35.86 77.76
BANet 81.25 70.01 28.58 58.10
PVT 82.05 71.79 25.52 -
UnetFormer 83.86 73.68 11.68 11.74
CMTFNet 84.78 75.17 30.68 33.62
BuildFormer 82.87 72.24 48.11 126.76
MCCANet 85.19 75.63 42.38 102.53
GCDNet 84.76 74.98 60.56 281.13
Ours 85.93 76.37 38.51 114.64
The best values are highlighted in bold.
TABLE V

ABLATION STUDIES OF DIVERSE ATTENTION MECHANISMS ON THE VAIHINGEN TEST SET

Attention Per-class IoU (%) Evaluate Metrics (%)
Mechanism Imp.surf  Building Low.veg. Tree Car Clutter mF1 OA mloU
+SCSE 85.18 90.26 71.02 80.43 76.51 45.55 84.73 89.93 74.83
+CBAM 85.30 90.49 70.68 81.11 77.95 46.57 85.10 90.10 75.35
+DA 85.82 90.82 71.71 81.27 78.99 43.98 85.02 90.39 75.43
+KAM&CAM 85.72 90.94 71.31 81.08 78.91 45.48 85.18 90.31 75.57
+EGLA 85.65 90.59 71.38 80.77 79.54 4530 85.16 90.22 75.54
+M2SA 85.33 90.84 71.13 81.05 77.93 48.77 85.52 90.23 75.84
+SEAA 85.59 90.67 71.27 81.15 78.69 44.95 85.04 90.24 75.39
Ours 85.35 90.96 71.57 80.88 79.01 50.44 85.93 90.29 76.37

The best values are highlighted in bold.

of redundant feature information and achieves the highest
accuracy on both datasets. This also further validates the
feasibility of our designed decoder.

In summary, the experimental results not only show the ef-
fectiveness of GCFM but also demonstrate the essential role of
CGTB. Finally, our method not only achieves the best values
on the three metrics but also brings an improvement of at least
1.87% compared to the baseline mIoU on the two public datasets.
In addition, we visualize the results of the ablation experiments,
as shown in Fig. 7. The segmentation performance on both
datasets gradually improves.

E. Comparing With Existing Works

We have also conducted extensive experiments on ISPRS
Potsdam and Vaihingen datasets. Also, to ensure a fair com-
parison, all experiments were performed under the same train-
ing and testing setup. We compare our method with PSPNet
[13], BiSeNet V1 [14], BiSeNet V2 [15], MAResU-Net [59],
MsanlfNet [26], MANet [25], ABCNet [60], BANet [45], Un-
etFormer [61], PVT [62], CMTFNet [63], BuildFormer [64],
MCCANEet [65], and GCDNet [66]. As shown in Table II, the
proposed HAFNet achieves the best F1, OA, and mloU metrics
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Fig. 9.
UnetFormer, CMTFENet, BuildFormer, MCCANet, GCDNet, HAFNet.

on the Potsdam dataset, significantly outperforming other CNN
and Transformer based networks. MCCANet captures chan-
nel attention at various scales through multiscale channelwise
cross attention, allowing dynamic and adaptive feature fusion
in a context-scale aware manner, thus focusing on both large
and small objects distributed throughout the input. It achieves
the best results on tasks involving small objects such as cars.
CMTFNet combines the advantages of CNN and Transformer
by using attention to learn multiscale feature representations and
efficiently aggregate deep and shallow features, achieving the
best results on the category of buildings. It is worth noting that
our method’s IoU on car and building categories is slightly lower

Low
vegetation

Visualization comparisons on the Potsdam test set. (a)-(n) : PSPNet, BiSeNetV 1, BiSeNetV1, MAResU-Net, MsanlfNet, ABCNet, MANet, BANet,

than the best value by around 0.35%, whereas the remaining four
categories achieve the best results.

To further illustrate the performance of our proposed ap-
proach, we conducted the same comparative experiments on the
Vaihingen dataset. In Table III, our HAFNet achieved mF1 of
85.93% and mloU of 76.37% on the Vaihingen dataset. It is
worth noting that because of the unequal class distribution in
the Vaihingen dataset, the Clutter class often poses significant
challenges during prediction. However, our method performs
exceptionally well in the Clutter class, with an IoU surpassing
other networks by more than 4.63%. In addition, especially in
the categories of Low Vegetation and Trees, which have complex
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UnetFormer, CMTFNet, BuildFormer, MCCANet, GCDNet, HAFNet.

features, our approach yields the best results on both datasets.
This further proves that HAFNet can alleviate interference and
error propagation among categories, thereby improving the net-
work’s response capability to differences between samples. Fur-
thermore, we also conducted a simple performance evaluation
of HAFNet, as shown in Fig. 8. The circles in the figure denote
FPS, and the larger the circle, the higher the FPS value. We
also provide the model’s parameter quantity and computational
complexity in Table IV. Based on the comprehensive analysis
of the presented figures and table, although our model has
achieved a favorable balance between performance and effi-
ciency, BiSeNetV2 is a highly efficient network for lightweight
real-time semantic segmentation. Although its precision is not as
high as our proposed method, it exhibits significant advantages

Tree

&) @ (m) ()
) Low_ Car Clutter

Visualization comparisons on the Vaihingen test set. (a)-(n) : PSPNet, BiSeNetV1, BiSeNetV1, MAResU-Net, MsanlfNet, ABCNet, MANet, BANet,

in terms of Params, FPS, and Flops. This is precisely where the
limitation of our method lies.

To verify the effectiveness of the proposed channel-spatial
attention, we conducted ablation experiments by replacing it
with several other cutting-edge attention mechanisms while
keeping other modules unchanged. These include concurrent
spatial and channel squeeze and excitation (SCSE) [67], CBAM
[23], dual attention (DA) [35], kernel attention mechanism
and channel attention mechanism (KAM&CAM) [25], efficient
global-local attention (EGLA) [61], multiscale multihead self-
attention (M2SA) [63], and squeeze-enhanced axial attention
(SEAA) [68]. Due to the efficient coupling of the channel-spatial
attention module in HAFNet, which enhances the network’s
understanding of images, our method consistently achieves the
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best mF1 and mloU on the Vaihingen dataset, as shown in
Table V. Although our channel-spatial attention did not reach the
highest IoU values in the four categories, it was only lower by
about 0.38% from the best value. Significantly, our method still
outperforms other attention mechanisms by over 1.67% in the
clutter category, which further demonstrates the strong learning
ability of our approach, as well as its superiority and robustness
in handling tasks with few samples. This also provides valuable
references and inspiration for applying our approach to other
fields.

F. Qualitative Analysis of the Segmentation Results

As shown in Figs. 9 and 10, we have provided visualization re-
sults on two public remote sensing datasets, denoted as a—n in the
following order: PSPNet, BiSeNetV1, BiSeNetV1, MAResU-
Net, MsanlfNet, ABCNet, MANet, BANet, UnetFormer,
CMTFNet, BuildFormer, MCCANet, GCDNet, HAFNet. First,
the segmentation results on the Potsdam test set are shown in
Fig. 9, where CSTB leverages the contextual information and
interdependencies within feature maps from different layers
to support the network obtain more comprehensive semantic
information, which enables the segmentation results to better
preserve the geometric details and complex contours. For regular
round and regular shaped objects, the segmentation results from
our method are clearer and have smoother edges than other
methods. From the segmentation results of the first three figures,
our method not only suppresses the interference of background
features well but also predicts outcomes very close to ground
truth. Next, the segmentation outcomes on the Vaihingen test set
are shown in Fig. 10, where GCFM fuses semantic information
at different scales, effectively mitigates semantic gaps between
features, and precisely controls features with fine and coarse-
grained, and demonstrates a high degree of granularity in the
segmentation results of the first two graphs, allowing HAFNet
to outperform other methods in dealing with the problems of
missegmentation and category confusion. Especially in the first
figure, when dealing with the “clutter category”, our method is
better at extracting the objects’ full contours than other methods.
In addition, for objects with complex texture features such
as trees and low vegetation, the final two segmentation result
images in Figs. 9 and 10 vividly showcase the outstanding
performance of our approach.

V. CONCLUSION

This article proposes an inimitable decoder based on the
Transformer architecture with ResNet50 as the encoder. Our
designed CSTB can effectively integrate local details, channels,
and global information, reducing the interference of redundant
feature information and enhancing the significant feature repre-
sentation of objects. The GCFM performs an interactive fusion
of features from different branches, establishing correlations be-
tween various elements and improving the model’s understand-
ing of contextual information to acquire a more comprehensive
understanding of semantic information. The experimental re-
sults on the ISPRS Potsdam and Vaihingen datasets demonstrate
that HAFNet outperforms the compared baselines. HAFNet
also performs exceptionally well in handling complex objects

with similar texture features, such as low vegetation and trees,
effectively addressing the issue of class confusion. In addition,
it also effectively alleviates the problem of class imbalance in
remote sensing images. Finally, comprehensive ablation studies
have provided evidence of the effectiveness of every component
in the proposed approach. In addition, our research only focuses
on how to improve segmentation accuracy, whereas there are
still deficiencies in the number of model parameters and com-
putational complexity. Therefore, in future research, we will
continue to explore how to fully utilize the respective advan-
tages of CNN and Transformer to further improve the model
efficiency and performance by addressing this aspect of the
problem.
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